kicad/pcbnew/router/pns_node.h

462 lines
15 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PNS_NODE_H
#define __PNS_NODE_H
#include <vector>
#include <list>
#include <unordered_set>
#include <core/minoptmax.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_index.h>
#include "pns_item.h"
#include "pns_joint.h"
#include "pns_itemset.h"
namespace PNS {
class ARC;
class SEGMENT;
class LINE;
class SOLID;
class VIA;
class INDEX;
class ROUTER;
class NODE;
/**
* An abstract function object, returning a design rule (clearance, diff pair gap, etc) required
* between two items.
*/
enum class CONSTRAINT_TYPE
{
CT_CLEARANCE = 1,
CT_DIFF_PAIR_GAP = 2,
CT_LENGTH = 3,
CT_WIDTH = 4,
CT_VIA_DIAMETER = 5,
CT_VIA_HOLE = 6,
CT_HOLE_CLEARANCE = 7,
CT_EDGE_CLEARANCE = 8,
CT_HOLE_TO_HOLE = 9
};
struct CONSTRAINT
{
CONSTRAINT_TYPE m_Type;
MINOPTMAX<int> m_Value;
bool m_Allowed;
wxString m_RuleName;
wxString m_FromName;
wxString m_ToName;
};
class RULE_RESOLVER
{
public:
virtual ~RULE_RESOLVER() {}
virtual int Clearance( const ITEM* aA, const ITEM* aB ) = 0;
virtual int HoleClearance( const ITEM* aA, const ITEM* aB ) = 0;
virtual int HoleToHoleClearance( const ITEM* aA, const ITEM* aB ) = 0;
virtual int DpCoupledNet( int aNet ) = 0;
virtual int DpNetPolarity( int aNet ) = 0;
virtual bool DpNetPair( const ITEM* aItem, int& aNetP, int& aNetN ) = 0;
virtual bool IsDiffPair( const ITEM* aA, const ITEM* aB ) = 0;
virtual bool QueryConstraint( CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA,
const PNS::ITEM* aItemB, int aLayer,
PNS::CONSTRAINT* aConstraint ) = 0;
virtual wxString NetName( int aNet ) = 0;
};
/**
* Hold an object colliding with another object, along with some useful data about the collision.
*/
struct OBSTACLE
{
const ITEM* m_head; ///< Item we search collisions with
ITEM* m_item; ///< Item found to be colliding with m_head
SHAPE_LINE_CHAIN m_hull; ///< Hull of the colliding m_item
VECTOR2I m_ipFirst; ///< First intersection between m_head and m_hull
int m_distFirst; ///< ... and the distance thereof
};
class OBSTACLE_VISITOR
{
public:
OBSTACLE_VISITOR( const ITEM* aItem );
virtual ~OBSTACLE_VISITOR()
{
}
void SetWorld( const NODE* aNode, const NODE* aOverride = nullptr );
virtual bool operator()( ITEM* aCandidate ) = 0;
protected:
bool visit( ITEM* aCandidate );
protected:
const ITEM* m_item; ///< the item we are looking for collisions with
const NODE* m_node; ///< node we are searching in (either root or a branch)
const NODE* m_override; ///< node that overrides root entries
};
/**
* Keep the router "world" - i.e. all the tracks, vias, solids in a hierarchical and indexed way.
*
* Features:
* - spatial-indexed container for PCB item shapes.
* - collision search & clearance checking.
* - assembly of lines connecting joints, finding loops and unique paths.
* - lightweight cloning/branching (for recursive optimization and shove springback).
**/
class NODE
{
public:
typedef OPT<OBSTACLE> OPT_OBSTACLE;
typedef std::vector<ITEM*> ITEM_VECTOR;
typedef std::vector<OBSTACLE> OBSTACLES;
NODE();
~NODE();
///< Return the expected clearance between items a and b.
int GetClearance( const ITEM* aA, const ITEM* aB ) const;
int GetHoleClearance( const ITEM* aA, const ITEM* aB ) const;
int GetHoleToHoleClearance( const ITEM* aA, const ITEM* aB ) const;
///< Return the pre-set worst case clearance between any pair of items.
int GetMaxClearance() const
{
return m_maxClearance;
}
///< Set the worst-case clearance between any pair of items.
void SetMaxClearance( int aClearance )
{
m_maxClearance = aClearance;
}
///< Assign a clearance resolution function object.
void SetRuleResolver( RULE_RESOLVER* aFunc )
{
m_ruleResolver = aFunc;
}
RULE_RESOLVER* GetRuleResolver() const
{
return m_ruleResolver;
}
///< Return the number of joints.
int JointCount() const
{
return m_joints.size();
}
///< Return the number of nodes in the inheritance chain (wrs to the root node).
int Depth() const
{
return m_depth;
}
/**
* Find items colliding (closer than clearance) with the item \a aItem.
