kicad/common/gal/opengl/opengl_gal.cpp

1650 lines
52 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2012 Torsten Hueter, torstenhtr <at> gmx.de
* Copyright (C) 2012-2016 Kicad Developers, see change_log.txt for contributors.
* Copyright (C) 2013-2016 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* Graphics Abstraction Layer (GAL) for OpenGL
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <gal/opengl/opengl_gal.h>
#include <gal/opengl/utils.h>
#include <gal/definitions.h>
#include <gl_context_mgr.h>
#include <macros.h>
#ifdef __WXDEBUG__
#include <profile.h>
#include <wx/log.h>
#endif /* __WXDEBUG__ */
#include <limits>
#include <functional>
using namespace std::placeholders;
using namespace KIGFX;
// The current font is "Ubuntu Mono" available under Ubuntu Font Licence 1.0
// (see ubuntu-font-licence-1.0.txt for details)
#include "bitmap_font_img.c"
#include "bitmap_font_desc.c"
static void InitTesselatorCallbacks( GLUtesselator* aTesselator );
static const int glAttributes[] = { WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 8, 0 };
wxGLContext* OPENGL_GAL::glMainContext = NULL;
int OPENGL_GAL::instanceCounter = 0;
GLuint OPENGL_GAL::fontTexture = 0;
bool OPENGL_GAL::isBitmapFontLoaded = false;
SHADER* OPENGL_GAL::shader = NULL;
OPENGL_GAL::OPENGL_GAL( wxWindow* aParent, wxEvtHandler* aMouseListener,
wxEvtHandler* aPaintListener, const wxString& aName ) :
wxGLCanvas( aParent, wxID_ANY, (int*) glAttributes, wxDefaultPosition, wxDefaultSize,
wxEXPAND, aName ),
mouseListener( aMouseListener ),
paintListener( aPaintListener )
{
if( glMainContext == NULL )
{
glMainContext = GL_CONTEXT_MANAGER::Get().CreateCtx( this );
glPrivContext = glMainContext;
shader = new SHADER();
}
else
{
glPrivContext = GL_CONTEXT_MANAGER::Get().CreateCtx( this, glMainContext );
}
++instanceCounter;
// Check if OpenGL requirements are met
runTest();
// Make VBOs use shaders
cachedManager = new VERTEX_MANAGER( true );
cachedManager->SetShader( *shader );
nonCachedManager = new VERTEX_MANAGER( false );
nonCachedManager->SetShader( *shader );
overlayManager = new VERTEX_MANAGER( false );
overlayManager->SetShader( *shader );
compositor = new OPENGL_COMPOSITOR;
// Initialize the flags
isFramebufferInitialized = false;
isBitmapFontInitialized = false;
isGrouping = false;
groupCounter = 0;
#ifdef RETINA_OPENGL_PATCH
SetViewWantsBestResolution( true );
#endif
// Connecting the event handlers
Connect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::onPaint ) );
// Mouse events are skipped to the parent
Connect( wxEVT_MOTION, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
#if wxCHECK_VERSION( 3, 1, 0 ) || defined( USE_OSX_MAGNIFY_EVENT )
Connect( wxEVT_MAGNIFY, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
#endif
#if defined _WIN32 || defined _WIN64
Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
#endif
SetSize( aParent->GetSize() );
screenSize = VECTOR2I( aParent->GetSize() );
// Grid color settings are different in Cairo and OpenGL
SetGridColor( COLOR4D( 0.8, 0.8, 0.8, 0.1 ) );
// Tesselator initialization
tesselator = gluNewTess();
InitTesselatorCallbacks( tesselator );
if( tesselator == NULL )
throw std::runtime_error( "Could not create the tesselator" );
gluTessProperty( tesselator, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_POSITIVE );
currentManager = nonCachedManager;
}
OPENGL_GAL::~OPENGL_GAL()
{
GL_CONTEXT_MANAGER::Get().LockCtx( glPrivContext, this );
--instanceCounter;
glFlush();
gluDeleteTess( tesselator );
ClearCache();
delete compositor;
delete cachedManager;
delete nonCachedManager;
delete overlayManager;
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
// If it was the main context, then it will be deleted
// when the last OpenGL GAL instance is destroyed (a few lines below)
if( glPrivContext != glMainContext )
GL_CONTEXT_MANAGER::Get().DestroyCtx( glPrivContext );
// Are we destroying the last GAL instance?
