kicad/pcbnew/class_board.cpp

1152 lines
32 KiB
C++

/*******************************************/
/* class_board.cpp - BOARD class functions */
/*******************************************/
#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
/* This is an odd place for this, but cvpcb won't link if it is
in class_board_item.cpp like I first tried it.
*/
wxPoint BOARD_ITEM::ZeroOffset(0,0);
// define SCH_ITEM::Place() (defined and used in eeschema but not for pcbnew)
// this is an ugly workaround to a linking problem in debug mode
// which needs to define SCH_ITEM::Place() when not really used.
#include "sch_item_struct.h"
void SCH_ITEM::Place( WinEDA_SchematicFrame* frame, wxDC* DC )
{
}
/*****************/
/* Class BOARD: */
/*****************/
/* Constructor */
BOARD::BOARD( EDA_BaseStruct* parent, WinEDA_BasePcbFrame* frame ) :
BOARD_ITEM( (BOARD_ITEM*) parent, TYPEPCB )
{
m_PcbFrame = frame;
m_Status_Pcb = 0; // Mot d'etat: Bit 1 = Chevelu calcule
m_NbNets = 0; // Nombre de nets (equipotentielles)
m_BoardSettings = &g_DesignSettings;
m_NbPads = 0; // nombre total de pads
m_NbNodes = 0; // nombre de pads connectes
m_NbLinks = 0; // nombre de chevelus (donc aussi nombre
// minimal de pistes a tracer
m_NbSegmTrack = 0; // nombre d'elements de type segments de piste
m_NbSegmZone = 0; // nombre d'elements de type segments de zone
m_NbNoconnect = 0; // nombre de chevelus actifs
m_NbLoclinks = 0; // nb ratsnest local
m_Drawings = NULL; // pointeur sur liste drawings
m_Modules = NULL; // pointeur sur liste zone modules
m_Equipots = NULL; // pointeur liste zone equipot
m_Track = NULL; // pointeur relatif zone piste
m_Zone = NULL; // pointeur tableau zone zones de cuivre
m_Pads = NULL; // pointeur liste d'acces aux pads
m_Ratsnest = NULL; // pointeur liste rats
m_LocalRatsnest = NULL; // pointeur liste rats local
m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the zone contour cuurently in progress
// de determination des contours de zone
for( int layer=0; layer<NB_COPPER_LAYERS; ++layer )
{
m_Layer[layer].m_Name = ReturnPcbLayerName( layer, true );
m_Layer[layer].m_Type = LT_SIGNAL;
}
}
/***************/
/* Destructeur */
/***************/
BOARD::~BOARD()
{
m_Drawings->DeleteStructList();
m_Drawings = 0;
m_Modules->DeleteStructList();
m_Modules = 0;
m_Equipots->DeleteStructList();
m_Equipots = 0;
m_Track->DeleteStructList();
m_Track = 0;
m_Zone->DeleteStructList();
m_Zone = 0;
MyFree( m_Pads );
m_Pads = 0;
MyFree( m_Ratsnest );
m_Ratsnest = 0;
MyFree( m_LocalRatsnest );
m_LocalRatsnest = 0;
DeleteMARKERs();
DeleteZONEOutlines();
delete m_CurrentZoneContour;
m_CurrentZoneContour = NULL;
}
wxString BOARD::GetLayerName( int aLayerIndex ) const
{
// copper layer names are stored in the BOARD.
