kicad/pcbnew/connectivity_algo.cpp

975 lines
24 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2016-2017 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <connectivity_algo.h>
#ifdef PROFILE
#include <profile.h>
#endif
using namespace std::placeholders;
bool operator<( const CN_ANCHOR_PTR a, const CN_ANCHOR_PTR b )
{
if( a->Pos().x == b->Pos().x )
return a->Pos().y < b->Pos().y;
else
return a->Pos().x < b->Pos().x;
}
bool CN_ANCHOR::IsDirty() const
{
return m_item->Dirty();
}
CN_CLUSTER::CN_CLUSTER()
{
m_items.reserve( 64 );
m_originPad = nullptr;
m_originNet = -1;
m_conflicting = false;
}
CN_CLUSTER::~CN_CLUSTER()
{
}
wxString CN_CLUSTER::OriginNetName() const
{
if( !m_originPad )
return "<none>";
else
return m_originPad->Parent()->GetNetname();
}
bool CN_CLUSTER::Contains( const CN_ITEM* aItem )
{
return std::find( m_items.begin(), m_items.end(), aItem ) != m_items.end();
}
bool CN_CLUSTER::Contains( const BOARD_CONNECTED_ITEM* aItem )
{
for( auto item : m_items )
{
if( item->Parent() == aItem )
return true;
}
return false;
}
void CN_ITEM::Dump()
{
printf(" valid: %d, connected: \n", !!Valid());
for( auto i : m_connected )
{
TRACK* t = static_cast<TRACK*>( i->Parent() );
printf( " - %p %d\n", t, t->Type() );
}
}
void CN_CLUSTER::Dump()
{
for( auto item : m_items )
{
wxLogTrace( "CN", " - item : %p bitem : %p type : %d inet %s\n", item, item->Parent(),
item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() );
printf( "- item : %p bitem : %p type : %d inet %s\n", item, item->Parent(),
item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() );
item->Dump();
}
}
void CN_CLUSTER::Add( CN_ITEM* item )
{
m_items.push_back( item );
if( m_originNet < 0 )
{
m_originNet = item->Net();
}
if( item->Parent()->Type() == PCB_PAD_T )
{
if( !m_originPad )
{
m_originPad = item;
m_originNet = item->Net();
}
if( m_originPad && item->Net() != m_originNet )
{
m_conflicting = true;
}
}
}
CN_CONNECTIVITY_ALGO::CN_CONNECTIVITY_ALGO()
{
}
CN_CONNECTIVITY_ALGO::~CN_CONNECTIVITY_ALGO()
{
Clear();
}
bool CN_CONNECTIVITY_ALGO::Remove( BOARD_ITEM* aItem )
{
markItemNetAsDirty( aItem );
switch( aItem->Type() )
{
case PCB_MODULE_T:
for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() )
{
m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( pad ) ].MarkItemsAsInvalid();
m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( pad ) );
}
m_padList.SetDirty( true );
break;
case PCB_PAD_T:
m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
m_padList.SetDirty( true );
break;
case PCB_TRACE_T:
m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
m_trackList.SetDirty( true );
break;
case PCB_VIA_T:
m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
m_itemMap.erase( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
m_viaList.SetDirty( true );
break;
case PCB_ZONE_AREA_T:
case PCB_ZONE_T:
{
m_itemMap[ static_cast<BOARD_CONNECTED_ITEM*>( aItem ) ].MarkItemsAsInvalid();
m_itemMap.erase ( static_cast<BOARD_CONNECTED_ITEM*>( aItem ) );
m_zoneList.SetDirty( true );
break;
}
default:
return false;
}
return true;
}
void CN_CONNECTIVITY_ALGO::markItemNetAsDirty( const BOARD_ITEM* aItem )
{