if( instanceCounter == 0 )
{
GL_CONTEXT_MANAGER::Get().LockCtx( glMainContext, this );
if( isBitmapFontLoaded )
{
glDeleteTextures( 1, &fontTexture );
isBitmapFontLoaded = false;
}
delete shader;
GL_CONTEXT_MANAGER::Get().UnlockCtx( glMainContext );
GL_CONTEXT_MANAGER::Get().DestroyCtx( glMainContext );
glMainContext = NULL;
}
}
void OPENGL_GAL::BeginDrawing()
{
if( !IsShownOnScreen() )
return;
#ifdef __WXDEBUG__
prof_counter totalRealTime;
prof_start( &totalRealTime );
#endif /* __WXDEBUG__ */
GL_CONTEXT_MANAGER::Get().LockCtx( glPrivContext, this );
#ifdef RETINA_OPENGL_PATCH
const float scaleFactor = GetBackingScaleFactor();
#else
const float scaleFactor = 1.0f;
#endif
// Set up the view port
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
glViewport( 0, 0, (GLsizei) screenSize.x * scaleFactor, (GLsizei) screenSize.y * scaleFactor );
// Create the screen transformation
glOrtho( 0, (GLint) screenSize.x, 0, (GLsizei) screenSize.y, -depthRange.x, -depthRange.y );
if( !isFramebufferInitialized )
{
// Prepare rendering target buffers
compositor->Initialize();
mainBuffer = compositor->CreateBuffer();
overlayBuffer = compositor->CreateBuffer();
isFramebufferInitialized = true;
}
// Disable 2D Textures
glDisable( GL_TEXTURE_2D );
glShadeModel( GL_FLAT );
// Enable the depth buffer
glEnable( GL_DEPTH_TEST );
glDepthFunc( GL_LESS );
// Setup blending, required for transparent objects
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
glMatrixMode( GL_MODELVIEW );
// Set up the world <-> screen transformation
ComputeWorldScreenMatrix();
GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
matrixData[0] = worldScreenMatrix.m_data[0][0];
matrixData[1] = worldScreenMatrix.m_data[1][0];
matrixData[2] = worldScreenMatrix.m_data[2][0];
matrixData[4] = worldScreenMatrix.m_data[0][1];
matrixData[5] = worldScreenMatrix.m_data[1][1];
matrixData[6] = worldScreenMatrix.m_data[2][1];
matrixData[12] = worldScreenMatrix.m_data[0][2];
matrixData[13] = worldScreenMatrix.m_data[1][2];
matrixData[14] = worldScreenMatrix.m_data[2][2];
glLoadMatrixd( matrixData );
// Set defaults
SetFillColor( fillColor );
SetStrokeColor( strokeColor );
// Remove all previously stored items
nonCachedManager->Clear();
overlayManager->Clear();
cachedManager->BeginDrawing();
nonCachedManager->BeginDrawing();
overlayManager->BeginDrawing();
if( !isBitmapFontInitialized )
{
// Keep bitmap font texture always bound to the second texturing unit
const GLint FONT_TEXTURE_UNIT = 2;
// Either load the font atlas to video memory, or simply bind it to a texture unit
if( !isBitmapFontLoaded )
{
glActiveTexture( GL_TEXTURE0 + FONT_TEXTURE_UNIT );
glGenTextures( 1, &fontTexture );
glBindTexture( GL_TEXTURE_2D, fontTexture );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, bitmap_font.width, bitmap_font.height,
0, GL_RGB, GL_UNSIGNED_BYTE, bitmap_font.pixels );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
checkGlError( "loading bitmap font" );
glActiveTexture( GL_TEXTURE0 );
isBitmapFontLoaded = true;
}
else
{
glActiveTexture( GL_TEXTURE0 + FONT_TEXTURE_UNIT );
glBindTexture( GL_TEXTURE_2D, fontTexture );
glActiveTexture( GL_TEXTURE0 );
}
// Set shader parameter
GLint ufm_fontTexture = shader->AddParameter( "fontTexture" );
shader->Use();
shader->SetParameter( ufm_fontTexture, (int) FONT_TEXTURE_UNIT );
shader->Deactivate();
checkGlError( "setting bitmap font sampler as shader parameter" );
isBitmapFontInitialized = true;
}
// Unbind buffers - set compositor for direct drawing
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
#ifdef __WXDEBUG__
prof_end( &totalRealTime );
wxLogTrace( "GAL_PROFILE",
wxT( "OPENGL_GAL::BeginDrawing(): %.1f ms" ), totalRealTime.msecs() );
#endif /* __WXDEBUG__ */
}
void OPENGL_GAL::EndDrawing()
{
#ifdef __WXDEBUG__
prof_counter totalRealTime;
prof_start( &totalRealTime );
#endif /* __WXDEBUG__ */
// Cached & non-cached containers are rendered to the same buffer
compositor->SetBuffer( mainBuffer );
nonCachedManager->EndDrawing();
cachedManager->EndDrawing();
// Overlay container is rendered to a different buffer
compositor->SetBuffer( overlayBuffer );
overlayManager->EndDrawing();
// Be sure that the framebuffer is not colorized (happens on specific GPU&drivers combinations)
glColor4d( 1.0, 1.0, 1.0, 1.0 );
// Draw the remaining contents, blit the rendering targets to the screen, swap the buffers
compositor->DrawBuffer( mainBuffer );
compositor->DrawBuffer( overlayBuffer );
blitCursor();
SwapBuffers();
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
#ifdef __WXDEBUG__
prof_end( &totalRealTime );
wxLogTrace( "GAL_PROFILE", wxT( "OPENGL_GAL::EndDrawing(): %.1f ms" ), totalRealTime.msecs() );
#endif /* __WXDEBUG__ */
}
void OPENGL_GAL::BeginUpdate()
{
GL_CONTEXT_MANAGER::Get().LockCtx( glPrivContext, this );
cachedManager->Map();
}
void OPENGL_GAL::EndUpdate()
{
cachedManager->Unmap();
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
}
void OPENGL_GAL::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
const VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineAngle = startEndVector.Angle();
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
drawLineQuad( aStartPoint, aEndPoint );
// Line caps
if( lineWidth > 1.0 )
{
drawFilledSemiCircle( aStartPoint, lineWidth / 2, lineAngle + M_PI / 2 );
drawFilledSemiCircle( aEndPoint, lineWidth / 2, lineAngle - M_PI / 2 );
}
}
void OPENGL_GAL::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint,
double aWidth )
{
VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineAngle = startEndVector.Angle();
if( isFillEnabled )
{
// Filled tracks
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
SetLineWidth( aWidth );
drawLineQuad( aStartPoint, aEndPoint );
// Draw line caps
drawFilledSemiCircle( aStartPoint, aWidth / 2, lineAngle + M_PI / 2 );
drawFilledSemiCircle( aEndPoint, aWidth / 2, lineAngle - M_PI / 2 );
}
else
{
// Outlined tracks
double lineLength = startEndVector.EuclideanNorm();
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
Save();
currentManager->Translate( aStartPoint.x, aStartPoint.y, 0.0 );
currentManager->Rotate( lineAngle, 0.0f, 0.0f, 1.0f );
drawLineQuad( VECTOR2D( 0.0, aWidth / 2.0 ),
VECTOR2D( lineLength, aWidth / 2.0 ) );
drawLineQuad( VECTOR2D( 0.0, -aWidth / 2.0 ),
VECTOR2D( lineLength, -aWidth / 2.0 ) );
// Draw line caps
drawStrokedSemiCircle( VECTOR2D( 0.0, 0.0 ), aWidth / 2, M_PI / 2 );
drawStrokedSemiCircle( VECTOR2D( lineLength, 0.0 ), aWidth / 2, -M_PI / 2 );
Restore();
}
}
void OPENGL_GAL::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius )
{
if( isFillEnabled )
{
currentManager->Reserve( 3 );
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
/* Draw a triangle that contains the circle, then shade it leaving only the circle.
* Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]).
* Shader uses this coordinates to determine if fragments are inside the circle or not.
* v2
* /\
* //\\
* v0 /_\/_\ v1
*/
currentManager->Shader( SHADER_FILLED_CIRCLE, 1.0 );
currentManager->Vertex( aCenterPoint.x - aRadius * sqrt( 3.0f ), // v0
aCenterPoint.y - aRadius, layerDepth );
currentManager->Shader( SHADER_FILLED_CIRCLE, 2.0 );
currentManager->Vertex( aCenterPoint.x + aRadius * sqrt( 3.0f), // v1
aCenterPoint.y - aRadius, layerDepth );
currentManager->Shader( SHADER_FILLED_CIRCLE, 3.0 );
currentManager->Vertex( aCenterPoint.x, aCenterPoint.y + aRadius * 2.0f, // v2
layerDepth );
}
if( isStrokeEnabled )
{
currentManager->Reserve( 3 );
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
/* Draw a triangle that contains the circle, then shade it leaving only the circle.
* Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]).
* and the line width. Shader uses this coordinates to determine if fragments are
* inside the circle or not.
* v2
* /\
* //\\
* v0 /_\/_\ v1
*/
double outerRadius = aRadius + ( lineWidth / 2 );
currentManager->Shader( SHADER_STROKED_CIRCLE, 1.0, aRadius, lineWidth );
currentManager->Vertex( aCenterPoint.x - outerRadius * sqrt( 3.0f ), // v0
aCenterPoint.y - outerRadius, layerDepth );
currentManager->Shader( SHADER_STROKED_CIRCLE, 2.0, aRadius, lineWidth );
currentManager->Vertex( aCenterPoint.x + outerRadius * sqrt( 3.0f ), // v1
aCenterPoint.y - outerRadius, layerDepth );
currentManager->Shader( SHADER_STROKED_CIRCLE, 3.0, aRadius, lineWidth );
currentManager->Vertex( aCenterPoint.x, aCenterPoint.y + outerRadius * 2.0f, // v2
layerDepth );
}
}
void OPENGL_GAL::DrawArc( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle,
double aEndAngle )
{
if( aRadius <= 0 )
return;
// Swap the angles, if start angle is greater than end angle
SWAP( aStartAngle, >, aEndAngle );
Save();
currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0 );
if( isStrokeEnabled )
{
const double alphaIncrement = 2.0 * M_PI / CIRCLE_POINTS;
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
VECTOR2D p( cos( aStartAngle ) * aRadius, sin( aStartAngle ) * aRadius );
double alpha;
for( alpha = aStartAngle + alphaIncrement; alpha <= aEndAngle; alpha += alphaIncrement )
{
VECTOR2D p_next( cos( alpha ) * aRadius, sin( alpha ) * aRadius );
DrawLine( p, p_next );
p = p_next;
}
// Draw the last missing part
if( alpha != aEndAngle )
{
VECTOR2D p_last( cos( aEndAngle ) * aRadius, sin( aEndAngle ) * aRadius );
DrawLine( p, p_last );
}
}
if( isFillEnabled )
{
const double alphaIncrement = 2 * M_PI / CIRCLE_POINTS;
double alpha;
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
currentManager->Shader( SHADER_NONE );
// Triangle fan
for( alpha = aStartAngle; ( alpha + alphaIncrement ) < aEndAngle; )
{
currentManager->Reserve( 3 );
currentManager->Vertex( 0.0, 0.0, 0.0 );
currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, 0.0 );
alpha += alphaIncrement;
currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, 0.0 );
}
// The last missing triangle
const VECTOR2D endPoint( cos( aEndAngle ) * aRadius, sin( aEndAngle ) * aRadius );
currentManager->Reserve( 3 );
currentManager->Vertex( 0.0, 0.0, 0.0 );
currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, 0.0 );
currentManager->Vertex( endPoint.x, endPoint.y, 0.0 );
}
Restore();
}
void OPENGL_GAL::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
// Compute the diagonal points of the rectangle
VECTOR2D diagonalPointA( aEndPoint.x, aStartPoint.y );
VECTOR2D diagonalPointB( aStartPoint.x, aEndPoint.y );
// Stroke the outline
if( isStrokeEnabled )
{
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
std::deque<VECTOR2D> pointList;
pointList.push_back( aStartPoint );
pointList.push_back( diagonalPointA );
pointList.push_back( aEndPoint );
pointList.push_back( diagonalPointB );
pointList.push_back( aStartPoint );
DrawPolyline( pointList );
}
// Fill the rectangle
if( isFillEnabled )
{
currentManager->Reserve( 6 );
currentManager->Shader( SHADER_NONE );
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth );
currentManager->Vertex( diagonalPointA.x, diagonalPointA.y, layerDepth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth );
currentManager->Vertex( diagonalPointB.x, diagonalPointB.y, layerDepth );
}
}
void OPENGL_GAL::DrawPolyline( const std::deque<VECTOR2D>& aPointList )
{
if( aPointList.empty() )
return;
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
std::deque<VECTOR2D>::const_iterator it = aPointList.begin();
// Start from the second point
for( ++it; it != aPointList.end(); ++it )
{
const VECTOR2D startEndVector = ( *it - *( it - 1 ) );
double lineAngle = startEndVector.Angle();
drawLineQuad( *( it - 1 ), *it );
// There is no need to draw line caps on both ends of polyline's segments
drawFilledSemiCircle( *( it - 1 ), lineWidth / 2, lineAngle + M_PI / 2 );
}
// ..and now - draw the ending cap
const VECTOR2D startEndVector = ( *( it - 1 ) - *( it - 2 ) );
double lineAngle = startEndVector.Angle();
drawFilledSemiCircle( *( it - 1 ), lineWidth / 2, lineAngle - M_PI / 2 );
}
void OPENGL_GAL::DrawPolyline( const VECTOR2D aPointList[], int aListSize )
