kicad/pcbnew/connectivity/connectivity_data.cpp

964 lines
26 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2017 CERN
* Copyright (C) 2018-2020 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifdef PROFILE
#include <profile.h>
#endif
#include <thread>
#include <algorithm>
#include <future>
#include <connectivity/connectivity_data.h>
#include <connectivity/connectivity_algo.h>
#include <connectivity/from_to_cache.h>
#include <ratsnest/ratsnest_data.h>
#include <progress_reporter.h>
#include <trigo.h>
CONNECTIVITY_DATA::CONNECTIVITY_DATA()
{
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
m_progressReporter = nullptr;
m_fromToCache.reset( new FROM_TO_CACHE );
}
CONNECTIVITY_DATA::CONNECTIVITY_DATA( const std::vector<BOARD_ITEM*>& aItems, bool aSkipRatsnest )
: m_skipRatsnest( aSkipRatsnest )
{
Build( aItems );
m_progressReporter = nullptr;
m_fromToCache.reset( new FROM_TO_CACHE );
}
CONNECTIVITY_DATA::~CONNECTIVITY_DATA()
{
Clear();
}
bool CONNECTIVITY_DATA::Add( BOARD_ITEM* aItem )
{
m_connAlgo->Add( aItem );
return true;
}
bool CONNECTIVITY_DATA::Remove( BOARD_ITEM* aItem )
{
m_connAlgo->Remove( aItem );
return true;
}
bool CONNECTIVITY_DATA::Update( BOARD_ITEM* aItem )
{
m_connAlgo->Remove( aItem );
m_connAlgo->Add( aItem );
return true;
}
void CONNECTIVITY_DATA::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter )
{
std::unique_lock<KISPINLOCK> lock( m_lock, std::try_to_lock );
if( !lock )
return;
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
m_connAlgo->Build( aBoard, aReporter );
m_netclassMap.clear();
for( NETINFO_ITEM* net : aBoard->GetNetInfo() )
if( net->GetNetClass()->GetName() != NETCLASS::Default )
m_netclassMap[ net->GetNetCode() ] = net->GetNetClass()->GetName();
if( aReporter )
{
aReporter->SetCurrentProgress( 0.75 );
aReporter->KeepRefreshing( false );
}
RecalculateRatsnest();
if( aReporter )
{
aReporter->SetCurrentProgress( 1.0 );
aReporter->KeepRefreshing( false );
}
}
void CONNECTIVITY_DATA::Build( const std::vector<BOARD_ITEM*>& aItems )
{
std::unique_lock<KISPINLOCK> lock( m_lock, std::try_to_lock );
if( !lock )
return;
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
m_connAlgo->Build( aItems );
RecalculateRatsnest();
}
void CONNECTIVITY_DATA::Move( const VECTOR2I& aDelta )
{
m_connAlgo->ForEachAnchor( [&aDelta]( CN_ANCHOR& anchor )
{
anchor.Move( aDelta );
} );
}
void CONNECTIVITY_DATA::updateRatsnest()
{
#ifdef PROFILE
PROF_COUNTER rnUpdate( "update-ratsnest" );
#endif
std::vector<RN_NET*> dirty_nets;
// Start with net 1 as net 0 is reserved for not-connected
// Nets without nodes are also ignored
std::copy_if( m_nets.begin() + 1, m_nets.end(), std::back_inserter( dirty_nets ),
[] ( RN_NET* aNet )
{
return aNet->IsDirty() && aNet->GetNodeCount() > 0;
} );
// We don't want to spin up a new thread for fewer than 8 nets (overhead costs)
size_t parallelThreadCount = std::min<size_t>( std::thread::hardware_concurrency(),
( dirty_nets.size() + 7 ) / 8 );
std::atomic<size_t> nextNet( 0 );
std::vector<std::future<size_t>> returns( parallelThreadCount );
auto update_lambda =
[this, &nextNet, &dirty_nets]() -> size_t
{
for( size_t i = nextNet++; i < dirty_nets.size(); i = nextNet++ )
dirty_nets[i]->Update( m_exclusions );
return 1;
