kicad/pcbnew/drc/drc_test_provider_hole_clea...

421 lines
14 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2020 KiCad Developers.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <common.h>
#include <class_pad.h>
#include <class_track.h>
#include <geometry/shape_segment.h>
#include <drc/drc_engine.h>
#include <drc/drc_item.h>
#include <drc/drc_rule.h>
#include <drc/drc_test_provider_clearance_base.h>
/*
Holes clearance test. Checks pad and via holes for their mechanical clearances.
Generated errors:
- DRCE_HOLE_CLEARANCE
TODO: vias-in-smd-pads check
*/
class DRC_TEST_PROVIDER_HOLE_CLEARANCE : public DRC_TEST_PROVIDER_CLEARANCE_BASE
{
public:
DRC_TEST_PROVIDER_HOLE_CLEARANCE () :
DRC_TEST_PROVIDER_CLEARANCE_BASE(),
m_board( nullptr ),
m_largestRadius( 0 )
{
}
virtual ~DRC_TEST_PROVIDER_HOLE_CLEARANCE()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
return "hole_clearance";
};
virtual const wxString GetDescription() const override
{
return "Tests clearance of holes (via/pad drills)";
}
virtual std::set<DRC_CONSTRAINT_TYPE_T> GetConstraintTypes() const override;
int GetNumPhases() const override;
private:
void addHole( const VECTOR2I& aLocation, int aRadius, BOARD_ITEM* aOwner );
void buildDrilledHoleList();
void testHoles2Holes();
void testPads2Holes();
/**
* Test clearance of a pad hole with the pad hole of other pads.
* @param aSortedPadsList is the sorted by X pos of all pads
* @param aRefPadIdx is the index of pad to test inside aSortedPadsList
* @param aX_limit is the max X pos of others pads that need to be tested
* To speed up the test, aSortedPadsList is a pad list sorted by X position,
* and only pads after the pad to test are tested, so this function must be called
* for each pad for the first in list to the last in list
*/
bool doPadToPadHoleDrc( int aRefPadIdx, std::vector<D_PAD*>& aSortedPadsList, int aX_limit );
struct DRILLED_HOLE
{
VECTOR2I m_location;
int m_drillRadius = 0;
BOARD_ITEM* m_owner = nullptr;
};
BOARD* m_board;
std::vector<DRILLED_HOLE> m_drilledHoles;
int m_largestRadius;
};
bool DRC_TEST_PROVIDER_HOLE_CLEARANCE::Run()
{
m_board = m_drcEngine->GetBoard();
m_largestClearance = 0;
m_largestRadius = 0;
DRC_CONSTRAINT worstClearanceConstraint;
if( m_drcEngine->QueryWorstConstraint( DRC_CONSTRAINT_TYPE_HOLE_CLEARANCE,
worstClearanceConstraint, DRCCQ_LARGEST_MINIMUM ) )
{
m_largestClearance = worstClearanceConstraint.GetValue().Min();
reportAux( "Worst hole clearance : %d nm", m_largestClearance );
}
else
{
reportAux( "No hole clearance constraints found..." );
return false;
}
buildDrilledHoleList();
if( !reportPhase( _( "Checking hole to pad clearances..." ) ) )
return false;
testPads2Holes();
if( !reportPhase( _( "Checking hole to hole clearances..." ) ) )
return false;
testHoles2Holes();
reportRuleStatistics();
return true;
}
void DRC_TEST_PROVIDER_HOLE_CLEARANCE::buildDrilledHoleList()
{
m_drilledHoles.clear();
for( MODULE* module : m_board->Modules() )
{
for( D_PAD* pad : module->Pads() )
{
int holeSize = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
if( holeSize == 0 )
continue;
// Milled holes (slots) aren't required to meet the minimum hole-to-hole
// distance, so we only have to collect the drilled holes.
if( pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
addHole( pad->GetPosition(), pad->GetDrillSize().x / 2, pad );
}
}
for( TRACK* track : m_board->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
VIA* via = static_cast<VIA*>( track );
addHole( via->GetPosition(), via->GetDrillValue() / 2, via );
}
}
reportAux( "Total drilled holes : %d", m_drilledHoles.size());
}
void DRC_TEST_PROVIDER_HOLE_CLEARANCE::testPads2Holes()
{
const int delta = 25; // This is the number of tests between 2 calls to the progress bar
std::vector<D_PAD*> sortedPads;
m_board->GetSortedPadListByXthenYCoord( sortedPads );
if( sortedPads.empty() )
return;
// find the max size of the pads (used to stop the pad-to-pad tests)
int max_size = 0;
for( D_PAD* pad : sortedPads )
{
// GetBoundingRadius() is the radius of the minimum sized circle fully containing the pad
int radius = pad->GetBoundingRadius();
if( radius > max_size )
max_size = radius;
}
// Better to be fast than accurate; this keeps us from having to look up / calculate the
// actual clearances
max_size += m_largestClearance;
// Test the pads
for( int idx = 0; idx < (int) sortedPads.size(); idx++ )
{
D_PAD* pad = sortedPads[idx];
int x_limit = pad->GetPosition().x + pad->GetBoundingRadius() + max_size;
drc_dbg( 10, "-> %p\n", pad );
if( !reportProgress( idx, sortedPads.size(), delta ) )
break;
doPadToPadHoleDrc( idx, sortedPads, x_limit );
}
}
bool DRC_TEST_PROVIDER_HOLE_CLEARANCE::doPadToPadHoleDrc( int aRefPadIdx,
std::vector<D_PAD*>& aSortedPadsList,
int aX_limit )
{
const static LSET all_cu = LSET::AllCuMask();
D_PAD* refPad = aSortedPadsList[aRefPadIdx];
for( int idx = aRefPadIdx; idx < (int)aSortedPadsList.size(); ++idx )
{
D_PAD* pad = aSortedPadsList[idx];
if( pad == refPad || pad->SameLogicalPadAs( refPad ) )
continue;
// drc_dbg(10," chk against -> %p\n", pad);
// We can stop the test when pad->GetPosition().x > aX_limit because the list is
// sorted by X positions, and other pads are too far.
if( pad->GetPosition().x > aX_limit )
break;
drc_dbg( 10, " chk1 against -> %p x0 %d x2 %d\n",
pad, pad->GetDrillSize().x, refPad->GetDrillSize().x );
// Since a hole pierces all layers we have to test pads which are on any copper layer.
// Pads just on technical layers are not an issue.
if( ( pad->GetLayerSet() & all_cu ) != 0 || ( refPad->GetLayerSet() & all_cu ) != 0 )
{
drc_dbg( 10, " chk3 against -> %p x0 %d x2 %d\n", pad, pad->GetDrillSize().x,
refPad->GetDrillSize().x );
if( pad->GetDrillSize().x ) // test pad has a hole
{
auto constraint = m_drcEngine->EvalRulesForItems( DRC_CONSTRAINT_TYPE_HOLE_CLEARANCE,
refPad, pad );
int minClearance = constraint.GetValue().Min();
int actual;
drc_dbg( 10, "check pad %p rule '%s' cl %d\n",
pad, constraint.GetParentRule()->m_Name, minClearance );
accountCheck( constraint.GetParentRule() );
const std::shared_ptr<SHAPE>& refPadShape = refPad->GetEffectiveShape();
// fixme: pad stacks...