{
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
// Start from the second point
for( int i = 1; i < aListSize; ++i )
{
const VECTOR2D startEndVector = ( aPointList[i] - aPointList[i - 1] );
double lineAngle = startEndVector.Angle();
drawLineQuad( aPointList[i - 1], aPointList[i] );
// There is no need to draw line caps on both ends of polyline's segments
drawFilledSemiCircle( aPointList[i - 1], lineWidth / 2, lineAngle + M_PI / 2 );
}
// ..and now - draw the ending cap
const VECTOR2D startEndVector = ( aPointList[aListSize - 1] - aPointList[aListSize - 2] );
double lineAngle = startEndVector.Angle();
drawFilledSemiCircle( aPointList[aListSize - 1], lineWidth / 2, lineAngle - M_PI / 2 );
}
void OPENGL_GAL::DrawPolygon( const std::deque<VECTOR2D>& aPointList )
{
currentManager->Shader( SHADER_NONE );
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
// Any non convex polygon needs to be tesselated
// for this purpose the GLU standard functions are used
TessParams params = { currentManager, tessIntersects };
gluTessBeginPolygon( tesselator, &params );
gluTessBeginContour( tesselator );
std::unique_ptr<GLdouble[]> points( new GLdouble[ 3 * aPointList.size() ] );
int v = 0;
for( std::deque<VECTOR2D>::const_iterator it = aPointList.begin(); it != aPointList.end(); ++it )
{
points[v] = it->x;
points[v + 1] = it->y;
points[v + 2] = layerDepth;
gluTessVertex( tesselator, &points[v], &points[v] );
v += 3;
}
gluTessEndContour( tesselator );
gluTessEndPolygon( tesselator );
// Free allocated intersecting points
tessIntersects.clear();
// vertexList destroyed here
}
void OPENGL_GAL::DrawPolygon( const VECTOR2D aPointList[], int aListSize )
{
currentManager->Shader( SHADER_NONE );
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
// Any non convex polygon needs to be tesselated
// for this purpose the GLU standard functions are used
TessParams params = { currentManager, tessIntersects };
gluTessBeginPolygon( tesselator, &params );
gluTessBeginContour( tesselator );
std::unique_ptr<GLdouble[]> points( new GLdouble[3 * aListSize] );
int v = 0;
const VECTOR2D* ptr = aPointList;
for( int i = 0; i < aListSize; ++i )
{
points[v] = ptr->x;
points[v + 1] = ptr->y;
points[v + 2] = layerDepth;
gluTessVertex( tesselator, &points[v], &points[v] );
++ptr;
v += 3;
}
gluTessEndContour( tesselator );
gluTessEndPolygon( tesselator );
// Free allocated intersecting points
tessIntersects.clear();
// vertexList destroyed here
}
void OPENGL_GAL::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA,
const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint )
{
// FIXME The drawing quality needs to be improved
// FIXME Perhaps choose a quad/triangle strip instead?
// FIXME Brute force method, use a better (recursive?) algorithm
std::deque<VECTOR2D> pointList;
double t = 0.0;
double dt = 1.0 / (double) CURVE_POINTS;
for( int i = 0; i <= CURVE_POINTS; i++ )
{
double omt = 1.0 - t;
double omt2 = omt * omt;
double omt3 = omt * omt2;
double t2 = t * t;
double t3 = t * t2;
VECTOR2D vertex = omt3 * aStartPoint + 3.0 * t * omt2 * aControlPointA
+ 3.0 * t2 * omt * aControlPointB + t3 * aEndPoint;
pointList.push_back( vertex );
t += dt;
}
DrawPolyline( pointList );
}
void OPENGL_GAL::BitmapText( const wxString& aText, const VECTOR2D& aPosition,
double aRotationAngle )
{
wxASSERT_MSG( !IsTextMirrored(), "No support for mirrored text using bitmap fonts." );
// Compute text size, so it can be properly justified
std::pair<VECTOR2D, int> bbox = computeBitmapTextSize( aText );
VECTOR2D textSize = bbox.first;
int commonOffset = bbox.second;
const double SCALE = GetGlyphSize().y / textSize.y;
int tildas = 0;
bool overbar = false;
int overbarLength = 0;
double overbarHeight = textSize.y;
Save();
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
currentManager->Translate( aPosition.x, aPosition.y, layerDepth );
currentManager->Rotate( aRotationAngle, 0.0f, 0.0f, -1.0f );
currentManager->Scale( SCALE, SCALE, 0 );
currentManager->Translate( 0, -commonOffset, 0 );
switch( GetHorizontalJustify() )
{
case GR_TEXT_HJUSTIFY_CENTER:
Translate( VECTOR2D( -textSize.x / 2.0, 0 ) );
break;
case GR_TEXT_HJUSTIFY_RIGHT:
//if( !IsTextMirrored() )
Translate( VECTOR2D( -textSize.x, 0 ) );
break;
case GR_TEXT_HJUSTIFY_LEFT:
//if( IsTextMirrored() )
//Translate( VECTOR2D( -textSize.x, 0 ) );
break;
}
switch( GetVerticalJustify() )
{
case GR_TEXT_VJUSTIFY_TOP:
Translate( VECTOR2D( 0, -textSize.y ) );
overbarHeight = -textSize.y / 2.0;
break;
case GR_TEXT_VJUSTIFY_CENTER:
Translate( VECTOR2D( 0, -textSize.y / 2.0 ) );
overbarHeight = 0;
break;
case GR_TEXT_VJUSTIFY_BOTTOM:
break;
}
/* Glyph:
* v0 v1
* +--+
* | /|
* |/ |
* +--+
* v2 v3
*/
for( unsigned int ii = 0; ii < aText.length(); ++ii )
{
const unsigned int c = aText[ii];
wxASSERT_MSG( c < bitmap_chars_count, wxT( "Missing character in bitmap font atlas." ) );
if( c >= bitmap_chars_count )
continue;
wxASSERT_MSG( c != '\n' && c != '\r', wxT( "No support for multiline bitmap text yet" ) );
// Handle overbar
if( c == '~' )
{
overbar = !overbar;
++tildas;
continue;
}
else if( tildas > 0 )
{
if( tildas % 2 == 1 )
{
if( overbar ) // Overbar begins
overbarLength = 0;