if( aItem->IsConnected() )
{
auto citem = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
markNetAsDirty( citem->GetNetCode() );
}
else
{
if( aItem->Type() == PCB_MODULE_T )
{
auto mod = static_cast <const MODULE*>( aItem );
for( D_PAD* pad = mod->PadsList(); pad; pad = pad->Next() )
markNetAsDirty( pad->GetNetCode() );
}
}
}
bool CN_CONNECTIVITY_ALGO::Add( BOARD_ITEM* aItem )
{
markItemNetAsDirty ( aItem );
switch( aItem->Type() )
{
case PCB_MODULE_T:
for( auto pad : static_cast<MODULE*>( aItem ) -> Pads() )
{
if( m_itemMap.find( pad ) != m_itemMap.end() )
return false;
add( m_padList, pad );
}
break;
case PCB_PAD_T:
if( m_itemMap.find ( static_cast<D_PAD*>( aItem ) ) != m_itemMap.end() )
return false;
add( m_padList, static_cast<D_PAD*>( aItem ) );
break;
case PCB_TRACE_T:
{
if( m_itemMap.find( static_cast<TRACK*>( aItem ) ) != m_itemMap.end() )
return false;
add( m_trackList, static_cast<TRACK*>( aItem ) );
break;
}
case PCB_VIA_T:
if( m_itemMap.find( static_cast<VIA*>( aItem ) ) != m_itemMap.end() )
return false;
add( m_viaList, static_cast<VIA*>( aItem ) );
break;
case PCB_ZONE_AREA_T:
case PCB_ZONE_T:
{
auto zone = static_cast<ZONE_CONTAINER*>( aItem );
if( m_itemMap.find( static_cast<ZONE_CONTAINER*>( aItem ) ) != m_itemMap.end() )
return false;
m_itemMap[zone] = ITEM_MAP_ENTRY();
for( auto zitem : m_zoneList.Add( zone ) )
m_itemMap[zone].Link(zitem);
break;
}
default:
return false;
}
return true;
}
void CN_CONNECTIVITY_ALGO::searchConnections( bool aIncludeZones )
{
int totalDirtyCount = 0;
if( m_lastSearchWithZones != aIncludeZones )
{
m_padList.MarkAllAsDirty();
m_viaList.MarkAllAsDirty();
m_trackList.MarkAllAsDirty();
m_zoneList.MarkAllAsDirty();
}
m_lastSearchWithZones = aIncludeZones;
auto checkForConnection = [] ( const CN_ANCHOR_PTR point, CN_ITEM* aRefItem, int aMaxDist = 0 )
{
const auto parent = aRefItem->Parent();
assert( point->Item() );
assert( point->Item()->Parent() );
assert( aRefItem->Parent() );
if( !point->Item()->Valid() )
return;
if( !aRefItem->Valid() )
return;
if( parent == point->Item()->Parent() )
return;
if( !( parent->GetLayerSet() &
point->Item()->Parent()->GetLayerSet() ).any() )
return;
switch( parent->Type() )
{
case PCB_PAD_T:
case PCB_VIA_T:
if( parent->HitTest( wxPoint( point->Pos().x, point->Pos().y ) ) )
CN_ITEM::Connect( aRefItem, point->Item() );
break;
case PCB_TRACE_T:
{
const auto track = static_cast<TRACK*> ( parent );
const VECTOR2I d_start( VECTOR2I( track->GetStart() ) - point->Pos() );
const VECTOR2I d_end( VECTOR2I( track->GetEnd() ) - point->Pos() );
if( d_start.EuclideanNorm() < aMaxDist
|| d_end.EuclideanNorm() < aMaxDist )
CN_ITEM::Connect( aRefItem, point->Item() );
break;
}
case PCB_ZONE_T:
case PCB_ZONE_AREA_T:
{
const auto zone = static_cast<ZONE_CONTAINER*> ( parent );
auto zoneItem = static_cast<CN_ZONE*> ( aRefItem );
if( point->Item()->Net() != parent->GetNetCode() )
return;
if( !( zone->GetLayerSet() &
point->Item()->Parent()->GetLayerSet() ).any() )
return;
if( zoneItem->ContainsAnchor( point ) )
{
CN_ITEM::Connect( zoneItem, point->Item() );
}
break;
}
default :
assert( false );
}
};
auto checkInterZoneConnection = [] ( CN_ZONE* testedZone, CN_ZONE* aRefZone )