if( (unsigned) aLayerIndex < (unsigned) GetCopperLayerCount()
|| aLayerIndex == LAST_COPPER_LAYER )
{
// default names were set in BOARD::BOARD() but they may be
// over-ridden by BOARD::SetLayerName()
return m_Layer[aLayerIndex].m_Name;
}
return ReturnPcbLayerName( aLayerIndex, true );
}
bool BOARD::SetLayerName( int aLayerIndex, const wxString& aLayerName )
{
if( (unsigned) aLayerIndex < (unsigned) GetCopperLayerCount()
|| aLayerIndex==LAST_COPPER_LAYER )
{
if( aLayerName == wxEmptyString || aLayerName.Len() > 20 )
return false;
// no quote chars in the name allowed
if( aLayerName.Find( wxChar('"') ) != wxNOT_FOUND )
return false;
// ensure unique-ness of layer names
for( int layer=0; layer<GetCopperLayerCount() || layer==LAST_COPPER_LAYER; )
{
if( layer!=aLayerIndex && aLayerName == m_Layer[layer].m_Name )
return false;
if( ++layer == GetCopperLayerCount() )
layer = LAST_COPPER_LAYER;
}
m_Layer[aLayerIndex].m_Name = aLayerName;
// replace any spaces with underscores
m_Layer[aLayerIndex].m_Name.Replace( wxT(" "), wxT("_") );
return true;
}
return false;
}
LAYER_T BOARD::GetLayerType( int aLayerIndex ) const
{
if( (unsigned) aLayerIndex < (unsigned) GetCopperLayerCount() )
return m_Layer[aLayerIndex].m_Type;
return LT_SIGNAL;
}
bool BOARD::SetLayerType( int aLayerIndex, LAYER_T aLayerType )
{
if( (unsigned) aLayerIndex < (unsigned) GetCopperLayerCount() )
{
m_Layer[aLayerIndex].m_Type = aLayerType;
return true;
}
return false;
}
const char* LAYER::ShowType( LAYER_T aType )
{
const char* cp;
switch( aType )
{
default:
case LT_SIGNAL: cp = "signal"; break;
case LT_POWER: cp = "power"; break;
case LT_MIXED: cp = "mixed"; break;
case LT_JUMPER: cp = "jumper"; break;
}
return cp;
}
LAYER_T LAYER::ParseType( const char* aType )
{
if( strcmp( aType, "signal" ) == 0 )
return LT_SIGNAL;
else if( strcmp( aType, "power" ) == 0 )
return LT_POWER;
else if( strcmp( aType, "mixed" ) == 0 )
return LT_MIXED;
else if( strcmp( aType, "jumper" ) == 0 )
return LT_JUMPER;
else
return LAYER_T(-1);
}
int BOARD::GetCopperLayerCount() const
{
return m_BoardSettings->m_CopperLayerCount;
}
wxPoint& BOARD::GetPosition()
{
static wxPoint dummy(0,0);
return dummy; // a reference
}
void BOARD::UnLink()
{
/* Modification du chainage arriere */
if( Pback )
{
if( Pback->Type() == TYPEPCB )
{
Pback->Pnext = Pnext;
}
else /* Le chainage arriere pointe sur la structure "Pere" */
{
// Pback-> = Pnext;
}
}
/* Modification du chainage avant */
if( Pnext )
Pnext->Pback = Pback;
Pnext = Pback = NULL;
}
void BOARD::Add( BOARD_ITEM* aBoardItem, int aControl )
{
if ( aBoardItem == NULL )
{
wxFAIL_MSG( wxT("BOARD::Add() param error: aBoardItem NULL") );
return;
}
switch( aBoardItem->Type() )
{
// this one uses a vector
case TYPEMARKER:
aBoardItem->m_Parent = this;
m_markers.push_back( (MARKER*) aBoardItem );
break;
// this one uses a vector
case TYPEZONE_CONTAINER:
aBoardItem->m_Parent = this;
m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem );
break;
case TYPETRACK:
case TYPEVIA:
{
TRACK* insertAid = ((TRACK*)aBoardItem)->GetBestInsertPoint( this );
((TRACK*)aBoardItem)->Insert( this, insertAid );
}
break;
case TYPEMODULE:
// this is an insert, not an append which may also be needed.