else if( overbarLength > 0 ) // Overbar finishes
drawBitmapOverbar( overbarLength, overbarHeight );
--tildas;
}
// Draw tilda characters if there are any remaining
for( int jj = 0; jj < tildas / 2; ++jj )
overbarLength += drawBitmapChar( '~' );
tildas = 0;
}
overbarLength += drawBitmapChar( c );
}
// Handle the case when overbar is active till the end of the drawn text
if( overbar )
drawBitmapOverbar( overbarLength, overbarHeight );
Restore();
}
void OPENGL_GAL::DrawGrid()
{
if( !gridVisibility )
return;
int gridScreenSizeDense = KiROUND( gridSize.x * worldScale );
int gridScreenSizeCoarse = KiROUND( gridSize.x * static_cast<double>( gridTick ) * worldScale );
// Check if the grid would not be too dense
if( std::max( gridScreenSizeDense, gridScreenSizeCoarse ) < gridDrawThreshold )
return;
SetTarget( TARGET_NONCACHED );
compositor->SetBuffer( mainBuffer );
// Draw the grid
// For the drawing the start points, end points and increments have
// to be calculated in world coordinates
VECTOR2D worldStartPoint = screenWorldMatrix * VECTOR2D( 0.0, 0.0 );
VECTOR2D worldEndPoint = screenWorldMatrix * VECTOR2D( screenSize );
// Compute grid variables
int gridStartX = KiROUND( worldStartPoint.x / gridSize.x );
int gridEndX = KiROUND( worldEndPoint.x / gridSize.x );
int gridStartY = KiROUND( worldStartPoint.y / gridSize.y );
int gridEndY = KiROUND( worldEndPoint.y / gridSize.y );
assert( gridEndX >= gridStartX );
assert( gridEndY >= gridStartY );
// Correct the index, else some lines are not correctly painted
gridStartX -= std::abs( gridOrigin.x / gridSize.x ) + 1;
gridStartY -= std::abs( gridOrigin.y / gridSize.y ) + 1;
gridEndX += std::abs( gridOrigin.x / gridSize.x ) + 1;
gridEndY += std::abs( gridOrigin.y / gridSize.y ) + 1;
glDisable( GL_DEPTH_TEST );
glDisable( GL_TEXTURE_2D );
if( gridStyle == GRID_STYLE_DOTS )
{
glEnable( GL_STENCIL_TEST );
glStencilFunc( GL_ALWAYS, 1, 1 );
glStencilOp( GL_KEEP, GL_KEEP, GL_INCR );
glColor4d( 0.0, 0.0, 0.0, 0.0 );
}
else
{
glColor4d( gridColor.r, gridColor.g, gridColor.b, 1.0 );
}
// Vertical lines
for( int j = gridStartY; j < gridEndY; j += 1 )
{
if( j % gridTick == 0 && gridScreenSizeDense > gridDrawThreshold )
glLineWidth( 2.0 );
else
glLineWidth( 1.0 );
if( ( j % gridTick == 0 && gridScreenSizeCoarse > gridDrawThreshold )
|| gridScreenSizeDense > gridDrawThreshold )
{
glBegin( GL_LINES );
glVertex2d( gridStartX * gridSize.x, j * gridSize.y + gridOrigin.y );
glVertex2d( gridEndX * gridSize.x, j * gridSize.y + gridOrigin.y );
glEnd();
}
}
if( gridStyle == GRID_STYLE_DOTS )
{
glStencilFunc( GL_NOTEQUAL, 0, 1 );
glColor4d( gridColor.r, gridColor.g, gridColor.b, 1.0 );
}
// Horizontal lines
for( int i = gridStartX; i < gridEndX; i += 1 )
{
if( i % gridTick == 0 && gridScreenSizeDense > gridDrawThreshold )
glLineWidth( 2.0 );
else
glLineWidth( 1.0 );
if( ( i % gridTick == 0 && gridScreenSizeCoarse > gridDrawThreshold )
|| gridScreenSizeDense > gridDrawThreshold )
{
glBegin( GL_LINES );
glVertex2d( i * gridSize.x + gridOrigin.x, gridStartY * gridSize.y );
glVertex2d( i * gridSize.x + gridOrigin.x, gridEndY * gridSize.y );
glEnd();
}
}
if( gridStyle == GRID_STYLE_DOTS )
glDisable( GL_STENCIL_TEST );
glEnable( GL_DEPTH_TEST );
glEnable( GL_TEXTURE_2D );
}
void OPENGL_GAL::ResizeScreen( int aWidth, int aHeight )
{
screenSize = VECTOR2I( aWidth, aHeight );
#ifdef RETINA_OPENGL_PATCH
const float scaleFactor = GetBackingScaleFactor();
#else
const float scaleFactor = 1.0f;
#endif
// Resize framebuffers
compositor->Resize( aWidth * scaleFactor, aHeight * scaleFactor );
isFramebufferInitialized = false;
wxGLCanvas::SetSize( aWidth, aHeight );
}
bool OPENGL_GAL::Show( bool aShow )
{
bool s = wxGLCanvas::Show( aShow );
if( aShow )
wxGLCanvas::Raise();
return s;
}
void OPENGL_GAL::Flush()
{
glFlush();
}
void OPENGL_GAL::ClearScreen( const COLOR4D& aColor )
{
// Clear screen
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
glClearColor( aColor.r, aColor.g, aColor.b, aColor.a );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
}
void OPENGL_GAL::Transform( const MATRIX3x3D& aTransformation )
{
GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
matrixData[0] = aTransformation.m_data[0][0];
matrixData[1] = aTransformation.m_data[1][0];
matrixData[2] = aTransformation.m_data[2][0];
matrixData[4] = aTransformation.m_data[0][1];
matrixData[5] = aTransformation.m_data[1][1];
matrixData[6] = aTransformation.m_data[2][1];
matrixData[12] = aTransformation.m_data[0][2];
matrixData[13] = aTransformation.m_data[1][2];
matrixData[14] = aTransformation.m_data[2][2];
glMultMatrixd( matrixData );
}
void OPENGL_GAL::Rotate( double aAngle )
{
currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f );
}
void OPENGL_GAL::Translate( const VECTOR2D& aVector )
{
currentManager->Translate( aVector.x, aVector.y, 0.0f );
}
void OPENGL_GAL::Scale( const VECTOR2D& aScale )
{
currentManager->Scale( aScale.x, aScale.y, 0.0f );
}
void OPENGL_GAL::Save()
{
currentManager->PushMatrix();
}
void OPENGL_GAL::Restore()
{
currentManager->PopMatrix();
}
int OPENGL_GAL::BeginGroup()
{
isGrouping = true;
std::shared_ptr<VERTEX_ITEM> newItem = std::make_shared<VERTEX_ITEM>( *cachedManager );