};
if( parallelThreadCount <= 1 )
{
update_lambda();
}
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii] = std::async( std::launch::async, update_lambda );
// Finalize the ratsnest threads
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii].wait();
}
#ifdef PROFILE
rnUpdate.Show();
#endif
}
void CONNECTIVITY_DATA::addRatsnestCluster( const std::shared_ptr<CN_CLUSTER>& aCluster )
{
RN_NET* rnNet = m_nets[ aCluster->OriginNet() ];
rnNet->AddCluster( aCluster );
}
void CONNECTIVITY_DATA::RecalculateRatsnest( BOARD_COMMIT* aCommit )
{
m_connAlgo->PropagateNets( aCommit );
int lastNet = m_connAlgo->NetCount();
if( lastNet >= (int) m_nets.size() )
{
unsigned int prevSize = m_nets.size();
m_nets.resize( lastNet + 1 );
for( unsigned int i = prevSize; i < m_nets.size(); i++ )
m_nets[i] = new RN_NET;
}
const std::vector<CN_CLUSTER_PTR>& clusters = m_connAlgo->GetClusters();
int dirtyNets = 0;
for( int net = 0; net < lastNet; net++ )
{
if( m_connAlgo->IsNetDirty( net ) )
{
m_nets[net]->Clear();
dirtyNets++;
}
}
for( const CN_CLUSTER_PTR& c : clusters )
{
int net = c->OriginNet();
// Don't add intentionally-kept zone islands to the ratsnest
if( c->IsOrphaned() && c->Size() == 1 )
{
if( dynamic_cast<CN_ZONE_LAYER*>( *c->begin() ) )
continue;
}
if( m_connAlgo->IsNetDirty( net ) )
{
addRatsnestCluster( c );
}
}
m_connAlgo->ClearDirtyFlags();
if( !m_skipRatsnest )
updateRatsnest();
}
void CONNECTIVITY_DATA::BlockRatsnestItems( const std::vector<BOARD_ITEM*>& aItems )
{
std::vector<BOARD_CONNECTED_ITEM*> citems;
for( BOARD_ITEM* item : aItems )
{
if( item->Type() == PCB_FOOTPRINT_T )
{
for( PAD* pad : static_cast<FOOTPRINT*>(item)->Pads() )
citems.push_back( pad );
}
else
{
if( BOARD_CONNECTED_ITEM* citem = dynamic_cast<BOARD_CONNECTED_ITEM*>( item ) )
citems.push_back( citem );
}
}
for( const BOARD_CONNECTED_ITEM* item : citems )
{
if ( m_connAlgo->ItemExists( item ) )
{
CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY& entry = m_connAlgo->ItemEntry( item );
for( CN_ITEM* cnItem : entry.GetItems() )
{
for( const std::shared_ptr<CN_ANCHOR>& anchor : cnItem->Anchors() )
anchor->SetNoLine( true );
}
}
}
}
int CONNECTIVITY_DATA::GetNetCount() const
{
return m_connAlgo->NetCount();
}
void CONNECTIVITY_DATA::FindIsolatedCopperIslands( ZONE* aZone, std::vector<int>& aIslands )
{
// TODO(JE) ZONES
#if 0
m_connAlgo->FindIsolatedCopperIslands( aZone, aIslands );
#endif
}
void CONNECTIVITY_DATA::FindIsolatedCopperIslands( std::vector<CN_ZONE_ISOLATED_ISLAND_LIST>& aZones )
{
m_connAlgo->FindIsolatedCopperIslands( aZones );
}
void CONNECTIVITY_DATA::ComputeDynamicRatsnest( const std::vector<BOARD_ITEM*>& aItems,
const CONNECTIVITY_DATA* aDynamicData,
VECTOR2I aInternalOffset )
{
if( !aDynamicData )
return;
m_dynamicRatsnest.clear();
// This gets connections between the stationary board and the
// moving selection
for( unsigned int nc = 1; nc < aDynamicData->m_nets.size(); nc++ )
{
auto dynNet = aDynamicData->m_nets[nc];
if( dynNet->GetNodeCount() != 0 )
{
RN_NET* ourNet = m_nets[nc];
CN_ANCHOR_PTR nodeA, nodeB;
if( ourNet->NearestBicoloredPair( *dynNet, nodeA, nodeB ) )
{
RN_DYNAMIC_LINE l;
l.a = nodeA->Pos();
l.b = nodeB->Pos();
l.netCode = nc;
m_dynamicRatsnest.push_back( l );
}
}
}