{
aBoardItem->Pback = this;
BOARD_ITEM* next = m_Modules;
aBoardItem->Pnext = next;
if( next )
next->Pback = aBoardItem;
m_Modules = (MODULE*) aBoardItem;
}
break;
// other types may use linked list
default:
wxFAIL_MSG( wxT("BOARD::Add() needs work") );
}
}
void BOARD::Delete( BOARD_ITEM* aBoardItem )
{
if ( aBoardItem == NULL ) return;
switch( aBoardItem->Type() )
{
case TYPEMARKER: // this one uses a vector
// find the item in the vector, then delete then erase it.
for( unsigned i=0; i<m_markers.size(); ++i )
{
if( m_markers[i] == (MARKER*) aBoardItem )
{
DeleteMARKER( i );
break;
}
}
break;
case TYPEZONE_CONTAINER: // this one uses a vector
// find the item in the vector, then delete then erase it.
for( unsigned i=0; i<m_ZoneDescriptorList.size(); ++i )
{
if( m_ZoneDescriptorList[i] == (ZONE_CONTAINER*) aBoardItem )
{
delete m_ZoneDescriptorList[i];
m_ZoneDescriptorList.erase(m_ZoneDescriptorList.begin() + i);
break;
}
}
break;
// other types may use linked list
default:
wxFAIL_MSG( wxT("BOARD::Delete() needs work") );
}
}
void BOARD::DeleteMARKER( int aIndex )
{
if( (unsigned) aIndex < m_markers.size() )
{
delete m_markers[aIndex];
m_markers.erase( m_markers.begin() + aIndex );
}
}
void BOARD::DeleteMARKERs()
{
// the vector does not know how to delete the MARKER, it holds pointers
for( unsigned i=0; i<m_markers.size(); ++i )
delete m_markers[i];
m_markers.clear();
}
void BOARD::DeleteZONEOutlines()
{
// the vector does not know how to delete the ZONE Outlines, it holds pointers
for( unsigned i=0; i<m_ZoneDescriptorList.size(); ++i )
delete m_ZoneDescriptorList[i];
m_ZoneDescriptorList.clear();
}
/* Calculate the track segment count */
int BOARD::GetNumSegmTrack()
{
TRACK* CurTrack = m_Track;
int ii = 0;
for( ; CurTrack != NULL; CurTrack = CurTrack->Next() )
ii++;
m_NbSegmTrack = ii;
return ii;
}
/* Calculate the zone segment count */
int BOARD::GetNumSegmZone()
{
TRACK* CurTrack = m_Zone;
int ii = 0;
for( ; CurTrack != NULL; CurTrack = CurTrack->Next() )
ii++;
m_NbSegmZone = ii;
return ii;
}
// return the unconnection count
int BOARD::GetNumNoconnect()
{
return m_NbNoconnect;
}
// return the active pad count ( pads with a netcode > 0 )
int BOARD::GetNumNodes()
{
return m_NbNodes;
}
/***********************************/
bool BOARD::ComputeBoundaryBox()
/***********************************/
/** Function ComputeBoundaryBox()
* Calculate the bounding box of the board
* This box contains pcb edges, pads , vias and tracks
* Update m_PcbBox member
*
* @return 0 for an empty board (no items), else 1
*/
{
int rayon, cx, cy, d, xmin, ymin, xmax, ymax;
bool Has_Items = FALSE;
EDA_BaseStruct* PtStruct;
DRAWSEGMENT* ptr;
TRACK* Track;
xmin = ymin = 0x7FFFFFFFl;
xmax = ymax = -0x7FFFFFFFl;
/* Analyse PCB edges*/
PtStruct = m_Drawings;
for( ; PtStruct != NULL; PtStruct = PtStruct->Pnext )
{
if( PtStruct->Type() != TYPEDRAWSEGMENT )
continue;
ptr = (DRAWSEGMENT*) PtStruct;
d = (ptr->m_Width / 2) + 1;
if( ptr->m_Shape == S_CIRCLE )
{
cx = ptr->m_Start.x; cy = ptr->m_Start.y;
rayon = (int) hypot( (double) (ptr->m_End.x - cx), (double) (ptr->m_End.y - cy) );