{
const auto parentZone = static_cast<const ZONE_CONTAINER*>( aRefZone->Parent() );
if( testedZone->Parent()->Type () != PCB_ZONE_AREA_T )
return;
if( testedZone == aRefZone )
return;
if( testedZone->Parent() == aRefZone->Parent() )
return;
if( testedZone->Net() != parentZone->GetNetCode() )
return; // we only test zones belonging to the same net
if( !( testedZone->Parent()->GetLayerSet() & parentZone->GetLayerSet() ).any() )
return; // and on same layer
const auto& outline = parentZone->GetFilledPolysList().COutline( aRefZone->SubpolyIndex() );
for( int i = 0; i < outline.PointCount(); i++ )
{
if( testedZone->ContainsPoint( outline.CPoint( i ) ) )
{
CN_ITEM::Connect( aRefZone, testedZone );
return;
}
}
const auto testedZoneParent = static_cast<const ZONE_CONTAINER*>( testedZone->Parent() );
const auto& outline2 = testedZoneParent->GetFilledPolysList().COutline( testedZone->SubpolyIndex() );
for( int i = 0; i < outline2.PointCount(); i++ )
{
if( aRefZone->ContainsPoint( outline2.CPoint( i ) ) )
{
CN_ITEM::Connect( aRefZone, testedZone );
return;
}
}
};
#ifdef CONNECTIVITY_DEBUG
printf("Search start\n");
#endif
std::vector<CN_ITEM*> garbage;
garbage.reserve( 1024 );
m_padList.RemoveInvalidItems( garbage );
m_viaList.RemoveInvalidItems( garbage );
m_trackList.RemoveInvalidItems( garbage );
m_zoneList.RemoveInvalidItems( garbage );
for( auto item : garbage )
delete item;
//auto all = allItemsInBoard();
#ifdef CONNECTIVITY_DEBUG
for( auto item : m_padList )
if( all.find( item->Parent() ) == all.end() ) { printf("Failing pad : %p\n", item->Parent() ); assert ( false ); }
for( auto item : m_viaList )
if( all.find( item->Parent() ) == all.end() ) { printf("Failing via : %p\n", item->Parent() ); assert ( false ); }
for( auto item : m_trackList )
if( all.find( item->Parent() ) == all.end() ) { printf("Failing track : %p\n", item->Parent() ); assert ( false ); }
for( auto item : m_zoneList )
if( all.find( item->Parent() ) == all.end() ) { printf("Failing zome : %p\n", item->Parent() ); assert ( false ); }
#endif
#ifdef PROFILE
PROF_COUNTER search_cnt( "search-connections" );
PROF_COUNTER search_basic( "search-basic" );
#endif
if( m_padList.IsDirty() || m_trackList.IsDirty() || m_viaList.IsDirty() )
{
totalDirtyCount++;
for( auto padItem : m_padList )
{
auto pad = static_cast<D_PAD*> ( padItem->Parent() );
auto searchPads = std::bind( checkForConnection, _1, padItem );
m_padList.FindNearby( pad->ShapePos(), pad->GetBoundingRadius(), searchPads );
m_trackList.FindNearby( pad->ShapePos(), pad->GetBoundingRadius(), searchPads );
m_viaList.FindNearby( pad->ShapePos(), pad->GetBoundingRadius(), searchPads );
}
for( auto& trackItem : m_trackList )
{
auto track = static_cast<TRACK*> ( trackItem->Parent() );
int dist_max = track->GetWidth() / 2;
auto searchTracks = std::bind( checkForConnection, _1, trackItem, dist_max );
m_trackList.FindNearby( track->GetStart(), dist_max, searchTracks );
m_trackList.FindNearby( track->GetEnd(), dist_max, searchTracks );
}
for( auto& viaItem : m_viaList )
{
auto via = static_cast<VIA*> ( viaItem->Parent() );
int dist_max = via->GetWidth() / 2;
