kicad/include/boost/polygon/detail/transform_detail.hpp

554 lines
21 KiB
C++

/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_TRANSFORM_DETAIL_HPP
#define BOOST_POLYGON_TRANSFORM_DETAIL_HPP
namespace boost { namespace polygon{
// inline std::ostream& operator<< (std::ostream& o, const axis_transformation& r) {
// o << r.atr_;
// return o;
// }
// inline std::istream& operator>> (std::istream& i, axis_transformation& r) {
// int tmp;
// i >> tmp;
// r = axis_transformation((axis_transformation::ATR)tmp);
// return i;
// }
// template <typename scale_factor_type>
// inline std::ostream& operator<< (std::ostream& o, const anisotropic_scale_factor<scale_factor_type>& sc) {
// o << sc.scale_[0] << BOOST_POLYGON_SEP << sc.scale_[1] << GTL_SEP << sc.scale_[2];
// return o;
// }
// template <typename scale_factor_type>
// inline std::istream& operator>> (std::istream& i, anisotropic_scale_factor<scale_factor_type>& sc) {
// i >> sc.scale_[0] >> sc.scale_[1] >> sc.scale_[2];
// return i;
// }
// template <typename coordinate_type>
// inline std::ostream& operator<< (std::ostream& o, const transformation& tr) {
// o << tr.atr_ << BOOST_POLYGON_SEP << tr.p_;
// return o;
// }
// template <typename coordinate_type>
// inline std::istream& operator>> (std::istream& i, transformation& tr) {
// i >> tr.atr_ >> tr.p_;
// return i;
// }
inline axis_transformation::axis_transformation(const orientation_3d& orient) : atr_(NULL_TRANSFORM) {
const ATR tmp[3] = {
UP_EAST_NORTH, //sort by x, then z, then y
EAST_UP_NORTH, //sort by y, then z, then x
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[orient.to_int()];
}
inline axis_transformation::axis_transformation(const orientation_2d& orient) : atr_(NULL_TRANSFORM) {
const ATR tmp[3] = {
NORTH_EAST_UP, //sort by z, then x, then y
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[orient.to_int()];
}
inline axis_transformation::axis_transformation(const direction_3d& dir) : atr_(NULL_TRANSFORM) {
const ATR tmp[6] = {
DOWN_EAST_NORTH, //sort by -x, then z, then y
UP_EAST_NORTH, //sort by x, then z, then y
EAST_DOWN_NORTH, //sort by -y, then z, then x
EAST_UP_NORTH, //sort by y, then z, then x
EAST_NORTH_DOWN, //sort by -z, then y, then x
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[dir.to_int()];
}
inline axis_transformation::axis_transformation(const direction_2d& dir) : atr_(NULL_TRANSFORM) {
const ATR tmp[4] = {
SOUTH_EAST_UP, //sort by z, then x, then y
NORTH_EAST_UP, //sort by z, then x, then y
EAST_SOUTH_UP, //sort by z, then y, then x
EAST_NORTH_UP //sort by z, then y, then x
};
atr_ = tmp[dir.to_int()];
}
inline axis_transformation& axis_transformation::operator=(const axis_transformation& a) {
atr_ = a.atr_;
return *this;
}
inline axis_transformation& axis_transformation::operator=(const ATR& atr) {
atr_ = atr;
return *this;
}
inline bool axis_transformation::operator==(const axis_transformation& a) const {
return atr_ == a.atr_;
}
inline bool axis_transformation::operator!=(const axis_transformation& a) const {
return !(*this == a);
}
inline bool axis_transformation::operator<(const axis_transformation& a) const {
return atr_ < a.atr_;
}
inline axis_transformation& axis_transformation::operator+=(const axis_transformation& a){
bool abit5 = (a.atr_ & 32) != 0;
bool abit4 = (a.atr_ & 16) != 0;
bool abit3 = (a.atr_ & 8) != 0;
bool abit2 = (a.atr_ & 4) != 0;
bool abit1 = (a.atr_ & 2) != 0;
bool abit0 = (a.atr_ & 1) != 0;
bool bit5 = (atr_ & 32) != 0;
bool bit4 = (atr_ & 16) != 0;
bool bit3 = (atr_ & 8) != 0;
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
int indexes[2][3] = {
{
((int)((bit5 & bit2) | (bit4 & !bit2)) << 1) +