rayon += d;
xmin = MIN( xmin, cx - rayon );
ymin = MIN( ymin, cy - rayon );
xmax = MAX( xmax, cx + rayon );
ymax = MAX( ymax, cy + rayon );
Has_Items = TRUE;
}
else
{
cx = MIN( ptr->m_Start.x, ptr->m_End.x );
cy = MIN( ptr->m_Start.y, ptr->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( ptr->m_Start.x, ptr->m_End.x );
cy = MAX( ptr->m_Start.y, ptr->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
Has_Items = TRUE;
}
}
/* Analyse footprints */
MODULE* module = m_Modules;
for( ; module != NULL; module = (MODULE*) module->Pnext )
{
Has_Items = TRUE;
xmin = MIN( xmin, ( module->m_Pos.x + module->m_BoundaryBox.GetX() ) );
ymin = MIN( ymin, ( module->m_Pos.y + module->m_BoundaryBox.GetY() ) );
xmax = MAX( xmax, module->m_Pos.x + module->m_BoundaryBox.GetRight() );
ymax = MAX( ymax, module->m_Pos.y + module->m_BoundaryBox.GetBottom() );
D_PAD* pt_pad = module->m_Pads;
for( ; pt_pad != NULL; pt_pad = (D_PAD*) pt_pad->Pnext )
{
const wxPoint& pos = pt_pad->GetPosition();
d = pt_pad->m_Rayon;
xmin = MIN( xmin, pos.x - d );
ymin = MIN( ymin, pos.y - d );
xmax = MAX( xmax, pos.x + d );
ymax = MAX( ymax, pos.y + d );
}
}
/* Analyse track and zones */
for( Track = m_Track; Track != NULL; Track = (TRACK*) Track->Pnext )
{
d = (Track->m_Width / 2) + 1;
cx = MIN( Track->m_Start.x, Track->m_End.x );
cy = MIN( Track->m_Start.y, Track->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( Track->m_Start.x, Track->m_End.x );
cy = MAX( Track->m_Start.y, Track->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
Has_Items = TRUE;
}
for( Track = m_Zone; Track != NULL; Track = (TRACK*) Track->Pnext )
{
d = (Track->m_Width / 2) + 1;
cx = MIN( Track->m_Start.x, Track->m_End.x );
cy = MIN( Track->m_Start.y, Track->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( Track->m_Start.x, Track->m_End.x );
cy = MAX( Track->m_Start.y, Track->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
Has_Items = TRUE;
}
if( !Has_Items && m_PcbFrame )
{
if( m_PcbFrame->m_Draw_Sheet_Ref )
{
xmin = ymin = 0;
xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x;
ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y;
}
else
{
xmin = -m_PcbFrame->GetScreen()->ReturnPageSize().x / 2;
ymin = -m_PcbFrame->GetScreen()->ReturnPageSize().y / 2;
xmax = m_PcbFrame->GetScreen()->ReturnPageSize().x / 2;
ymax = m_PcbFrame->GetScreen()->ReturnPageSize().y / 2;
}
}
m_BoundaryBox.SetX( xmin );
m_BoundaryBox.SetY( ymin );
m_BoundaryBox.SetWidth( xmax - xmin );
m_BoundaryBox.SetHeight( ymax - ymin );
return Has_Items;
}
// virtual, see pcbstruct.h
void BOARD::Display_Infos( WinEDA_DrawFrame* frame )
{
/* Affiche l'etat du PCB : nb de pads, nets , connexions.. */
#define POS_AFF_NBPADS 1
#define POS_AFF_NBVIAS 8
#define POS_AFF_NBNODES 16
#define POS_AFF_NBLINKS 24
#define POS_AFF_NBNETS 32
#define POS_AFF_NBCONNECT 40
#define POS_AFF_NBNOCONNECT 48
int nb_vias = 0, ii;
EDA_BaseStruct* Struct;
wxString txt;
frame->MsgPanel->EraseMsgBox();
txt.Printf( wxT( "%d" ), m_NbPads );
Affiche_1_Parametre( frame, POS_AFF_NBPADS, _( "Pads" ), txt, DARKGREEN );
for( ii = 0, Struct = m_Track; Struct != NULL; Struct = Struct->Pnext )