*
* @param aItem item to check collisions against
* @param aObstacles set of colliding objects found
* @param aKindMask mask of obstacle types to take into account
* @param aLimitCount stop looking for collisions after finding this number of colliding items
* @return number of obstacles found
*/
int QueryColliding( const ITEM* aItem, OBSTACLES& aObstacles, int aKindMask = ITEM::ANY_T,
int aLimitCount = -1, bool aDifferentNetsOnly = true );
int QueryJoints( const BOX2I& aBox, std::vector<JOINT*>& aJoints,
LAYER_RANGE aLayerMask = LAYER_RANGE::All(), int aKindMask = ITEM::ANY_T );
/**
* Follow the line in search of an obstacle that is nearest to the starting to the line's
* starting point.
*
* @param aLine the item to find collisions with
* @param aKindMask mask of obstacle types to take into account
* @return the obstacle, if found, otherwise empty.
*/
OPT_OBSTACLE NearestObstacle( const LINE* aLine, int aKindMask = ITEM::ANY_T,
const std::set<ITEM*>* aRestrictedSet = nullptr );
/**
* Check if the item collides with anything else in the world, and if found, returns the
* obstacle.
*
* @param aItem the item to find collisions with
* @param aKindMask mask of obstacle types to take into account
* @return the obstacle, if found, otherwise empty.
*/
OPT_OBSTACLE CheckColliding( const ITEM* aItem, int aKindMask = ITEM::ANY_T );
/**
* Check if any item in the set collides with anything else in the world, and if found,
* returns the obstacle.
*
* @param aSet set of items to find collisions with.
* @param aKindMask mask of obstacle types to take into account.
* @return the obstacle, if found, otherwise empty.
*/
OPT_OBSTACLE CheckColliding( const ITEM_SET& aSet, int aKindMask = ITEM::ANY_T );
/**
* Find all items that contain the point \a aPoint.
*
* @param aPoint the point.
* @return the items.
*/
const ITEM_SET HitTest( const VECTOR2I& aPoint ) const;
/**
* Add an item to the current node.
*
* @param aSegment item to add.
* @param aAllowRedundant if true, duplicate items are allowed (e.g. a segment or via
* at the same coordinates as an existing one).
* @return true if added
*/
bool Add( std::unique_ptr< SEGMENT > aSegment, bool aAllowRedundant = false );
void Add( std::unique_ptr< SOLID > aSolid );
void Add( std::unique_ptr< VIA > aVia );
bool Add( std::unique_ptr< ARC > aArc, bool aAllowRedundant = false );
void Add( LINE& aLine, bool aAllowRedundant = false );
/**
* Remove an item from this branch.
*/
void Remove( ARC* aArc );
void Remove( SOLID* aSolid );
void Remove( VIA* aVia );
void Remove( SEGMENT* aSegment );
void Remove( ITEM* aItem );
/**
* Removes a line from this branch.
*
* @param aLine item to remove
*/
void Remove( LINE& aLine );
/**
* Replace an item with another one.
*
* @param aOldItem item to be removed
* @param aNewItem item add instead
*/
void Replace( ITEM* aOldItem, std::unique_ptr< ITEM > aNewItem );
void Replace( LINE& aOldLine, LINE& aNewLine );
/**
* Create a lightweight copy (called branch) of self that tracks the changes (added/removed
* items) wrs to the root.
*
* @note If there are any branches in use, their parents must **not** be deleted.
*
* @return the new branch.
*/
NODE* Branch();
/**
* Follow the joint map to assemble a line connecting two non-trivial joints starting from
* segment \a aSeg.
*
* @param aSeg the initial segment.
* @param aOriginSegmentIndex index of aSeg in the resulting line.
* @return the line
*/
const LINE AssembleLine( LINKED_ITEM* aSeg, int* aOriginSegmentIndex = nullptr,
bool aStopAtLockedJoints = false );
///< Print the contents and joints structure.
void Dump( bool aLong = false );
/**
* Return the list of items removed and added in this branch with respect to the root branch.
*
* @param aRemoved removed items.
* @param aAdded added items.
*/
void GetUpdatedItems( ITEM_VECTOR& aRemoved, ITEM_VECTOR& aAdded );
/**
* Apply the changes from a given branch (aNode) to the root branch.
*
* Calling on a non-root branch will fail. Calling commit also kills all children nodes of
* the root branch.
*
* @param aNode node to commit changes from.