(int)(bit2 & !bit5),
((int)((bit4 & bit2) | (bit5 & !bit2)) << 1) +
(int)(!bit5 & !bit2),
((int)(!bit4 & !bit5) << 1) +
(int)(bit5)
},
{
((int)((abit5 & abit2) | (abit4 & !abit2)) << 1) +
(int)(abit2 & !abit5),
((int)((abit4 & abit2) | (abit5 & !abit2)) << 1) +
(int)(!abit5 & !abit2),
((int)(!abit4 & !abit5) << 1) +
(int)(abit5)
}
};
int zero_bits[2][3] = {
{bit0, bit1, bit3},
{abit0, abit1, abit3}
};
int nbit3 = zero_bits[0][2] ^ zero_bits[1][indexes[0][2]];
int nbit1 = zero_bits[0][1] ^ zero_bits[1][indexes[0][1]];
int nbit0 = zero_bits[0][0] ^ zero_bits[1][indexes[0][0]];
indexes[0][0] = indexes[1][indexes[0][0]];
indexes[0][1] = indexes[1][indexes[0][1]];
indexes[0][2] = indexes[1][indexes[0][2]];
int nbit5 = (indexes[0][2] == 1);
int nbit4 = (indexes[0][2] == 0);
int nbit2 = (!(nbit5 | nbit4) & (bool)(indexes[0][0] & 1)) | //swap xy
(nbit5 & ((indexes[0][0] & 2) >> 1)) | //z->y x->z
(nbit4 & ((indexes[0][1] & 2) >> 1)); //z->x y->z
atr_ = (ATR)((nbit5 << 5) +
(nbit4 << 4) +
(nbit3 << 3) +
(nbit2 << 2) +
(nbit1 << 1) + nbit0);
return *this;
}
inline axis_transformation axis_transformation::operator+(const axis_transformation& a) const {
axis_transformation retval(*this);
return retval+=a;
}
// populate_axis_array writes the three INDIVIDUAL_AXIS values that the
// ATR enum value of 'this' represent into axis_array
inline void axis_transformation::populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const {
bool bit5 = (atr_ & 32) != 0;
bool bit4 = (atr_ & 16) != 0;
bool bit3 = (atr_ & 8) != 0;
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
axis_array[2] =
(INDIVIDUAL_AXIS)((((int)(!bit4 & !bit5)) << 2) +
((int)(bit5) << 1) +
bit3);
axis_array[1] =
(INDIVIDUAL_AXIS)((((int)((bit4 & bit2) | (bit5 & !bit2))) << 2)+
((int)(!bit5 & !bit2) << 1) +
bit1);
axis_array[0] =
(INDIVIDUAL_AXIS)((((int)((bit5 & bit2) | (bit4 & !bit2))) << 2) +
((int)(bit2 & !bit5) << 1) +
bit0);
}
// combine_axis_arrays concatenates this_array and that_array overwriting
// the result into this_array
inline void
axis_transformation::combine_axis_arrays (INDIVIDUAL_AXIS this_array[],
const INDIVIDUAL_AXIS that_array[]){
int indexes[3] = {this_array[0] >> 1,
this_array[1] >> 1,
this_array[2] >> 1};
int zero_bits[2][3] = {
{this_array[0] & 1, this_array[1] & 1, this_array[2] & 1},
{that_array[0] & 1, that_array[1] & 1, that_array[2] & 1}
};
this_array[0] = that_array[indexes[0]];
this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] & (int)((int)PZ+(int)PY));
this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] |
((int)zero_bits[0][0] ^
(int)zero_bits[1][indexes[0]]));
this_array[1] = that_array[indexes[1]];
this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] & (int)((int)PZ+(int)PY));
this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] |
((int)zero_bits[0][1] ^
(int)zero_bits[1][indexes[1]]));
this_array[2] = that_array[indexes[2]];
this_array[2] = (INDIVIDUAL_AXIS)((int)this_array[2] & (int)((int)PZ+(int)PY));
this_array[2] = (INDIVIDUAL_AXIS)((int)this_array[2] |
((int)zero_bits[0][2] ^
(int)zero_bits[1][indexes[2]]));
}
// write_back_axis_array converts an array of three INDIVIDUAL_AXIS values
// to the ATR enum value and sets 'this' to that value
inline void axis_transformation::write_back_axis_array(const INDIVIDUAL_AXIS this_array[]) {
int bit5 = ((int)this_array[2] & 2) != 0;
int bit4 = !((((int)this_array[2] & 4) != 0) | (((int)this_array[2] & 2) != 0));
int bit3 = ((int)this_array[2] & 1) != 0;
//bit 2 is the tricky bit
int bit2 = ((!(bit5 | bit4)) & (((int)this_array[0] & 2) != 0)) | //swap xy
(bit5 & (((int)this_array[0] & 4) >> 2)) | //z->y x->z