{
ii++;
if( Struct->Type() == TYPEVIA )
nb_vias++;
}
txt.Printf( wxT( "%d" ), nb_vias );
Affiche_1_Parametre( frame, POS_AFF_NBVIAS, _( "Vias" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNumNodes() );
Affiche_1_Parametre( frame, POS_AFF_NBNODES, _( "Nodes" ), txt, DARKCYAN );
txt.Printf( wxT( "%d" ), m_NbLinks );
Affiche_1_Parametre( frame, POS_AFF_NBLINKS, _( "Links" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), m_NbNets );
Affiche_1_Parametre( frame, POS_AFF_NBNETS, _( "Nets" ), txt, RED );
txt.Printf( wxT( "%d" ), m_NbLinks - GetNumNoconnect() );
Affiche_1_Parametre( frame, POS_AFF_NBCONNECT, _( "Connect" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNumNoconnect() );
Affiche_1_Parametre( frame, POS_AFF_NBNOCONNECT, _( "NoConn" ), txt, BLUE );
}
// virtual, see pcbstruct.h
SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData,
const KICAD_T scanTypes[] )
{
KICAD_T stype;
SEARCH_RESULT result = SEARCH_CONTINUE;
const KICAD_T* p = scanTypes;
bool done=false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
while( !done )
{
stype = *p;
switch( stype )
{
case TYPEPCB:
result = inspector->Inspect( this, testData ); // inspect me
// skip over any types handled in the above call.
++p;
break;
/* Instances of the requested KICAD_T live in a list, either one
that I manage, or that my modules manage. If it's a type managed
by class MODULE, then simply pass it on to each module's
MODULE::Visit() function by way of the
IterateForward( m_Modules, ... ) call.
*/
case TYPEMODULE:
case TYPEPAD:
case TYPETEXTEMODULE:
case TYPEEDGEMODULE:
// this calls MODULE::Visit() on each module.
result = IterateForward( m_Modules, inspector, testData, p );
// skip over any types handled in the above call.
for(;;)
{
switch( stype = *++p )
{
case TYPEMODULE:
case TYPEPAD:
case TYPETEXTEMODULE:
case TYPEEDGEMODULE:
continue;
default:;
}
break;
}
break;
case TYPEDRAWSEGMENT:
case TYPETEXTE:
case TYPECOTATION:
case TYPEMIRE:
result = IterateForward( m_Drawings, inspector, testData, p );
// skip over any types handled in the above call.
for(;;)
{
switch( stype = *++p )
{
case TYPEDRAWSEGMENT:
case TYPETEXTE:
case TYPECOTATION:
case TYPEMIRE:
continue;
default:;
}
break;
}
;
break;
#if 0 // both these are on same list, so we must scan it twice in order to get VIA priority,
// using new #else code below.
// But we are not using separte lists for TRACKs and SEGVIAs, because items are ordered (sortered) in the linked
// list by netcode AND by physical distance:
// when created, if a track or via is connected to an existing track or via, it is put in linked list
// after this existing track or via
// So usually, connected tracks or vias are grouped in this list
// So the algorithm (used in rastnest computations) which computes the track connectivity is faster (more than 100 time regarding to
// a non ordered list) because when it searchs for a connexion, first it tests the near (near in term of linked list) 50 items
// from the current item (track or via) in test.
// Usually, because of this sort, a connected item (if exists) is found.