auto searchVias = std::bind( checkForConnection, _1, viaItem, dist_max );
totalDirtyCount++;
m_viaList.FindNearby( via->GetStart(), dist_max, searchVias );
m_trackList.FindNearby( via->GetStart(), dist_max, searchVias );
}
}
#ifdef PROFILE
search_basic.Show();
#endif
if( aIncludeZones )
{
for( auto& item : m_zoneList )
{
auto zoneItem = static_cast<CN_ZONE *> (item);
auto searchZones = std::bind( checkForConnection, _1, zoneItem );
if( zoneItem->Dirty() || m_padList.IsDirty() || m_trackList.IsDirty() || m_viaList.IsDirty() )
{
totalDirtyCount++;
m_viaList.FindNearby( zoneItem->BBox(), searchZones );
m_trackList.FindNearby( zoneItem->BBox(), searchZones );
m_padList.FindNearby( zoneItem->BBox(), searchZones );
m_zoneList.FindNearbyZones( zoneItem->BBox(), std::bind( checkInterZoneConnection, _1, zoneItem ) );
}
}
m_zoneList.ClearDirtyFlags();
}
m_padList.ClearDirtyFlags();
m_viaList.ClearDirtyFlags();
m_trackList.ClearDirtyFlags();
#ifdef CONNECTIVITY_DEBUG
printf("Search end\n");
#endif
#ifdef PROFILE
search_cnt.Show();
#endif
}
void CN_ITEM::RemoveInvalidRefs()
{
auto lastConn = std::remove_if(m_connected.begin(), m_connected.end(), [] ( CN_ITEM * item) {
return !item->Valid();
} );
m_connected.resize( lastConn - m_connected.begin() );
}
void CN_LIST::RemoveInvalidItems( std::vector<CN_ITEM*>& aGarbage )
{
auto lastAnchor = std::remove_if(m_anchors.begin(), m_anchors.end(),
[] ( const CN_ANCHOR_PTR anchor ) {
return !anchor->Valid();
} );
m_anchors.resize( lastAnchor - m_anchors.begin() );
auto lastItem = std::remove_if(m_items.begin(), m_items.end(), [&aGarbage] ( CN_ITEM* item ) {
if( !item->Valid() )
{
aGarbage.push_back ( item );
return true;
}
return false;
} );
m_items.resize( lastItem - m_items.begin() );
// fixme: mem leaks
for( auto item : m_items )
item->RemoveInvalidRefs();
}
bool CN_CONNECTIVITY_ALGO::isDirty() const
{
return m_viaList.IsDirty() || m_trackList.IsDirty() || m_zoneList.IsDirty() || m_padList.IsDirty();
}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode )
{
constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_PAD_T, PCB_VIA_T, PCB_ZONE_AREA_T, PCB_MODULE_T, EOT };
return SearchClusters( aMode, types, -1 );
}
const CN_CONNECTIVITY_ALGO::CLUSTERS CN_CONNECTIVITY_ALGO::SearchClusters( CLUSTER_SEARCH_MODE aMode,
const KICAD_T aTypes[], int aSingleNet )
{
bool includeZones = ( aMode != CSM_PROPAGATE );
bool withinAnyNet = ( aMode != CSM_PROPAGATE );
std::deque<CN_ITEM*> Q;
CN_ITEM* head = nullptr;
CLUSTERS clusters;
if( isDirty() )
searchConnections( includeZones );
auto addToSearchList = [&head, withinAnyNet, aSingleNet, aTypes] ( CN_ITEM *aItem )
{
if( withinAnyNet && aItem->Net() <= 0 )
return;
if( !aItem->Valid() )
return;
if( aSingleNet >=0 && aItem->Net() != aSingleNet )
return;
bool found = false;
for( int i = 0; aTypes[i] != EOT; i++ )
{
if( aItem->Parent()->Type() == aTypes[i] )
{
found = true;
break;
}
}
if( !found )
return;
aItem->ListClear();
aItem->SetVisited( false );
if( !head )
head = aItem;
else
head->ListInsert( aItem );
};
std::for_each( m_padList.begin(), m_padList.end(), addToSearchList );
std::for_each( m_trackList.begin(), m_trackList.end(), addToSearchList );