(bit4 & (((int)this_array[1] & 4) >> 2)); //z->x y->z
int bit1 = ((int)this_array[1] & 1);
int bit0 = ((int)this_array[0] & 1);
atr_ = ATR((bit5 << 5) +
(bit4 << 4) +
(bit3 << 3) +
(bit2 << 2) +
(bit1 << 1) + bit0);
}
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
inline axis_transformation&
axis_transformation::set_directions(const direction_2d& horizontalDir,
const direction_2d& verticalDir){
int bit2 = (static_cast<orientation_2d>(horizontalDir).to_int()) != 0;
int bit1 = !(verticalDir.to_int() & 1);
int bit0 = !(horizontalDir.to_int() & 1);
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
return *this;
}
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
inline axis_transformation& axis_transformation::set_directions(const direction_3d& horizontalDir,
const direction_3d& verticalDir,
const direction_3d& proximalDir){
int this_array[3] = {horizontalDir.to_int(),
verticalDir.to_int(),
proximalDir.to_int()};
int bit5 = (this_array[2] & 2) != 0;
int bit4 = !(((this_array[2] & 4) != 0) | ((this_array[2] & 2) != 0));
int bit3 = !((this_array[2] & 1) != 0);
//bit 2 is the tricky bit
int bit2 = (!(bit5 | bit4) & ((this_array[0] & 2) != 0 )) | //swap xy
(bit5 & ((this_array[0] & 4) >> 2)) | //z->y x->z
(bit4 & ((this_array[1] & 4) >> 2)); //z->x y->z
int bit1 = !(this_array[1] & 1);
int bit0 = !(this_array[0] & 1);
atr_ = ATR((bit5 << 5) +
(bit4 << 4) +
(bit3 << 3) +
(bit2 << 2) +
(bit1 << 1) + bit0);
return *this;
}
template <typename coordinate_type_2>
inline void axis_transformation::transform(coordinate_type_2& x, coordinate_type_2& y) const {
int bit2 = (atr_ & 4) != 0;
int bit1 = (atr_ & 2) != 0;
int bit0 = (atr_ & 1) != 0;
x *= -((bit0 << 1) - 1);
y *= -((bit1 << 1) - 1);
predicated_swap(bit2 != 0,x,y);
}
template <typename coordinate_type_2>
inline void axis_transformation::transform(coordinate_type_2& x, coordinate_type_2& y, coordinate_type_2& z) const {
int bit5 = (atr_ & 32) != 0;
int bit4 = (atr_ & 16) != 0;
int bit3 = (atr_ & 8) != 0;
int bit2 = (atr_ & 4) != 0;
int bit1 = (atr_ & 2) != 0;
int bit0 = (atr_ & 1) != 0;
x *= -((bit0 << 1) - 1);
y *= -((bit1 << 1) - 1);
z *= -((bit3 << 1) - 1);
predicated_swap(bit2 != 0, x, y);
predicated_swap(bit5 != 0, y, z);
predicated_swap(bit4 != 0, x, z);
}
inline axis_transformation& axis_transformation::invert_2d() {
int bit2 = ((atr_ & 4) != 0);
int bit1 = ((atr_ & 2) != 0);
int bit0 = ((atr_ & 1) != 0);
//swap bit 0 and bit 1 if bit2 is 1
predicated_swap(bit2 != 0, bit0, bit1);
bit1 = bit1 << 1;
atr_ = (ATR)(atr_ & (32+16+8+4)); //mask away bit0 and bit1
atr_ = (ATR)(atr_ | bit0 | bit1);
return *this;
}
inline axis_transformation axis_transformation::inverse_2d() const {
axis_transformation retval(*this);
return retval.invert_2d();
}
inline axis_transformation& axis_transformation::invert() {
int bit5 = ((atr_ & 32) != 0);
int bit4 = ((atr_ & 16) != 0);
int bit3 = ((atr_ & 8) != 0);
int bit2 = ((atr_ & 4) != 0);
int bit1 = ((atr_ & 2) != 0);
int bit0 = ((atr_ & 1) != 0);
predicated_swap(bit2 != 0, bit4, bit5);
predicated_swap(bit4 != 0, bit0, bit3);
predicated_swap(bit5 != 0, bit1, bit3);
predicated_swap(bit2 != 0, bit0, bit1);
atr_ = (ATR)((bit5 << 5) +
(bit4 << 4) +
(bit3 << 3) +
(bit2 << 2) +
(bit1 << 1) + bit0);
return *this;
}
inline axis_transformation axis_transformation::inverse() const {
axis_transformation retval(*this);
return retval.invert();
}
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::get(orientation_3d orient) const {
return scale_[orient.to_int()];
}
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::set(orientation_3d orient, scale_factor_type value) {