*/
void Commit( NODE* aNode );
/**
* Search for a joint at a given position, layer and belonging to given net.
*
* @return the joint, if found, otherwise empty.
*/
JOINT* FindJoint( const VECTOR2I& aPos, int aLayer, int aNet );
void LockJoint( const VECTOR2I& aPos, const ITEM* aItem, bool aLock );
/**
* Search for a joint at a given position, linked to given item.
*
* @return the joint, if found, otherwise empty.
*/
JOINT* FindJoint( const VECTOR2I& aPos, const ITEM* aItem )
{
return FindJoint( aPos, aItem->Layers().Start(), aItem->Net() );
}
///< Find all lines between a pair of joints. Used by the loop removal procedure.
int FindLinesBetweenJoints( const JOINT& aA, const JOINT& aB, std::vector<LINE>& aLines );
///< Find the joints corresponding to the ends of line \a aLine.
void FindLineEnds( const LINE& aLine, JOINT& aA, JOINT& aB );
///< Destroy all child nodes. Applicable only to the root node.
void KillChildren();
void AllItemsInNet( int aNet, std::set<ITEM*>& aItems, int aKindMask = -1 );
void ClearRanks( int aMarkerMask = MK_HEAD | MK_VIOLATION | MK_HOLE );
void RemoveByMarker( int aMarker );
ITEM* FindItemByParent( const BOARD_ITEM* aParent );
bool HasChildren() const
{
return !m_children.empty();
}
NODE* GetParent() const
{
return m_parent;
}
///< Check if this branch contains an updated version of the m_item from the root branch.
bool Overrides( ITEM* aItem ) const
{
return m_override.find( aItem ) != m_override.end();
}
void FixupVirtualVias();
private:
void Add( std::unique_ptr< ITEM > aItem, bool aAllowRedundant = false );
/// nodes are not copyable
NODE( const NODE& aB );
NODE& operator=( const NODE& aB );
///< Try to find matching joint and creates a new one if not found.
JOINT& touchJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet );
///< Touch a joint and links it to an m_item.
void linkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet, ITEM* aWhere );
///< Unlink an item from a joint.
void unlinkJoint( const VECTOR2I& aPos, const LAYER_RANGE& aLayers, int aNet, ITEM* aWhere );
///< Helpers for adding/removing items.
void addSolid( SOLID* aSeg );
void addSegment( SEGMENT* aSeg );
void addVia( VIA* aVia );
void addArc( ARC* aVia );
void removeSolidIndex( SOLID* aSeg );
void removeSegmentIndex( SEGMENT* aSeg );
void removeViaIndex( VIA* aVia );
void removeArcIndex( ARC* aVia );
void doRemove( ITEM* aItem );
void unlinkParent();
void releaseChildren();
void releaseGarbage();
void rebuildJoint( JOINT* aJoint, ITEM* aItem );
bool isRoot() const
{
return m_parent == nullptr;
}
SEGMENT* findRedundantSegment( const VECTOR2I& A, const VECTOR2I& B, const LAYER_RANGE& lr,
int aNet );
SEGMENT* findRedundantSegment( SEGMENT* aSeg );
ARC* findRedundantArc( const VECTOR2I& A, const VECTOR2I& B, const LAYER_RANGE& lr, int aNet );
ARC* findRedundantArc( ARC* aSeg );
///< Scan the joint map, forming a line starting from segment (current).
void followLine( LINKED_ITEM* aCurrent, bool aScanDirection, int& aPos, int aLimit,
VECTOR2I* aCorners, LINKED_ITEM** aSegments, bool* aArcReversed,
bool& aGuardHit, bool aStopAtLockedJoints );
private:
struct DEFAULT_OBSTACLE_VISITOR;
typedef std::unordered_multimap<JOINT::HASH_TAG, JOINT, JOINT::JOINT_TAG_HASH> JOINT_MAP;
typedef JOINT_MAP::value_type TagJointPair;
JOINT_MAP m_joints; ///< hash table with the joints, linking the items. Joints
///< are hashed by their position, layer set and net.
NODE* m_parent; ///< node this node was branched from
NODE* m_root; ///< root node of the whole hierarchy
std::set<NODE*> m_children; ///< list of nodes branched from this one
std::unordered_set<ITEM*> m_override; ///< hash of root's items that have been changed
///< in this node
int m_maxClearance; ///< worst case item-item clearance
RULE_RESOLVER* m_ruleResolver; ///< Design rules resolver
INDEX* m_index; ///< Geometric/Net index of the items
int m_depth; ///< depth of the node (number of parent nodes in the
///< inheritance chain)
std::unordered_set<ITEM*> m_garbageItems;
};
}
#endif