if( refPadShape->Collide( pad->GetEffectiveHoleShape(), minClearance, &actual ) )
{
std::shared_ptr<DRC_ITEM> drcItem = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), minClearance ),
MessageTextFromValue( userUnits(), actual ) );
drcItem->SetErrorMessage( m_msg );
drcItem->SetItems( pad, refPad );
drcItem->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drcItem, pad->GetPosition() );
return false;
}
}
if( refPad->GetDrillSize().x ) // reference pad has a hole
{
auto constraint = m_drcEngine->EvalRulesForItems( DRC_CONSTRAINT_TYPE_HOLE_CLEARANCE,
refPad, pad );
int minClearance = constraint.GetValue().Min();
int actual;
accountCheck( constraint.GetParentRule() );
drc_dbg( 10,"check pad %p rule '%s' cl %d\n", refPad,
constraint.GetParentRule()->m_Name, minClearance );
const std::shared_ptr<SHAPE>& padShape = pad->GetEffectiveShape();
if( padShape->Collide( refPad->GetEffectiveHoleShape(), minClearance, &actual ) )
{
std::shared_ptr<DRC_ITEM> drcItem = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), minClearance ),
MessageTextFromValue( userUnits(), actual ) );
drcItem->SetErrorMessage( m_msg );
drcItem->SetItems( refPad, pad );
drcItem->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drcItem, pad->GetPosition() );
return false;
}
}
}
}
return true;
}
void DRC_TEST_PROVIDER_HOLE_CLEARANCE::addHole( const VECTOR2I& aLocation, int aRadius,
BOARD_ITEM* aOwner )
{
DRILLED_HOLE hole;
hole.m_location = aLocation;
hole.m_drillRadius = aRadius;
hole.m_owner = aOwner;
m_largestRadius = std::max( m_largestRadius, aRadius );
m_drilledHoles.push_back( hole );
}
void DRC_TEST_PROVIDER_HOLE_CLEARANCE::testHoles2Holes()
{
const int delta = 50; // This is the number of tests between 2 calls to the progress bar
// Sort holes by X for performance. In the nested iteration we then need to look at
// following holes only while they are within the refHole's neighborhood as defined by
// the refHole radius + the minimum hole-to-hole clearance + the largest radius any of
// the following holes can have.
std::sort( m_drilledHoles.begin(), m_drilledHoles.end(),
[]( const DRILLED_HOLE& a, const DRILLED_HOLE& b )
{
if( a.m_location.x == b.m_location.x )
return a.m_location.y < b.m_location.y;
else
return a.m_location.x < b.m_location.x;
} );
for( size_t ii = 0; ii < m_drilledHoles.size(); ++ii )
{
if( !reportProgress( ii, m_drilledHoles.size(), delta ) )
break;
if( m_drcEngine->IsErrorLimitExceeded( DRCE_DRILLED_HOLES_TOO_CLOSE ) )
break;
DRILLED_HOLE& refHole = m_drilledHoles[ ii ];
int neighborhood = refHole.m_drillRadius + m_largestClearance + m_largestRadius;
for( size_t jj = ii + 1; jj < m_drilledHoles.size(); ++jj )
{
if( m_drcEngine->IsErrorLimitExceeded( DRCE_DRILLED_HOLES_TOO_CLOSE ) )
break;
DRILLED_HOLE& checkHole = m_drilledHoles[ jj ];
if( refHole.m_location.x + neighborhood < checkHole.m_location.x )
break;
// Holes with identical locations are allowable
if( checkHole.m_location == refHole.m_location )
continue;
int actual = ( checkHole.m_location - refHole.m_location ).EuclideanNorm();
actual = std::max( 0, actual - checkHole.m_drillRadius - refHole.m_drillRadius );
auto constraint = m_drcEngine->EvalRulesForItems( DRC_CONSTRAINT_TYPE_HOLE_CLEARANCE,
refHole.m_owner, checkHole.m_owner );
int minClearance = constraint.GetValue().Min();
accountCheck( constraint.GetParentRule() );
if( actual < minClearance )
{
std::shared_ptr<DRC_ITEM> drcItem = DRC_ITEM::Create( DRCE_DRILLED_HOLES_TOO_CLOSE );
m_msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), minClearance ),
MessageTextFromValue( userUnits(), actual ) );
drcItem->SetErrorMessage( m_msg );
drcItem->SetItems( refHole.m_owner, checkHole.m_owner );
drcItem->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drcItem, (wxPoint) refHole.m_location );
}
}
}
}
int DRC_TEST_PROVIDER_HOLE_CLEARANCE::GetNumPhases() const
{
return 2;
}
std::set<DRC_CONSTRAINT_TYPE_T> DRC_TEST_PROVIDER_HOLE_CLEARANCE::GetConstraintTypes() const
{
return { DRC_CONSTRAINT_TYPE_HOLE_CLEARANCE };
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<DRC_TEST_PROVIDER_HOLE_CLEARANCE> dummy;
}