scale_[orient.to_int()] = value;
}
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::x() const { return scale_[HORIZONTAL]; }
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::y() const { return scale_[VERTICAL]; }
template <typename scale_factor_type>
inline scale_factor_type anisotropic_scale_factor<scale_factor_type>::z() const { return scale_[PROXIMAL]; }
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::x(scale_factor_type value) { scale_[HORIZONTAL] = value; }
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::y(scale_factor_type value) { scale_[VERTICAL] = value; }
template <typename scale_factor_type>
inline void anisotropic_scale_factor<scale_factor_type>::z(scale_factor_type value) { scale_[PROXIMAL] = value; }
//concatenation operator (convolve scale factors)
template <typename scale_factor_type>
inline anisotropic_scale_factor<scale_factor_type> anisotropic_scale_factor<scale_factor_type>::operator+(const anisotropic_scale_factor<scale_factor_type>& s) const {
anisotropic_scale_factor<scale_factor_type> retval(*this);
return retval+=s;
}
//concatenate this with that
template <typename scale_factor_type>
inline const anisotropic_scale_factor<scale_factor_type>& anisotropic_scale_factor<scale_factor_type>::operator+=(const anisotropic_scale_factor<scale_factor_type>& s){
scale_[0] *= s.scale_[0];
scale_[1] *= s.scale_[1];
scale_[2] *= s.scale_[2];
return *this;
}
//transform
template <typename scale_factor_type>
inline anisotropic_scale_factor<scale_factor_type>& anisotropic_scale_factor<scale_factor_type>::transform(axis_transformation atr){
direction_3d dirs[3];
atr.get_directions(dirs[0],dirs[1],dirs[2]);
scale_factor_type tmp[3] = {scale_[0], scale_[1], scale_[2]};
for(int i = 0; i < 3; ++i){
scale_[orientation_3d(dirs[i]).to_int()] = tmp[i];
}
return *this;
}
template <typename scale_factor_type>
template <typename coordinate_type_2>
inline void anisotropic_scale_factor<scale_factor_type>::scale(coordinate_type_2& x, coordinate_type_2& y) const {
x = scaling_policy<coordinate_type_2>::round((scale_factor_type)x * get(HORIZONTAL));
y = scaling_policy<coordinate_type_2>::round((scale_factor_type)y * get(HORIZONTAL));
}
template <typename scale_factor_type>
template <typename coordinate_type_2>
inline void anisotropic_scale_factor<scale_factor_type>::scale(coordinate_type_2& x, coordinate_type_2& y, coordinate_type_2& z) const {
scale(x, y);
z = scaling_policy<coordinate_type_2>::round((scale_factor_type)z * get(HORIZONTAL));
}
template <typename scale_factor_type>
inline anisotropic_scale_factor<scale_factor_type>& anisotropic_scale_factor<scale_factor_type>::invert() {
x(1/x());
y(1/y());
z(1/z());
return *this;
}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation() : atr_(), p_(0, 0, 0) {;}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation(axis_transformation atr) : atr_(atr), p_(0, 0, 0){;}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation(axis_transformation::ATR atr) : atr_(atr), p_(0, 0, 0){;}
template <typename coordinate_type>
template <typename point_type>
inline transformation<coordinate_type>::transformation(const point_type& p) : atr_(), p_(0, 0, 0) {
set_translation(p);
}
template <typename coordinate_type>
template <typename point_type>
inline transformation<coordinate_type>::transformation(axis_transformation atr, const point_type& p) :
atr_(atr), p_(0, 0, 0) {
set_translation(p);
}
template <typename coordinate_type>
template <typename point_type>
inline transformation<coordinate_type>::transformation(axis_transformation atr, const point_type& referencePt, const point_type& destinationPt) : atr_(), p_(0, 0, 0) {