// This gets the ratsnest for internal connections in the moving set
const std::vector<CN_EDGE>& edges = GetRatsnestForItems( aItems );
for( const CN_EDGE& edge : edges )
{
const CN_ANCHOR_PTR& nodeA = edge.GetSourceNode();
const CN_ANCHOR_PTR& nodeB = edge.GetTargetNode();
RN_DYNAMIC_LINE l;
// Use the parents' positions
l.a = nodeA->Parent()->GetPosition() + aInternalOffset;
l.b = nodeB->Parent()->GetPosition() + aInternalOffset;
l.netCode = 0;
m_dynamicRatsnest.push_back( l );
}
}
void CONNECTIVITY_DATA::ClearDynamicRatsnest()
{
m_connAlgo->ForEachAnchor( []( CN_ANCHOR& anchor )
{
anchor.SetNoLine( false );
} );
HideDynamicRatsnest();
}
void CONNECTIVITY_DATA::HideDynamicRatsnest()
{
m_dynamicRatsnest.clear();
}
void CONNECTIVITY_DATA::PropagateNets( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode )
{
m_connAlgo->PropagateNets( aCommit, aMode );
}
bool CONNECTIVITY_DATA::IsConnectedOnLayer( const BOARD_CONNECTED_ITEM *aItem, int aLayer,
std::vector<KICAD_T> aTypes ) const
{
CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY &entry = m_connAlgo->ItemEntry( aItem );
auto matchType =
[&]( KICAD_T aItemType )
{
if( aTypes.empty() )
return true;
return std::count( aTypes.begin(), aTypes.end(), aItemType ) > 0;
};
for( CN_ITEM* citem : entry.GetItems() )
{
for( CN_ITEM* connected : citem->ConnectedItems() )
{
if( connected->Valid()
&& connected->Layers().Overlaps( aLayer )
&& connected->Net() == aItem->GetNetCode()
&& matchType( connected->Parent()->Type() ) )
{
return true;
}
}
}
return false;
}
unsigned int CONNECTIVITY_DATA::GetUnconnectedCount() const
{
unsigned int unconnected = 0;
for( RN_NET* net : m_nets )
{
if( !net )
continue;
for( const CN_EDGE& edge : net->GetEdges() )
{
if( edge.IsVisible() )
++unconnected;
}
}
return unconnected;
}
void CONNECTIVITY_DATA::Clear()
{
for( RN_NET* net : m_nets )
delete net;
m_nets.clear();
}
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetConnectedItems(
const BOARD_CONNECTED_ITEM* aItem,
const KICAD_T aTypes[],
bool aIgnoreNetcodes ) const
{
std::vector<BOARD_CONNECTED_ITEM*> rv;
const auto clusters = m_connAlgo->SearchClusters(
aIgnoreNetcodes ?
CN_CONNECTIVITY_ALGO::CSM_PROPAGATE :
CN_CONNECTIVITY_ALGO::CSM_CONNECTIVITY_CHECK, aTypes,
aIgnoreNetcodes ? -1 : aItem->GetNetCode() );
for( auto cl : clusters )
{
if( cl->Contains( aItem ) )
{
for( const auto item : *cl )
{
if( item->Valid() )
rv.push_back( item->Parent() );
}
}
}
return rv;
}
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetNetItems( int aNetCode,
const KICAD_T aTypes[] ) const
{
std::vector<BOARD_CONNECTED_ITEM*> items;
items.reserve( 32 );
std::bitset<MAX_STRUCT_TYPE_ID> type_bits;
for( unsigned int i = 0; aTypes[i] != EOT; ++i )
{
wxASSERT( aTypes[i] < MAX_STRUCT_TYPE_ID );
type_bits.set( aTypes[i] );
}
m_connAlgo->ForEachItem( [&]( CN_ITEM& aItem ) {
if( aItem.Valid() && ( aItem.Net() == aNetCode ) && type_bits[aItem.Parent()->Type()] )
items.push_back( aItem.Parent() );
} );
std::sort( items.begin(), items.end() );
items.erase( std::unique( items.begin(), items.end() ), items.end() );
return items;
}
bool CONNECTIVITY_DATA::CheckConnectivity( std::vector<CN_DISJOINT_NET_ENTRY>& aReport )
{
RecalculateRatsnest();
for( auto net : m_nets )
{
if( net )
