kicad/eeschema/sim/sim_plot_panel.cpp

500 lines
13 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* https://www.gnu.org/licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "sim_plot_panel.h"
#include <algorithm>
#include <limits>
static wxString formatFloat (double x, int nDigits)
{
wxString rv, fmt;
if(nDigits)
{
fmt = wxT("%.0Nf");
fmt[3] = '0' + nDigits;
} else {
fmt = wxT("%.0f");
}
rv.Printf(fmt, x);
return rv;
}
static wxString formatSI ( double x, const wxString& unit, int decimalDigits, double maxValue = 0.0, bool lockSuffix = false, char suffix = 0 )
{
const int n_powers = 11;
const struct { double exponent; char suffix; } powers[] = {
{-18,'a'},
{-15,'f'},
{-12,'p'},
{-9,'n'},
{-6,'u'},
{-3,'m'},
{0, 0},
{3, 'k'},
{6, 'M'},
{9, 'G'},
{12, 'T'},
{15, 'P'}
};
if ( x== 0.0)
{
return wxT("0") + unit;
}
for ( int i = 0; i <n_powers - 1;i++)
{
double r_cur = pow(10, powers[i].exponent);
bool rangeHit;
if (maxValue != 0.0)
rangeHit = fabs(maxValue) >= r_cur && fabs(maxValue) < r_cur * 1000.0 ;
else
rangeHit = fabs(x) >= r_cur && fabs(x) < r_cur * 1000.0 ;
if( (!lockSuffix && rangeHit) || (lockSuffix && suffix == powers[i].suffix ) )
{
double v = x / r_cur;
wxString rv;
rv = formatFloat ( v, decimalDigits );
if(powers[i].suffix)
rv += powers[i].suffix;
rv += unit;
return rv;
}
}
return wxT("?");
}
class FREQUENCY_LIN_SCALE : public mpScaleX
{
public:
FREQUENCY_LIN_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) :
mpScaleX( name, flags, ticks ,type ) {};
const wxString getLabel( int n )
{
printf("%.10f\n", m_labeledTicks[n] );
return formatSI ( m_labeledTicks[n], wxT("Hz"), 2 );
}
};
class FREQUENCY_LOG_SCALE : public mpScaleXLog
{
public:
FREQUENCY_LOG_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) :
mpScaleXLog( name, flags, ticks ,type ) {};
const wxString getLabel( int n )
{
printf("%.10f\n", m_labeledTicks[n] );
return formatSI ( m_labeledTicks[n], wxT("Hz"), 2 );
}
};
class TIME_SCALE : public mpScaleX
{
public:
TIME_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) :
mpScaleX ( name, flags, ticks ,type ) {};
const wxString getLabel( int n )
{
return formatSI ( m_labeledTicks[n], wxT("s"), 3, AbsVisibleMaxValue() );
}
};
class GAIN_SCALE : public mpScaleY
{
public:
GAIN_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) :
mpScaleY ( name, flags, ticks ) {};
const wxString getLabel( int n )
{
return formatSI ( m_labeledTicks[n], wxT("dB"), 1, AbsVisibleMaxValue(), true, 0 );
}
};
class PHASE_SCALE : public mpScaleY
{
public:
PHASE_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) :
mpScaleY ( name, flags, ticks ) {};
const wxString getLabel( int n )
{
return formatSI ( m_labeledTicks[n], wxT("\u00B0"), 1, AbsVisibleMaxValue(), true, 0 );
}
};
class VOLTAGE_SCALE : public mpScaleY
{
public:
VOLTAGE_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) :
mpScaleY ( name, flags, ticks ) {};
const wxString getLabel( int n )
{
return formatSI ( m_labeledTicks[n], wxT("V"), 3, AbsVisibleMaxValue() );
}
};
class CURRENT_SCALE : public mpScaleY
{
public:
CURRENT_SCALE(wxString name, int flags, bool ticks = false, unsigned int type = 0) :
mpScaleY ( name, flags, ticks ) {};
const wxString getLabel( int n )
{
return formatSI ( m_labeledTicks[n], wxT("A"), 3, AbsVisibleMaxValue() );
}
};
void CURSOR::Plot( wxDC& aDC, mpWindow& aWindow )