// If not found (and only in this case) an exhaustive (and time consumming) search is made,
// but this case is statistically rare.
case TYPEVIA:
case TYPETRACK:
result = IterateForward( m_Track, inspector, testData, p );
// skip over any types handled in the above call.
for(;;)
{
switch( stype = *++p )
{
case TYPEVIA:
case TYPETRACK:
continue;
default:;
}
break;
}
break;
#else
case TYPEVIA:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
case TYPETRACK:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
#endif
case TYPEMARKER:
// MARKERS are in the m_markers std::vector
for( unsigned i=0; i<m_markers.size(); ++i )
{
result = m_markers[i]->Visit( inspector, testData, p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case TYPEZONE_CONTAINER:
// TYPEZONE_CONTAINER are in the m_ZoneDescriptorList std::vector
for( unsigned i=0; i< m_ZoneDescriptorList.size(); ++i )
{
result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case PCB_EQUIPOT_STRUCT_TYPE:
result = IterateForward( m_Equipots, inspector, testData, p );
++p;
break;
case TYPEZONE:
result = IterateForward( m_Zone, inspector, testData, p );
++p;
break;
case TYPEZONE_UNUSED: // Unused type
break;
default: // catch EOT or ANY OTHER type here and return.
done = true;
break;
}
if( result == SEARCH_QUIT )
break;
}
return result;
}
/* now using PcbGeneralLocateAndDisplay(), but this remains a useful example
of how the INSPECTOR can be used in a lightweight way.
// see pcbstruct.h
BOARD_ITEM* BOARD::FindPadOrModule( const wxPoint& refPos, int layer )
{
class PadOrModule : public INSPECTOR
{
public:
BOARD_ITEM* found;
int layer;
int layer_mask;
PadOrModule( int alayer ) :
found(0), layer(alayer), layer_mask( g_TabOneLayerMask[alayer] )
{}
SEARCH_RESULT Inspect( EDA_BaseStruct* testItem, const void* testData )
{
BOARD_ITEM* item = (BOARD_ITEM*) testItem;
const wxPoint& refPos = *(const wxPoint*) testData;
if( item->Type() == TYPEPAD )
{
D_PAD* pad = (D_PAD*) item;
if( pad->HitTest( refPos ) )
{
if( layer_mask & pad->m_Masque_Layer )
{
found = item;
return SEARCH_QUIT;
}
else if( !found )
{
MODULE* parent = (MODULE*) pad->m_Parent;
if( IsModuleLayerVisible( parent->GetLayer() ) )
found = item;
}
}
}
else if( item->Type() == TYPEMODULE )
{
MODULE* module = (MODULE*) item;
// consider only visible modules
if( IsModuleLayerVisible( module->GetLayer() ) )
{
if( module->HitTest( refPos ) )
{
if( layer == module->GetLayer() )
{
found = item;
return SEARCH_QUIT;
}
// layer mismatch, save in case we don't find a
// future layer match hit.
if( !found )
found = item;
}
}
}
return SEARCH_CONTINUE;
}
};
PadOrModule inspector( layer );
// search only for PADs first, then MODULES, and preferably a layer match
static const KICAD_T scanTypes[] = { TYPEPAD, TYPEMODULE, EOT };
// visit this BOARD with the above inspector
Visit( &inspector, &refPos, scanTypes );
return inspector.found;
}
*/
/**
* Function FindNet
* searches for a net with the given netcode.
* @param anetcode The netcode to search for.
* @return EQUIPOT* - the net or NULL if not found.
*/
EQUIPOT* BOARD::FindNet( int anetcode ) const
{
// the first valid netcode is 1.
// zero is reserved for "no connection" and is not used.
if( anetcode > 0 )
{
for( EQUIPOT* net = m_Equipots; net; net=net->Next() )
{
if( net->GetNet() == anetcode )
return net;
}
}
return NULL;
}
/**
* Function FindNet overlayed
* searches for a net with the given name.