{
for( const auto& edge : net->GetEdges() )
{
CN_DISJOINT_NET_ENTRY ent;
ent.net = edge.GetSourceNode()->Parent()->GetNetCode();
ent.a = edge.GetSourceNode()->Parent();
ent.b = edge.GetTargetNode()->Parent();
ent.anchorA = edge.GetSourceNode()->Pos();
ent.anchorB = edge.GetTargetNode()->Pos();
aReport.push_back( ent );
}
}
}
return aReport.empty();
}
const std::vector<PCB_TRACK*> CONNECTIVITY_DATA::GetConnectedTracks(
const BOARD_CONNECTED_ITEM* aItem ) const
{
auto& entry = m_connAlgo->ItemEntry( aItem );
std::set<PCB_TRACK*> tracks;
std::vector<PCB_TRACK*> rv;
for( CN_ITEM* citem : entry.GetItems() )
{
for( CN_ITEM* connected : citem->ConnectedItems() )
{
if( connected->Valid() &&
( connected->Parent()->Type() == PCB_TRACE_T ||
connected->Parent()->Type() == PCB_VIA_T ||
connected->Parent()->Type() == PCB_ARC_T ) )
tracks.insert( static_cast<PCB_TRACK*> ( connected->Parent() ) );
}
}
std::copy( tracks.begin(), tracks.end(), std::back_inserter( rv ) );
return rv;
}
void CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem,
std::set<PAD*>* pads ) const
{
for( CN_ITEM* citem : m_connAlgo->ItemEntry( aItem ).GetItems() )
{
for( CN_ITEM* connected : citem->ConnectedItems() )
{
if( connected->Valid() && connected->Parent()->Type() == PCB_PAD_T )
pads->insert( static_cast<PAD*> ( connected->Parent() ) );
}
}
}
const std::vector<PAD*> CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem )
const
{
std::set<PAD*> pads;
std::vector<PAD*> rv;
GetConnectedPads( aItem, &pads );
std::copy( pads.begin(), pads.end(), std::back_inserter( rv ) );
return rv;
}
unsigned int CONNECTIVITY_DATA::GetNodeCount( int aNet ) const
{
int sum = 0;
if( aNet < 0 ) // Node count for all nets
{
for( const RN_NET* net : m_nets )
sum += net->GetNodeCount();
}
else if( aNet < (int) m_nets.size() )
{
sum = m_nets[aNet]->GetNodeCount();
}
return sum;
}
unsigned int CONNECTIVITY_DATA::GetPadCount( int aNet ) const
{
int n = 0;
for( CN_ITEM* pad : m_connAlgo->ItemList() )
{
if( !pad->Valid() || pad->Parent()->Type() != PCB_PAD_T)
continue;
PAD* dpad = static_cast<PAD*>( pad->Parent() );
if( aNet < 0 || aNet == dpad->GetNetCode() )
n++;
}
return n;
}
void CONNECTIVITY_DATA::GetUnconnectedEdges( std::vector<CN_EDGE>& aEdges) const
{
for( const RN_NET* rnNet : m_nets )
{
if( rnNet )
{
for( const CN_EDGE& edge : rnNet->GetEdges() )
aEdges.push_back( edge );
}
}
}
static int getMinDist( BOARD_CONNECTED_ITEM* aItem, const VECTOR2I& aPoint )
{
switch( aItem->Type() )
{
case PCB_TRACE_T:
case PCB_ARC_T:
{
PCB_TRACK* track = static_cast<PCB_TRACK*>( aItem );
return std::min( GetLineLength( track->GetStart(), aPoint ),
GetLineLength( track->GetEnd(), aPoint ) );
}
default:
return GetLineLength( aItem->GetPosition(), aPoint );
}
}
bool CONNECTIVITY_DATA::TestTrackEndpointDangling( PCB_TRACK* aTrack, VECTOR2I* aPos )
{
std::list<CN_ITEM*> items = GetConnectivityAlgo()->ItemEntry( aTrack ).GetItems();
// Not in the connectivity system. This is a bug!
if( items.empty() )
{
wxFAIL_MSG( wxT( "track not in connectivity system" ) );
return false;
}
CN_ITEM* citem = items.front();
if( !citem->Valid() )
return false;
if( aTrack->Type() == PCB_TRACE_T || aTrack->Type() == PCB_ARC_T )
{
// Test if a segment is connected on each end.