int groupNumber = getNewGroupNumber();
groups.insert( std::make_pair( groupNumber, newItem ) );
return groupNumber;
}
void OPENGL_GAL::EndGroup()
{
cachedManager->FinishItem();
isGrouping = false;
}
void OPENGL_GAL::DrawGroup( int aGroupNumber )
{
cachedManager->DrawItem( *groups[aGroupNumber] );
}
void OPENGL_GAL::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor )
{
cachedManager->ChangeItemColor( *groups[aGroupNumber], aNewColor );
}
void OPENGL_GAL::ChangeGroupDepth( int aGroupNumber, int aDepth )
{
cachedManager->ChangeItemDepth( *groups[aGroupNumber], aDepth );
}
void OPENGL_GAL::DeleteGroup( int aGroupNumber )
{
// Frees memory in the container as well
groups.erase( aGroupNumber );
}
void OPENGL_GAL::ClearCache()
{
groups.clear();
cachedManager->Clear();
}
void OPENGL_GAL::SaveScreen()
{
wxASSERT_MSG( false, wxT( "Not implemented yet" ) );
}
void OPENGL_GAL::RestoreScreen()
{
wxASSERT_MSG( false, wxT( "Not implemented yet" ) );
}
void OPENGL_GAL::SetTarget( RENDER_TARGET aTarget )
{
switch( aTarget )
{
default:
case TARGET_CACHED:
currentManager = cachedManager;
break;
case TARGET_NONCACHED:
currentManager = nonCachedManager;
break;
case TARGET_OVERLAY:
currentManager = overlayManager;
break;
}
currentTarget = aTarget;
}
RENDER_TARGET OPENGL_GAL::GetTarget() const
{
return currentTarget;
}
void OPENGL_GAL::ClearTarget( RENDER_TARGET aTarget )
{
// Save the current state
unsigned int oldTarget = compositor->GetBuffer();
switch( aTarget )
{
// Cached and noncached items are rendered to the same buffer
default:
case TARGET_CACHED:
case TARGET_NONCACHED:
compositor->SetBuffer( mainBuffer );
break;
case TARGET_OVERLAY:
compositor->SetBuffer( overlayBuffer );
break;
}
compositor->ClearBuffer();
// Restore the previous state
compositor->SetBuffer( oldTarget );
}
void OPENGL_GAL::DrawCursor( const VECTOR2D& aCursorPosition )
{
// Now we should only store the position of the mouse cursor
// The real drawing routines are in blitCursor()
VECTOR2D screenCursor = worldScreenMatrix * aCursorPosition;
cursorPosition = screenWorldMatrix * VECTOR2D( screenCursor.x, screenSize.y - screenCursor.y );
}
void OPENGL_GAL::drawLineQuad( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
/* Helper drawing: ____--- v3 ^
* ____---- ... \ \
* ____---- ... \ end \
* v1 ____---- ... ____---- \ width
* ---- ...___---- \ \
* \ ___...-- \ v
* \ ____----... ____---- v2
* ---- ... ____----
* start \ ... ____----
* \... ____----
* ----
* v0
* dots mark triangles' hypotenuses
*/
VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineLength = startEndVector.EuclideanNorm();
if( lineLength <= 0.0 )
return;
double scale = 0.5 * lineWidth / lineLength;
// The perpendicular vector also needs transformations
glm::vec4 vector = currentManager->GetTransformation() *
glm::vec4( -startEndVector.y * scale, startEndVector.x * scale, 0.0, 0.0 );
currentManager->Reserve( 6 );
// Line width is maintained by the vertex shader
currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v0
currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v1
currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v3
currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v0
currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v3
currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v2
}
void OPENGL_GAL::drawSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle )
{
if( isFillEnabled )
{
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
drawFilledSemiCircle( aCenterPoint, aRadius, aAngle );
}
if( isStrokeEnabled )
{
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
drawStrokedSemiCircle( aCenterPoint, aRadius, aAngle );
}
}
void OPENGL_GAL::drawFilledSemiCircle( const VECTOR2D& aCenterPoint, double aRadius,
double aAngle )
{
Save();
currentManager->Reserve( 3 );
currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f );
currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f );
/* Draw a triangle that contains the semicircle, then shade it to leave only
* the semicircle. Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]).
* Shader uses these coordinates to determine if fragments are inside the semicircle or not.
* v2
* /\
* /__\
* v0 //__\\ v1
*/
currentManager->Shader( SHADER_FILLED_CIRCLE, 4.0f );
currentManager->Vertex( -aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0
currentManager->Shader( SHADER_FILLED_CIRCLE, 5.0f );
currentManager->Vertex( aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1
currentManager->Shader( SHADER_FILLED_CIRCLE, 6.0f );
currentManager->Vertex( 0.0f, aRadius * 2.0f, layerDepth ); // v2
Restore();
}
void OPENGL_GAL::drawStrokedSemiCircle( const VECTOR2D& aCenterPoint, double aRadius,
double aAngle )
{
double outerRadius = aRadius + ( lineWidth / 2 );
Save();
currentManager->Reserve( 3 );
currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f );
currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f );
/* Draw a triangle that contains the semicircle, then shade it to leave only
* the semicircle. Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]), the
* radius and the line width. Shader uses these coordinates to determine if fragments are
* inside the semicircle or not.