* @param aNetname A Netname to search for.
* @return EQUIPOT* - the net or NULL if not found.
*/
EQUIPOT* BOARD::FindNet( const wxString & aNetname ) const
{
// the first valid netcode is 1.
// zero is reserved for "no connection" and is not used.
if( ! aNetname.IsEmpty() )
{
for( EQUIPOT* net = m_Equipots; net; net=net->Next() )
{
if( net->m_Netname == aNetname )
return net;
}
}
return NULL;
}
MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const
{
struct FindModule : public INSPECTOR
{
MODULE* found;
FindModule() : found(0) {}
// implement interface INSPECTOR
SEARCH_RESULT Inspect( EDA_BaseStruct* item, const void* data )
{
MODULE* module = (MODULE*) item;
const wxString& ref = *(const wxString*) data;
if( ref == module->GetReference() )
{
found = module;
return SEARCH_QUIT;
}
return SEARCH_CONTINUE;
}
} inspector;
// search only for MODULES
static const KICAD_T scanTypes[] = { TYPEMODULE, EOT };
// visit this BOARD with the above inspector
BOARD* nonconstMe = (BOARD*) this;
nonconstMe->Visit( &inspector, &aReference, scanTypes );
return inspector.found;
}
/* Two sort functions used in BOARD::ReturnSortedNetnamesList */
// Sort nets by name
int s_SortByNames(const void * ptr1, const void * ptr2)
{
EQUIPOT* item1 = * (EQUIPOT**) ptr1;
EQUIPOT* item2 = * (EQUIPOT**) ptr2;
return item1->m_Netname.CmpNoCase(item2->m_Netname);
}
// Sort nets by decreasing pad count
int s_SortByNodes(const void * ptr1, const void * ptr2)
{
EQUIPOT* item1 = * (EQUIPOT**) ptr1;
EQUIPOT* item2 = * (EQUIPOT**) ptr2;
if ( (item1->m_NbNodes - item2->m_NbNodes) != 0 )
return - (item1->m_NbNodes - item2->m_NbNodes);
return item1->m_Netname.CmpNoCase(item2->m_Netname);
}
/**
* Function ReturnSortedNetnamesList
* searches for a net with the given netcode.
* @param aNames An array string to fill with net names.
* @param aSort_Type : NO_SORT = no sort, ALPHA_SORT = sort by alphabetic order, PAD_CNT_SORT = sort by active pads count.
* @return int - net names count.
*/
int BOARD::ReturnSortedNetnamesList( wxArrayString & aNames, const int aSort_Type)
{
int NetCount = 0;
int ii;
EQUIPOT* net;
/* count items to list and sort */
for( net = m_Equipots; net; net=net->Next() )
{
if ( net->m_Netname.IsEmpty() ) continue;
NetCount++;
}
if ( NetCount == 0 ) return 0;
/* Build the list */
EQUIPOT* * net_ptr_list = (EQUIPOT* *) MyMalloc( NetCount * sizeof(* net_ptr_list) );
for( ii = 0, net = m_Equipots; net; net=net->Next() )
{
if ( net->m_Netname.IsEmpty() ) continue;
net_ptr_list[ii] = net;
ii++;
}
/* sort the list */
switch ( aSort_Type )
{
case NO_SORT : break;
case ALPHA_SORT :
qsort (net_ptr_list, NetCount, sizeof(EQUIPOT*), s_SortByNames);
break;
case PAD_CNT_SORT:
qsort (net_ptr_list, NetCount, sizeof(EQUIPOT*), s_SortByNodes);
break;
}
/* fill the given list */
for( ii = 0; ii < NetCount; ii++ )
{
net = net_ptr_list[ii];
aNames.Add(net->m_Netname);
}
MyFree(net_ptr_list);
return NetCount;
}
/************************************/
bool BOARD::Save( FILE* aFile ) const
/************************************/
{
bool rc = false;
BOARD_ITEM* item;
// save the nets
for( item = m_Equipots; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
// save the modules
for( item = m_Modules; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
for( item = m_Drawings; item; item=item->Next() )
{
switch( item->Type() )
{
case TYPETEXTE:
case TYPEDRAWSEGMENT:
case TYPEMIRE:
case TYPECOTATION:
if( !item->Save( aFile ) )
