kicad/include/boost/ptr_container/ptr_unordered_map.hpp

249 lines
8.2 KiB
C++

//
// Boost.Pointer Container
//
// Copyright Thorsten Ottosen 2008. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see http://www.boost.org/libs/ptr_container/
//
#ifndef BOOST_PTR_CONTAINER_PTR_UNORDERED_MAP_HPP
#define BOOST_PTR_CONTAINER_PTR_UNORDERED_MAP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/unordered_map.hpp>
#include <boost/ptr_container/ptr_map_adapter.hpp>
namespace boost
{
template
<
class Key,
class T,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class CloneAllocator = heap_clone_allocator,
class Allocator = std::allocator< std::pair<const Key,void*> >
>
class ptr_unordered_map :
public ptr_map_adapter<T,boost::unordered_map<Key,void*,Hash,Pred,Allocator>,
CloneAllocator,false>
{
typedef ptr_map_adapter<T,boost::unordered_map<Key,void*,Hash,Pred,Allocator>,
CloneAllocator,false>
base_type;
typedef ptr_unordered_map<Key,T,Hash,Pred,CloneAllocator,Allocator> this_type;
public:
typedef typename base_type::size_type size_type;
private:
using base_type::lower_bound;
using base_type::upper_bound;
using base_type::rbegin;
using base_type::rend;
using base_type::crbegin;
using base_type::crend;
using base_type::key_comp;
using base_type::value_comp;
using base_type::front;
using base_type::back;
public:
using base_type::begin;
using base_type::end;
using base_type::cbegin;
using base_type::cend;
using base_type::bucket_count;
using base_type::max_bucket_count;
using base_type::bucket_size;
using base_type::bucket;
using base_type::load_factor;
using base_type::max_load_factor;
using base_type::rehash;
using base_type::key_eq;
using base_type::hash_function;
public:
ptr_unordered_map()
{ }
explicit ptr_unordered_map( size_type n )
: base_type( n, ptr_container_detail::unordered_associative_container_tag() )
{ }
ptr_unordered_map( size_type n,
const Hash& comp,
const Pred& pred = Pred(),
const Allocator& a = Allocator() )
: base_type( n, comp, pred, a )
{ }
template< typename InputIterator >
ptr_unordered_map( InputIterator first, InputIterator last )
: base_type( first, last )
{ }
template< typename InputIterator >
ptr_unordered_map( InputIterator first, InputIterator last,
const Hash& comp,
const Pred& pred = Pred(),
const Allocator& a = Allocator() )
: base_type( first, last, comp, pred, a )
{ }
BOOST_PTR_CONTAINER_DEFINE_RELEASE_AND_CLONE( ptr_unordered_map,
base_type,
this_type )
template< class U >
ptr_unordered_map( const ptr_unordered_map<Key,U>& r ) : base_type( r )
{ }
ptr_unordered_map& operator=( ptr_unordered_map r )
{
this->swap( r );
return *this;
}
};
template
<
class Key,
class T,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class CloneAllocator = heap_clone_allocator,
class Allocator = std::allocator< std::pair<const Key,void*> >
>
class ptr_unordered_multimap :
public ptr_multimap_adapter<T,boost::unordered_multimap<Key,void*,Hash,Pred,Allocator>,
CloneAllocator,false>
{
typedef ptr_multimap_adapter<T,boost::unordered_multimap<Key,void*,Hash,Pred,Allocator>,
CloneAllocator,false>
base_type;
typedef ptr_unordered_multimap<Key,T,Hash,Pred,CloneAllocator,Allocator> this_type;
public:
typedef typename base_type::size_type size_type;
private:
using base_type::lower_bound;
using base_type::upper_bound;
using base_type::rbegin;
using base_type::rend;
using base_type::crbegin;
using base_type::crend;
using base_type::key_comp;
using base_type::value_comp;
using base_type::front;
using base_type::back;
public:
using base_type::begin;
using base_type::end;
using base_type::cbegin;
using base_type::cend;
using base_type::bucket_count;
using base_type::max_bucket_count;
using base_type::bucket_size;
using base_type::bucket;
using base_type::load_factor;
using base_type::max_load_factor;
using base_type::rehash;
using base_type::key_eq;
using base_type::hash_function;
public:
ptr_unordered_multimap()
{ }
explicit ptr_unordered_multimap( size_type n )
: base_type( n, ptr_container_detail::unordered_associative_container_tag() )
{ }
ptr_unordered_multimap( size_type n,
const Hash& comp,
const Pred& pred = Pred(),
const Allocator& a = Allocator() )
: base_type( n, comp, pred, a )
{ }
template< typename InputIterator >
ptr_unordered_multimap( InputIterator first, InputIterator last )
: base_type( first, last )
{ }
template< typename InputIterator >
ptr_unordered_multimap( InputIterator first, InputIterator last,
const Hash& comp,
const Pred& pred = Pred(),
const Allocator& a = Allocator() )
: base_type( first, last, comp, pred, a )
{ }
BOOST_PTR_CONTAINER_DEFINE_RELEASE_AND_CLONE( ptr_unordered_multimap,
base_type,
this_type )
template< class U >
ptr_unordered_multimap( const ptr_unordered_multimap<Key,U>& r ) : base_type( r )
{ }
ptr_unordered_multimap& operator=( ptr_unordered_multimap r )
{
this->swap( r );
return *this;
}
};
//////////////////////////////////////////////////////////////////////////////
// clonability
template< class K, class T, class H, class P, class CA, class A >
inline ptr_unordered_map<K,T,H,P,CA,A>*
new_clone( const ptr_unordered_map<K,T,H,P,CA,A>& r )
{
return r.clone().release();
}
template< class K, class T, class H, class P, class CA, class A >
inline ptr_unordered_multimap<K,T,H,P,CA,A>*
new_clone( const ptr_unordered_multimap<K,T,H,P,CA,A>& r )
{
return r.clone().release();
}
/////////////////////////////////////////////////////////////////////////
// swap
template< class K, class T, class H, class P, class CA, class A >
inline void swap( ptr_unordered_map<K,T,H,P,CA,A>& l,
ptr_unordered_map<K,T,H,P,CA,A>& r )
{
l.swap(r);
}
template< class K, class T, class H, class P, class CA, class A >
inline void swap( ptr_unordered_multimap<K,T,H,P,CA,A>& l,
ptr_unordered_multimap<K,T,H,P,CA,A>& r )
{
l.swap(r);
}
}
#endif