transformation<coordinate_type> tmp(referencePt);
transformation<coordinate_type> rotRef(atr);
transformation<coordinate_type> tmpInverse = tmp.inverse();
point_type decon(referencePt);
deconvolve(decon, destinationPt);
transformation<coordinate_type> displacement(decon);
tmp += rotRef;
tmp += tmpInverse;
tmp += displacement;
(*this) = tmp;
}
template <typename coordinate_type>
inline transformation<coordinate_type>::transformation(const transformation<coordinate_type>& tr) :
atr_(tr.atr_), p_(tr.p_) {;}
template <typename coordinate_type>
inline bool transformation<coordinate_type>::operator==(const transformation<coordinate_type>& tr) const {
return atr_ == tr.atr_ && p_ == tr.p_;
}
template <typename coordinate_type>
inline bool transformation<coordinate_type>::operator!=(const transformation<coordinate_type>& tr) const {
return !(*this == tr);
}
template <typename coordinate_type>
inline bool transformation<coordinate_type>::operator<(const transformation<coordinate_type>& tr) const {
return atr_ < tr.atr_ || atr_ == tr.atr_ && p_ < tr.p_;
}
template <typename coordinate_type>
inline transformation<coordinate_type> transformation<coordinate_type>::operator+(const transformation<coordinate_type>& tr) const {
transformation<coordinate_type> retval(*this);
return retval+=tr;
}
template <typename coordinate_type>
inline const transformation<coordinate_type>& transformation<coordinate_type>::operator+=(const transformation<coordinate_type>& tr){
//apply the inverse transformation of this to the translation point of that
//and convolve it with this translation point
coordinate_type x, y, z;
transformation<coordinate_type> inv = inverse();
inv.transform(x, y, z);
p_.set(HORIZONTAL, p_.get(HORIZONTAL) + x);
p_.set(VERTICAL, p_.get(VERTICAL) + y);
p_.set(PROXIMAL, p_.get(PROXIMAL) + z);
//concatenate axis transforms
atr_ += tr.atr_;
return *this;
}
template <typename coordinate_type>
inline void transformation<coordinate_type>::set_axis_transformation(const axis_transformation& atr) {
atr_ = atr;
}
template <typename coordinate_type>
template <typename point_type>
inline void transformation<coordinate_type>::get_translation(point_type& p) const {
assign(p, p_);
}
template <typename coordinate_type>
template <typename point_type>
inline void transformation<coordinate_type>::set_translation(const point_type& p) {
assign(p_, p);
}
template <typename coordinate_type>
inline void transformation<coordinate_type>::transform(coordinate_type& x, coordinate_type& y) const {
//subtract each component of new origin point
y -= p_.get(VERTICAL);
x -= p_.get(HORIZONTAL);
atr_.transform(x, y);
}
template <typename coordinate_type>
inline void transformation<coordinate_type>::transform(coordinate_type& x, coordinate_type& y, coordinate_type& z) const {
//subtract each component of new origin point
z -= p_.get(PROXIMAL);
y -= p_.get(VERTICAL);
x -= p_.get(HORIZONTAL);
atr_.transform(x,y,z);
}
// sets the axis_transform portion to its inverse
// transforms the tranlastion portion by that inverse axis_transform
// multiplies the translation portion by -1 to reverse it
template <typename coordinate_type>
inline transformation<coordinate_type>& transformation<coordinate_type>::invert() {
coordinate_type x = p_.get(HORIZONTAL), y = p_.get(VERTICAL), z = p_.get(PROXIMAL);
atr_.transform(x, y, z);
x *= -1;
y *= -1;
z *= -1;
p_ = point_3d_data<coordinate_type>(x, y, z);
atr_.invert();
return *this;
}
template <typename coordinate_type>
inline transformation<coordinate_type> transformation<coordinate_type>::inverse() const {
transformation<coordinate_type> retval(*this);
return retval.invert();
}
}
}
#endif