* v2
* /\
* /__\
* v0 //__\\ v1
*/
currentManager->Shader( SHADER_STROKED_CIRCLE, 4.0f, aRadius, lineWidth );
currentManager->Vertex( -outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0
currentManager->Shader( SHADER_STROKED_CIRCLE, 5.0f, aRadius, lineWidth );
currentManager->Vertex( outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1
currentManager->Shader( SHADER_STROKED_CIRCLE, 6.0f, aRadius, lineWidth );
currentManager->Vertex( 0.0f, outerRadius * 2.0f, layerDepth ); // v2
Restore();
}
int OPENGL_GAL::drawBitmapChar( unsigned long aChar )
{
const float TEX_X = bitmap_font.width;
const float TEX_Y = bitmap_font.height;
const bitmap_glyph& GLYPH = bitmap_chars[aChar];
const float X = GLYPH.atlas_x;
const float Y = GLYPH.atlas_y;
const float XOFF = GLYPH.x_off;
const float YOFF = -GLYPH.miny + GLYPH.atlas_shift;
const float W = GLYPH.atlas_w;
const float H = GLYPH.atlas_h;
const float B = bitmap_font.char_border;
Translate( VECTOR2D( XOFF, 0 ) );
currentManager->Reserve( 6 );
currentManager->Shader( SHADER_FONT, X / TEX_X, ( Y + H ) / TEX_Y );
currentManager->Vertex( -B, YOFF - B, 0 ); // v0
currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, ( Y + H ) / TEX_Y );
currentManager->Vertex( W + B, YOFF - B, 0 ); // v1
currentManager->Shader( SHADER_FONT, X / TEX_X, Y / TEX_Y );
currentManager->Vertex( -B, YOFF + H + B, 0 ); // v2
currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, ( Y + H ) / TEX_Y );
currentManager->Vertex( W + B, YOFF - B, 0 ); // v1
currentManager->Shader( SHADER_FONT, X / TEX_X, Y / TEX_Y );
currentManager->Vertex( -B, YOFF + H + B, 0 ); // v2
currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, Y / TEX_Y );
currentManager->Vertex( W + B, YOFF + H + B, 0 ); // v3
Translate( VECTOR2D( -XOFF + GLYPH.advance, 0 ) );
return GLYPH.advance;
}
void OPENGL_GAL::drawBitmapOverbar( double aLength, double aHeight )
{
// To draw an overbar, simply draw an overbar
const bitmap_glyph& GLYPH = bitmap_chars['_'];
const float H = GLYPH.maxy - GLYPH.miny;
Save();
Translate( VECTOR2D( -aLength, -aHeight - GLYPH.miny ) );
currentManager->Reserve( 6 );
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, 1 );
currentManager->Shader( 0 );
currentManager->Vertex( 0, 0, 0 ); // v0
//currentManager->Shader( 0 );
currentManager->Vertex( aLength, 0, 0 ); // v1
//currentManager->Shader( 0 );
currentManager->Vertex( 0, H, 0 ); // v2
//currentManager->Shader( 0 );
currentManager->Vertex( aLength, 0, 0 ); // v1
//currentManager->Shader( 0 );
currentManager->Vertex( 0, H, 0 ); // v2
//currentManager->Shader( 0 );
currentManager->Vertex( aLength, H, 0 ); // v3
Restore();
}
std::pair<VECTOR2D, int> OPENGL_GAL::computeBitmapTextSize( const wxString& aText ) const
{
VECTOR2D textSize( 0, 0 );
float commonOffset = std::numeric_limits<float>::max();
bool wasTilda = false;
for( unsigned int i = 0; i < aText.length(); ++i )
{
// Remove overbar control characters
if( aText[i] == '~' )
{
if( !wasTilda )
{
// Only double tildas are counted as characters, so skip it as it might
// be an overbar control character
wasTilda = true;
continue;
}
else
{
// Double tilda detected, reset the state and process as a normal character
wasTilda = false;
}
}
const bitmap_glyph& GLYPH = bitmap_chars[aText[i]];
textSize.x += GLYPH.advance;
textSize.y = std::max<float>( textSize.y, GLYPH.atlas_shift + GLYPH.atlas_h - GLYPH.miny );
commonOffset = std::min<float>( GLYPH.atlas_shift - GLYPH.miny, commonOffset );
}
textSize.y -= commonOffset;
return std::make_pair( textSize, commonOffset );
}
void OPENGL_GAL::onPaint( wxPaintEvent& WXUNUSED( aEvent ) )
{
PostPaint();
}
void OPENGL_GAL::skipMouseEvent( wxMouseEvent& aEvent )
{
// Post the mouse event to the event listener registered in constructor, if any
if( mouseListener )
wxPostEvent( mouseListener, aEvent );
}
void OPENGL_GAL::blitCursor()
{
if( !isCursorEnabled )
return;
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
VECTOR2D cursorBegin = cursorPosition - cursorSize / ( 2 * worldScale );
VECTOR2D cursorEnd = cursorPosition + cursorSize / ( 2 * worldScale );
VECTOR2D cursorCenter = ( cursorBegin + cursorEnd ) / 2;
glDisable( GL_TEXTURE_2D );
glLineWidth( 1.0 );
glColor4d( cursorColor.r, cursorColor.g, cursorColor.b, cursorColor.a );
glBegin( GL_LINES );
glVertex2d( cursorCenter.x, cursorBegin.y );
glVertex2d( cursorCenter.x, cursorEnd.y );
glVertex2d( cursorBegin.x, cursorCenter.y );
glVertex2d( cursorEnd.x, cursorCenter.y );
glEnd();
}
unsigned int OPENGL_GAL::getNewGroupNumber()
{
wxASSERT_MSG( groups.size() < std::numeric_limits<unsigned int>::max(),
wxT( "There are no free slots to store a group" ) );
while( groups.find( groupCounter ) != groups.end() )
{
groupCounter++;
}
return groupCounter++;
}
bool OPENGL_GAL::runTest()
{
static bool tested = false;
static bool testResult = false;
std::string errorMessage = "OpenGL test failed";
if( !tested )
{
wxDialog dlgtest( GetParent(), -1, wxT( "opengl test" ), wxPoint( 50, 50 ),
wxDLG_UNIT( GetParent(), wxSize( 50, 50 ) ) );
OPENGL_TEST* test = new OPENGL_TEST( &dlgtest, this, glPrivContext );
dlgtest.Raise(); // on Linux, on some windows managers (Unity for instance) this is needed to actually show the dialog