{
if( !m_window )
m_window = &aWindow;
if( !m_visible )
return;
const auto& dataX = m_trace->GetDataX();
const auto& dataY = m_trace->GetDataY();
if( dataX.size() <= 1 )
return;
if( m_updateRequired )
{
m_coords.x = aWindow.p2x( m_dim.x );
// Find the closest point coordinates
auto maxXIt = std::upper_bound( dataX.begin(), dataX.end(), m_coords.x );
int maxIdx = maxXIt - dataX.begin();
int minIdx = maxIdx - 1;
// Out of bounds checks
if( minIdx < 0 )
{
minIdx = 0;
maxIdx = 1;
m_coords.x = dataX[0];
}
else if( maxIdx >= (int) dataX.size() )
{
maxIdx = dataX.size() - 1;
minIdx = maxIdx - 1;
m_coords.x = dataX[maxIdx];
}
const double leftX = dataX[minIdx];
const double rightX = dataX[maxIdx];
const double leftY = dataY[minIdx];
const double rightY = dataY[maxIdx];
m_coords.y = leftY + ( rightY - leftY ) / ( rightX - leftX ) * ( m_coords.x - leftX );
m_updateRequired = false;
// Notify the parent window about the changes
wxQueueEvent( aWindow.GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) );
}
else
{
UpdateReference();
}
// Line length in horizontal and vertical dimensions
const int horLen = aWindow.GetScrX();
const int verLen = aWindow.GetScrY();
const wxPoint cursorPos( aWindow.x2p( m_coords.x ), aWindow.y2p( m_coords.y ) );
aDC.SetPen( wxPen( *wxBLACK, 1, m_continuous ? wxSOLID : wxLONG_DASH ) );
aDC.DrawLine( -horLen, cursorPos.y, horLen, cursorPos.y );
aDC.DrawLine( cursorPos.x, -verLen, cursorPos.x, verLen );
}
SIM_PLOT_PANEL::SIM_PLOT_PANEL( SIM_TYPE aType, wxWindow* parent, wxWindowID id, const wxPoint& pos,
const wxSize& size, long style, const wxString& name )
: mpWindow( parent, id, pos, size, style ), m_colorIdx( 0 ),
m_axis_x( nullptr ), m_axis_y1( nullptr ), m_axis_y2( nullptr ), m_type( aType )
{
LimitView( true );
SetMargins(50, 80, 50, 80);
wxColour grey(96, 96, 96);
SetColourTheme(*wxBLACK, *wxWHITE, grey);
EnableDoubleBuffer(true);
UpdateAll();
switch( m_type )
{
case ST_AC:
m_axis_x = new FREQUENCY_LIN_SCALE( wxT( "Frequency" ), mpALIGN_BOTTOM );
m_axis_y1 = new GAIN_SCALE( wxT( "Gain" ), mpALIGN_LEFT );
m_axis_y2 = new PHASE_SCALE( wxT( "Phase" ), mpALIGN_RIGHT );
m_axis_y2->SetMasterScale(m_axis_y1);
break;
#if 0
case ST_DC:
m_axis_x = new mpScaleX( wxT( "voltage [V]" ), mpALIGN_BORDER_BOTTOM );
m_axis_y1 = new mpScaleY( wxT( "voltage [V]" ), mpALIGN_BORDER_LEFT );
break;
case ST_NOISE:
m_axis_x = new mpScaleX( wxT( "frequency [Hz]" ), mpALIGN_BORDER_BOTTOM );
m_axis_y1 = new mpScaleY( wxT( "noise [(V or A)^2/Hz]" ), mpALIGN_BORDER_LEFT );
break;
#endif
case ST_TRANSIENT:
m_axis_x = new TIME_SCALE( wxT( "Time" ), mpALIGN_BOTTOM );
m_axis_y1 = new VOLTAGE_SCALE( wxT( "Voltage" ), mpALIGN_LEFT );
m_axis_y2 = new CURRENT_SCALE( wxT( "Current" ), mpALIGN_RIGHT );
m_axis_y2->SetMasterScale(m_axis_y1);
break;
default:
// suppress warnings
break;
}
if( m_axis_x )
{
m_axis_x->SetTicks( false );
AddLayer( m_axis_x );
}
if( m_axis_y1 )
{
m_axis_y1->SetTicks( false );
AddLayer( m_axis_y1 );
}
if( m_axis_y2 )
{
m_axis_y2->SetTicks( false );
AddLayer( m_axis_y2 );
}
m_legend = new mpInfoLegend( wxRect( 0, 40, 200, 40 ), wxTRANSPARENT_BRUSH );
AddLayer( m_legend );
m_topLevel.push_back( m_legend );
SetColourTheme(*wxBLACK, *wxWHITE, grey);
EnableDoubleBuffer(true);
UpdateAll();
}
SIM_PLOT_PANEL::~SIM_PLOT_PANEL()
