kicad/include/boost/heap/detail/heap_comparison.hpp

246 lines
7.1 KiB
C++

// boost heap: heap node helper classes
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_DETAIL_HEAP_COMPARISON_HPP
#define BOOST_HEAP_DETAIL_HEAP_COMPARISON_HPP
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/concept/assert.hpp>
#include <boost/heap/heap_concepts.hpp>
#ifdef BOOST_HEAP_SANITYCHECKS
#define BOOST_HEAP_ASSERT BOOST_ASSERT
#else
#define BOOST_HEAP_ASSERT(expression)
#endif
namespace boost {
namespace heap {
namespace detail {
template <typename Heap1, typename Heap2>
bool value_equality(Heap1 const & lhs, Heap2 const & rhs,
typename Heap1::value_type lval, typename Heap2::value_type rval)
{
typename Heap1::value_compare const & cmp = lhs.value_comp();
bool ret = !(cmp(lval, rval)) && !(cmp(rval, lval));
// if this assertion is triggered, the value_compare objects of lhs and rhs return different values
BOOST_ASSERT((ret == (!(rhs.value_comp()(lval, rval)) && !(rhs.value_comp()(rval, lval)))));
return ret;
}
template <typename Heap1, typename Heap2>
bool value_compare(Heap1 const & lhs, Heap2 const & rhs,
typename Heap1::value_type lval, typename Heap2::value_type rval)
{
typename Heap1::value_compare const & cmp = lhs.value_comp();
bool ret = cmp(lval, rval);
// if this assertion is triggered, the value_compare objects of lhs and rhs return different values
BOOST_ASSERT((ret == rhs.value_comp()(lval, rval)));
return ret;
}
struct heap_equivalence_copy
{
template <typename Heap1, typename Heap2>
bool operator()(Heap1 const & lhs, Heap2 const & rhs)
{
BOOST_CONCEPT_ASSERT((boost::heap::PriorityQueue<Heap1>));
BOOST_CONCEPT_ASSERT((boost::heap::PriorityQueue<Heap2>));
// if this assertion is triggered, the value_compare types are incompatible
BOOST_STATIC_ASSERT((boost::is_same<typename Heap1::value_compare, typename Heap2::value_compare>::value));
if (Heap1::constant_time_size && Heap2::constant_time_size)
if (lhs.size() != rhs.size())
return false;
if (lhs.empty() && rhs.empty())
return true;
Heap1 lhs_copy(lhs);
Heap2 rhs_copy(rhs);
while (true) {
if (!value_equality(lhs_copy, rhs_copy, lhs_copy.top(), rhs_copy.top()))
return false;
lhs_copy.pop();
rhs_copy.pop();
if (lhs_copy.empty() && rhs_copy.empty())
return true;
if (lhs_copy.empty())
return false;
if (rhs_copy.empty())
return false;
}
}
};
struct heap_equivalence_iteration
{
template <typename Heap1, typename Heap2>
bool operator()(Heap1 const & lhs, Heap2 const & rhs)
{
BOOST_CONCEPT_ASSERT((boost::heap::PriorityQueue<Heap1>));
BOOST_CONCEPT_ASSERT((boost::heap::PriorityQueue<Heap2>));
// if this assertion is triggered, the value_compare types are incompatible
BOOST_STATIC_ASSERT((boost::is_same<typename Heap1::value_compare, typename Heap2::value_compare>::value));
if (Heap1::constant_time_size && Heap2::constant_time_size)
if (lhs.size() != rhs.size())
return false;
if (lhs.empty() && rhs.empty())
return true;
typename Heap1::ordered_iterator it1 = lhs.ordered_begin();
typename Heap1::ordered_iterator it1_end = lhs.ordered_end();
typename Heap1::ordered_iterator it2 = rhs.ordered_begin();
typename Heap1::ordered_iterator it2_end = rhs.ordered_end();
while (true) {
if (!value_equality(lhs, rhs, *it1, *it2))
return false;
++it1;
++it2;
if (it1 == it1_end && it2 == it2_end)
return true;
if (it1 == it1_end || it2 == it2_end)
return false;
}
}
};
template <typename Heap1,
typename Heap2
>
bool heap_equality(Heap1 const & lhs, Heap2 const & rhs)
{
const bool use_ordered_iterators = Heap1::has_ordered_iterators && Heap2::has_ordered_iterators;
typedef typename boost::mpl::if_c<use_ordered_iterators,
heap_equivalence_iteration,
heap_equivalence_copy
>::type equivalence_check;
equivalence_check check;
return check(lhs, rhs);
}
struct heap_compare_iteration
{
template <typename Heap1,
typename Heap2
>
bool operator()(Heap1 const & lhs, Heap2 const & rhs)
{
typename Heap1::size_type left_size = lhs.size();
typename Heap2::size_type right_size = rhs.size();
if (left_size < right_size)
return true;
if (left_size > right_size)
return false;
typename Heap1::ordered_iterator it1 = lhs.ordered_begin();
typename Heap1::ordered_iterator it1_end = lhs.ordered_end();
typename Heap1::ordered_iterator it2 = rhs.ordered_begin();
typename Heap1::ordered_iterator it2_end = rhs.ordered_end();
while (true) {
if (value_compare(lhs, rhs, *it1, *it2))
return true;
if (value_compare(lhs, rhs, *it2, *it1))
return false;
++it1;
++it2;
if (it1 == it1_end && it2 == it2_end)
return true;
if (it1 == it1_end || it2 == it2_end)
return false;
}
}
};
struct heap_compare_copy
{
template <typename Heap1,
typename Heap2
>
bool operator()(Heap1 const & lhs, Heap2 const & rhs)
{
typename Heap1::size_type left_size = lhs.size();
typename Heap2::size_type right_size = rhs.size();
if (left_size < right_size)
return true;
if (left_size > right_size)
return false;
Heap1 lhs_copy(lhs);
Heap2 rhs_copy(rhs);
while (true) {
if (value_compare(lhs_copy, rhs_copy, lhs_copy.top(), rhs_copy.top()))
return true;
if (value_compare(lhs_copy, rhs_copy, rhs_copy.top(), lhs_copy.top()))
return false;
lhs_copy.pop();
rhs_copy.pop();
if (lhs_copy.empty() && rhs_copy.empty())
return false;
}
}
};
template <typename Heap1,
typename Heap2
>
bool heap_compare(Heap1 const & lhs, Heap2 const & rhs)
{
const bool use_ordered_iterators = Heap1::has_ordered_iterators && Heap2::has_ordered_iterators;
typedef typename boost::mpl::if_c<use_ordered_iterators,
heap_compare_iteration,
heap_compare_copy
>::type compare_check;
compare_check check;
return check(lhs, rhs);
}
} /* namespace detail */
} /* namespace heap */
} /* namespace boost */
#undef BOOST_HEAP_ASSERT
#endif // BOOST_HEAP_DETAIL_HEAP_COMPARISON_HPP