dlgtest.ShowModal();
testResult = test->IsOk();
if( !testResult )
errorMessage = test->GetError();
}
if( !testResult )
throw std::runtime_error( errorMessage );
return testResult;
}
OPENGL_GAL::OPENGL_TEST::OPENGL_TEST( wxDialog* aParent, OPENGL_GAL* aGal, wxGLContext* aContext ) :
wxGLCanvas( aParent, wxID_ANY, glAttributes, wxDefaultPosition,
wxDefaultSize, 0, wxT( "GLCanvas" ) ),
m_parent( aParent ), m_gal( aGal ), m_context( aContext ), m_tested( false ), m_result( false )
{
m_timeoutTimer.SetOwner( this );
Connect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::OPENGL_TEST::Render ) );
Connect( wxEVT_TIMER, wxTimerEventHandler( OPENGL_GAL::OPENGL_TEST::OnTimeout ) );
m_parent->Connect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::OPENGL_TEST::OnDialogPaint ), NULL, this );
}
void OPENGL_GAL::OPENGL_TEST::Render( wxPaintEvent& WXUNUSED( aEvent ) )
{
if( !m_tested )
{
if( !IsShownOnScreen() )
return;
m_timeoutTimer.Stop();
m_result = true; // Assume everything is fine, until proven otherwise
// One test is enough - close the testing dialog when the test is finished
Disconnect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::OPENGL_TEST::Render ) );
CallAfter( std::bind( &wxDialog::EndModal, m_parent, wxID_NONE ) );
GL_CONTEXT_MANAGER::Get().LockCtx( m_context, this );
GLenum err = glewInit();
if( GLEW_OK != err )
error( (const char*) glewGetErrorString( err ) );
// Check the OpenGL version (minimum 2.1 is required)
else if( !GLEW_VERSION_2_1 )
error( "OpenGL 2.1 or higher is required!" );
// Framebuffers have to be supported
else if( !GLEW_EXT_framebuffer_object )
error( "Framebuffer objects are not supported!" );
// Vertex buffer has to be supported
else if( !GLEW_ARB_vertex_buffer_object )
error( "Vertex buffer objects are not supported!" );
// Prepare shaders
else if( !m_gal->shader->IsLinked() && !m_gal->shader->LoadBuiltinShader( 0, SHADER_TYPE_VERTEX ) )
error( "Cannot compile vertex shader!" );
else if( !m_gal->shader->IsLinked() && !m_gal->shader->LoadBuiltinShader( 1, SHADER_TYPE_FRAGMENT ) )
error( "Cannot compile fragment shader!" );
else if( !m_gal->shader->IsLinked() && !m_gal->shader->Link() )
error( "Cannot link the shaders!" );
// Check if video card supports textures big enough to fit font atlas
int maxTextureSize;
glGetIntegerv( GL_MAX_TEXTURE_SIZE, &maxTextureSize );
if( maxTextureSize < (int) bitmap_font.width || maxTextureSize < (int) bitmap_font.height )
{
// TODO implement software texture scaling
// for bitmap fonts and use a higher resolution texture?
error( "Requested texture size is not supported" );
}
GL_CONTEXT_MANAGER::Get().UnlockCtx( m_context );
m_tested = true;
}
}
void OPENGL_GAL::OPENGL_TEST::OnTimeout( wxTimerEvent& aEvent )
{
error( "Could not create OpenGL canvas" );
m_parent->EndModal( wxID_NONE );
}
void OPENGL_GAL::OPENGL_TEST::OnDialogPaint( wxPaintEvent& aEvent )
{
// GL canvas may never appear on the screen (e.g. due to missing GL extensions), and the test
// will not be run. Therefore give at most a second to perform the test, otherwise we conclude
// it has failed.
// Also, wxWidgets OnShow event is triggered before a window is shown, therefore here we use
// OnPaint event, which is executed when a window is actually visible.
m_timeoutTimer.StartOnce( 1000 );
}
void OPENGL_GAL::OPENGL_TEST::error( const std::string& aError )
{
m_timeoutTimer.Stop();
m_result = false;
m_tested = true;
m_error = aError;
}
// ------------------------------------- // Callback functions for the tesselator // ------------------------------------- // Compare Redbook Chapter 11
void CALLBACK VertexCallback( GLvoid* aVertexPtr, void* aData )
{
GLdouble* vertex = static_cast<GLdouble*>( aVertexPtr );
OPENGL_GAL::TessParams* param = static_cast<OPENGL_GAL::TessParams*>( aData );
VERTEX_MANAGER* vboManager = param->vboManager;
assert( vboManager );
vboManager->Vertex( vertex[0], vertex[1], vertex[2] );
}
void CALLBACK CombineCallback( GLdouble coords[3],
GLdouble* vertex_data[4],
GLfloat weight[4], GLdouble** dataOut, void* aData )
{
GLdouble* vertex = new GLdouble[3];
OPENGL_GAL::TessParams* param = static_cast<OPENGL_GAL::TessParams*>( aData );
// Save the pointer so we can delete it later
param->intersectPoints.push_back( boost::shared_array<GLdouble>( vertex ) );
memcpy( vertex, coords, 3 * sizeof(GLdouble) );
*dataOut = vertex;
}
void CALLBACK EdgeCallback( GLboolean aEdgeFlag )
{
// This callback is needed to force GLU tesselator to use triangles only
}
void CALLBACK ErrorCallback( GLenum aErrorCode )
{
//throw std::runtime_error( std::string( "Tessellation error: " ) +
//std::string( (const char*) gluErrorString( aErrorCode ) );
}
static void InitTesselatorCallbacks( GLUtesselator* aTesselator )
{
gluTessCallback( aTesselator, GLU_TESS_VERTEX_DATA, ( void (CALLBACK*)() )VertexCallback );
gluTessCallback( aTesselator, GLU_TESS_COMBINE_DATA, ( void (CALLBACK*)() )CombineCallback );
gluTessCallback( aTesselator, GLU_TESS_EDGE_FLAG, ( void (CALLBACK*)() )EdgeCallback );
gluTessCallback( aTesselator, GLU_TESS_ERROR, ( void (CALLBACK*)() )ErrorCallback );
}