{
// ~mpWindow destroys all the added layers, so there is no need to destroy m_traces contents
}
bool SIM_PLOT_PANEL::IsPlottable( SIM_TYPE aSimType )
{
switch( aSimType )
{
case ST_AC:
case ST_DC:
case ST_TRANSIENT:
return true;
default:
return false;
}
}
bool SIM_PLOT_PANEL::AddTrace( const wxString& aName, int aPoints,
const double* aX, const double* aY, SIM_PLOT_TYPE aFlags )
{
TRACE* t = NULL;
// Find previous entry, if there is one
auto prev = m_traces.find( aName );
bool addedNewEntry = ( prev == m_traces.end() );
if( addedNewEntry )
{
// New entry
t = new TRACE( aName );
t->SetPen( wxPen( generateColor(), 2, wxSOLID ) );
m_traces[aName] = t;
// It is a trick to keep legend & coords always on the top
for( mpLayer* l : m_topLevel )
DelLayer( l );
AddLayer( (mpLayer*) t );
for( mpLayer* l : m_topLevel )
AddLayer( l );
}
else
{
t = prev->second;
}
std::vector<double> tmp( aY, aY + aPoints );
if( m_type == ST_AC )
{
if( aFlags & SPT_AC_PHASE )
{
for(int i = 0; i < aPoints; i++ )
tmp[i] = tmp[i] * 180.0 / M_PI; // convert to degrees
}
else
{
for(int i = 0; i < aPoints; i++ )
tmp[i] = 20 * log( tmp[i] ) / log( 10.0 ); // convert to dB
}
}
t->SetData( std::vector<double>( aX, aX + aPoints ), tmp );
if( aFlags & SPT_AC_PHASE )
t->SetScale( m_axis_x, m_axis_y2 );
else
t->SetScale( m_axis_x, m_axis_y1 );
UpdateAll();
return addedNewEntry;
}
bool SIM_PLOT_PANEL::DeleteTrace( const wxString& aName )
{
auto it = m_traces.find( aName );
if( it != m_traces.end() )
{
m_traces.erase( it );
TRACE* trace = it->second;
if( CURSOR* cursor = trace->GetCursor() )
DelLayer( cursor, true );
DelLayer( trace, true, true );
return true;
}
return false;
}
void SIM_PLOT_PANEL::DeleteAllTraces()
{
for( auto& t : m_traces )
{
DeleteTrace( t.first );
}
m_traces.clear();
}
bool SIM_PLOT_PANEL::HasCursorEnabled( const wxString& aName ) const
{
TRACE* t = GetTrace( aName );
return t ? t->HasCursor() : false;
}
void SIM_PLOT_PANEL::EnableCursor( const wxString& aName, bool aEnable )
{
TRACE* t = GetTrace( aName );
if( t == nullptr || t->HasCursor() == aEnable )
return;
if( aEnable )
{
CURSOR* c = new CURSOR( t );
t->SetCursor( c );
AddLayer( c );
}
else
{
CURSOR* c = t->GetCursor();
t->SetCursor( NULL );
DelLayer( c, true );
}
// Notify the parent window about the changes
wxQueueEvent( GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) );
}
wxColour SIM_PLOT_PANEL::generateColor()
{
/// @todo have a look at:
/// http://stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html
/// https://github.com/Gnuplotting/gnuplot-palettes
const unsigned long colors[] = { 0x0000ff, 0x00ff00, 0xff0000, 0x00ffff, 0xff00ff, 0xffff000, 0xffffff };
//const unsigned long colors[] = { 0xe3cea6, 0xb4781f, 0x8adfb2, 0x2ca033, 0x999afb, 0x1c1ae3, 0x6fbffd, 0x007fff, 0xd6b2ca, 0x9a3d6a };
// hls
//const unsigned long colors[] = { 0x0f1689, 0x0f7289, 0x35890f, 0x0f8945, 0x89260f, 0x890f53, 0x89820f, 0x630f89 };
// pastels, good for dark background
//const unsigned long colors[] = { 0x2fd8fe, 0x628dfa, 0x53d8a6, 0xa5c266, 0xb3b3b3, 0x94c3e4, 0xca9f8d, 0xac680e };
const unsigned int colorCount = sizeof(colors) / sizeof(unsigned long);
/// @todo generate shades to avoid repeating colors
return wxColour( colors[m_colorIdx++ % colorCount] );
}
wxDEFINE_EVENT( EVT_SIM_CURSOR_UPDATE, wxCommandEvent );