goto out;
break;
default:
// future: throw exception here
#if defined(DEBUG)
printf( "BOARD::Save() ignoring m_Drawings type %d\n", item->Type() );
#endif
break;
}
}
// do not save MARKERs, they can be regenerated easily
// save the tracks & vias
fprintf( aFile, "$TRACK\n" );
for( item = m_Track; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
fprintf( aFile, "$EndTRACK\n" );
// save the zones
fprintf( aFile, "$ZONE\n" );
for( item = m_Zone; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
fprintf( aFile, "$EndZONE\n" );
// save the zone edges
for( unsigned ii = 0; ii < m_ZoneDescriptorList.size(); ii++ )
{
ZONE_CONTAINER* edge_zone = m_ZoneDescriptorList[ii];
edge_zone->Save( aFile );
}
if( fprintf( aFile, "$EndBOARD\n" ) != sizeof("$EndBOARD\n")-1 )
goto out;
rc = true; // wrote all OK
out:
return rc;
}
/***********************************************************************************************/
void BOARD::RedrawAreasOutlines(WinEDA_DrawPanel* panel, wxDC * aDC, int aDrawMode, int aLayer)
/***********************************************************************************************/
/**
* Function RedrawAreasOutlines
* Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 )
*/
{
if ( ! aDC ) return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea(ii);
if( (aLayer < 0) || (aLayer == edge_zone->GetLayer()) )
edge_zone->Draw( panel, aDC, aDrawMode );
}
}
/***********************************************************************************************/
void BOARD::RedrawFilledAreas(WinEDA_DrawPanel* panel, wxDC * aDC, int aDrawMode, int aLayer)
/***********************************************************************************************/
/**
* Function RedrawFilledAreas
* Redraw all areas outlines on layer aLayer ( redraw all if aLayer < 0 )
*/
{
if ( ! aDC ) return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea(ii);
if( (aLayer < 0) || (aLayer == edge_zone->GetLayer()) )
edge_zone->DrawFilledArea( panel, aDC, aDrawMode );
}
}
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
void BOARD::Show( int nestLevel, std::ostream& os )
{
BOARD_ITEM* p;
// for now, make it look like XML:
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n";
// specialization of the output:
NestedSpace( nestLevel+1, os ) << "<modules>\n";
p = m_Modules;
for( ; p; p = p->Next() )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</modules>\n";
NestedSpace( nestLevel+1, os ) << "<pdrawings>\n";
p = m_Drawings;
for( ; p; p = p->Next() )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</pdrawings>\n";
NestedSpace( nestLevel+1, os ) << "<nets>\n";
p = m_Equipots;
for( ; p; p = p->Next() )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</nets>\n";
NestedSpace( nestLevel+1, os ) << "<tracks>\n";
p = m_Track;
for( ; p; p = p->Next() )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</tracks>\n";
NestedSpace( nestLevel+1, os ) << "<zones>\n";
p = m_Zone;
for( ; p; p = p->Next() )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</zones>\n";
/*
NestedSpace( nestLevel+1, os ) << "<zone_container>\n";
for( ZONE_CONTAINERS::iterator i=m_ZoneDescriptorList.begin(); i!=m_ZoneDescriptorList.end(); ++i )
(*i)->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</zone_container>\n";
*/
p = (BOARD_ITEM*) m_Son;
for( ; p; p = p->Next() )
{
p->Show( nestLevel+1, os );
}
NestedSpace( nestLevel, os ) << "</" << GetClass().Lower().mb_str() << ">\n";
}
#endif