//
// NB: be wary of short segments which can be connected to the *same* other item on
// each end. If that's their only connection then they're still dangling.
PCB_LAYER_ID layer = aTrack->GetLayer();
int accuracy = KiROUND( aTrack->GetWidth() / 2 );
int start_count = 0;
int end_count = 0;
for( CN_ITEM* connected : citem->ConnectedItems() )
{
BOARD_CONNECTED_ITEM* item = connected->Parent();
if( item->GetFlags() & IS_DELETED )
continue;
std::shared_ptr<SHAPE> shape = item->GetEffectiveShape( layer );
bool hitStart = shape->Collide( aTrack->GetStart(), accuracy );
bool hitEnd = shape->Collide( aTrack->GetEnd(), accuracy );
if( hitStart && hitEnd )
{
if( getMinDist( item, aTrack->GetStart() ) < getMinDist( item, aTrack->GetEnd() ) )
start_count++;
else
end_count++;
}
else if( hitStart )
{
start_count++;
}
else if( hitEnd )
{
end_count++;
}
if( start_count > 0 && end_count > 0 )
return false;
}
if( aPos )
*aPos = (start_count == 0 ) ? aTrack->GetStart() : aTrack->GetEnd();
return true;
}
else if( aTrack->Type() == PCB_VIA_T )
{
// Test if a via is only connected on one layer
const std::vector<CN_ITEM*>& connected = citem->ConnectedItems();
if( connected.empty() )
{
if( aPos )
*aPos = aTrack->GetPosition();
return true;
}
// Here, we check if the via is connected only to items on a single layer
int first_layer = UNDEFINED_LAYER;
for( CN_ITEM* item : connected )
{
if( item->Parent()->GetFlags() & IS_DELETED )
continue;
if( first_layer == UNDEFINED_LAYER )
first_layer = item->Layer();
else if( item->Layer() != first_layer )
return false;
}
if( aPos )
*aPos = aTrack->GetPosition();
return true;
}
else
{
wxFAIL_MSG( wxT( "CONNECTIVITY_DATA::TestTrackEndpointDangling: unknown track type" ) );
}
return false;
}
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetConnectedItemsAtAnchor(
const BOARD_CONNECTED_ITEM* aItem,
const VECTOR2I& aAnchor,
const KICAD_T aTypes[],
const int& aMaxError ) const
{
auto& entry = m_connAlgo->ItemEntry( aItem );
std::vector<BOARD_CONNECTED_ITEM*> rv;
SEG::ecoord maxErrorSq = (SEG::ecoord) aMaxError * aMaxError;
for( auto cnItem : entry.GetItems() )
{
for( auto connected : cnItem->ConnectedItems() )
{
for( auto anchor : connected->Anchors() )
{
if( ( anchor->Pos() - aAnchor ).SquaredEuclideanNorm() <= maxErrorSq )
{
for( int i = 0; aTypes[i] > 0; i++ )
{
if( connected->Valid() && connected->Parent()->Type() == aTypes[i] )
{
rv.push_back( connected->Parent() );
break;
}
}
break;
}
}
}
}
return rv;
}
RN_NET* CONNECTIVITY_DATA::GetRatsnestForNet( int aNet )
{
if ( aNet < 0 || aNet >= (int) m_nets.size() )
{
return nullptr;
}
return m_nets[ aNet ];
}
void CONNECTIVITY_DATA::MarkItemNetAsDirty( BOARD_ITEM *aItem )
{
if ( aItem->Type() == PCB_FOOTPRINT_T)
{
for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() )
m_connAlgo->MarkNetAsDirty( pad->GetNetCode() );
}
if (aItem->IsConnected() )
{
m_connAlgo->MarkNetAsDirty( static_cast<BOARD_CONNECTED_ITEM*>( aItem )->GetNetCode() );
}
}
void CONNECTIVITY_DATA::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
m_progressReporter = aReporter;
m_connAlgo->SetProgressReporter( m_progressReporter );
}
void CONNECTIVITY_DATA::AddExclusion( const KIID& aBoardItemId1, const KIID& aBoardItemId2 )
{
m_exclusions.emplace( aBoardItemId1, aBoardItemId2 );
m_exclusions.emplace( aBoardItemId2, aBoardItemId1 );
for( RN_NET* rnNet : m_nets )
{
for( CN_EDGE& edge : rnNet->GetEdges() )
{
if( ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId1
&& edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId2 )
|| ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId2
&& edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId1 ) )
{
edge.SetVisible( false );
}
}
}
}
void CONNECTIVITY_DATA::RemoveExclusion( const KIID& aBoardItemId1, const KIID& aBoardItemId2 )
{
m_exclusions.erase( std::pair<KIID, KIID>( aBoardItemId1, aBoardItemId2 ) );
m_exclusions.erase( std::pair<KIID, KIID>( aBoardItemId2, aBoardItemId1 ) );
for( RN_NET* rnNet : m_nets )
{
for( CN_EDGE& edge : rnNet->GetEdges() )
{
if( ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId1
&& edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId2 )
|| ( edge.GetSourceNode()->Parent()->m_Uuid == aBoardItemId2
&& edge.GetTargetNode()->Parent()->m_Uuid == aBoardItemId1 ) )
{
edge.SetVisible( true );
}
}
}
}
const std::vector<CN_EDGE> CONNECTIVITY_DATA::GetRatsnestForItems( std::vector<BOARD_ITEM*> aItems )
{
std::set<int> nets;
std::vector<CN_EDGE> edges;
std::set<BOARD_CONNECTED_ITEM*> item_set;
for( BOARD_ITEM* item : aItems )
{
if( item->Type() == PCB_FOOTPRINT_T )
{
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( item );
for( PAD* pad : footprint->Pads() )
{
nets.insert( pad->GetNetCode() );
item_set.insert( pad );
}
}
else if( auto conn_item = dyn_cast<BOARD_CONNECTED_ITEM*>( item ) )
{
item_set.insert( conn_item );
nets.insert( conn_item->GetNetCode() );
}
}
for( int netcode : nets )
{
RN_NET* net = GetRatsnestForNet( netcode );
for( const CN_EDGE& edge : net->GetEdges() )
{
std::shared_ptr<CN_ANCHOR> srcNode = edge.GetSourceNode();
std::shared_ptr<CN_ANCHOR> dstNode = edge.GetTargetNode();
BOARD_CONNECTED_ITEM* srcParent = srcNode->Parent();
BOARD_CONNECTED_ITEM* dstParent = dstNode->Parent();
bool srcFound = ( item_set.find( srcParent ) != item_set.end() );
bool dstFound = ( item_set.find( dstParent ) != item_set.end() );
if ( srcFound && dstFound )
edges.push_back( edge );
}
}
return edges;
}
const std::vector<CN_EDGE> CONNECTIVITY_DATA::GetRatsnestForPad( const PAD* aPad )
{
std::vector<CN_EDGE> edges;
RN_NET* net = GetRatsnestForNet( aPad->GetNetCode() );
for( const CN_EDGE& edge : net->GetEdges() )
{
if( edge.GetSourceNode()->Parent() == aPad || edge.GetTargetNode()->Parent() == aPad )
edges.push_back( edge );
}
return edges;
}
const std::vector<CN_EDGE> CONNECTIVITY_DATA::GetRatsnestForComponent( FOOTPRINT* aComponent, bool aSkipInternalConnections )
{
std::set<int> nets;
std::set<const PAD*> pads;
std::vector<CN_EDGE> edges;
for( auto pad : aComponent->Pads() )
{
nets.insert( pad->GetNetCode() );
pads.insert( pad );
}
for( const auto& netcode : nets )
{
RN_NET* net = GetRatsnestForNet( netcode );
for( const CN_EDGE& edge : net->GetEdges() )
{
auto srcNode = edge.GetSourceNode();
auto dstNode = edge.GetTargetNode();
const PAD* srcParent = static_cast<const PAD*>( srcNode->Parent() );
const PAD* dstParent = static_cast<const PAD*>( dstNode->Parent() );
bool srcFound = ( pads.find(srcParent) != pads.end() );
bool dstFound = ( pads.find(dstParent) != pads.end() );
if ( srcFound && dstFound && !aSkipInternalConnections )
{
edges.push_back( edge );
}
else if ( srcFound || dstFound )
{
edges.push_back( edge );
}
}
}
return edges;
}