std::for_each( m_viaList.begin(), m_viaList.end(), addToSearchList );
if( includeZones )
{
std::for_each( m_zoneList.begin(), m_zoneList.end(), addToSearchList );
}
while( head )
{
CN_CLUSTER_PTR cluster ( new CN_CLUSTER() );
Q.clear();
CN_ITEM* root = head;
root->SetVisited ( true );
head = root->ListRemove();
Q.push_back( root );
while( Q.size() )
{
CN_ITEM* current = Q.front();
Q.pop_front();
cluster->Add( current );
for( auto n : current->ConnectedItems() )
{
if( withinAnyNet && n->Net() != root->Net() )
continue;
if( !n->Visited() && n->Valid() )
{
n->SetVisited( true );
Q.push_back( n );
head = n->ListRemove();
}
}
}
clusters.push_back( cluster );
}
std::sort( clusters.begin(), clusters.end(), []( CN_CLUSTER_PTR a, CN_CLUSTER_PTR b ) {
return a->OriginNet() < b->OriginNet();
} );
#ifdef CONNECTIVITY_DEBUG
printf("Active clusters: %d\n");
for( auto cl : clusters )
{
printf( "Net %d\n", cl->OriginNet() );
cl->Dump();
}
#endif
return clusters;
}
void CN_CONNECTIVITY_ALGO::Build( BOARD* aBoard )
{
for( int i = 0; i<aBoard->GetAreaCount(); i++ )
{
auto zone = aBoard->GetArea( i );
Add( zone );
}
for( auto tv : aBoard->Tracks() )
Add( tv );
for( auto mod : aBoard->Modules() )
{
for( auto pad : mod->Pads() )
Add( pad );
}
/*wxLogTrace( "CN", "zones : %lu, pads : %lu vias : %lu tracks : %lu\n",
m_zoneList.Size(), m_padList.Size(),
m_viaList.Size(), m_trackList.Size() );*/
}
void CN_CONNECTIVITY_ALGO::Build( const std::vector<BOARD_ITEM*>& aItems )
{
for( auto item : aItems )
{
switch( item->Type() )
{
case PCB_TRACE_T:
case PCB_VIA_T:
case PCB_ZONE_T:
case PCB_PAD_T:
Add( item );
break;
case PCB_MODULE_T:
{
for( auto pad : static_cast<MODULE*>( item )->Pads() )
{
Add( pad );
}
break;
}
default:
break;
}
}
}
void CN_CONNECTIVITY_ALGO::propagateConnections()
{
for( auto cluster : m_connClusters )
{
if( cluster->IsConflicting() )
{
wxLogTrace( "CN", "Conflicting nets in cluster %p\n", cluster.get() );
}
else if( cluster->IsOrphaned() )
{
wxLogTrace( "CN", "Skipping orphaned cluster %p [net: %s]\n", cluster.get(),
(const char*) cluster->OriginNetName() );
}
else if( cluster->HasValidNet() )
{
// normal cluster: just propagate from the pads
int n_changed = 0;
for( auto item : *cluster )
{
if( item->CanChangeNet() )
{
item->Parent()->SetNetCode( cluster->OriginNet() );
markNetAsDirty( cluster->OriginNet() );
n_changed++;
}
}
if( n_changed )
wxLogTrace( "CN", "Cluster %p : net : %d %s\n", cluster.get(),
cluster->OriginNet(), (const char*) cluster->OriginNetName() );
else
wxLogTrace( "CN", "Cluster %p : nothing to propagate\n", cluster.get() );
}
else
{
wxLogTrace( "CN", "Cluster %p : connected to unused net\n", cluster.get() );
}
}
}
void CN_CONNECTIVITY_ALGO::PropagateNets()
{
//searchConnections( false );
m_connClusters = SearchClusters( CSM_PROPAGATE );
propagateConnections();
}
void CN_CONNECTIVITY_ALGO::FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector<int>& aIslands )
{
if( aZone->GetFilledPolysList().IsEmpty() )
return;
aIslands.clear();
Remove( aZone );
Add( aZone );
m_connClusters = SearchClusters( CSM_CONNECTIVITY_CHECK );
for( auto cluster : m_connClusters )
{
if( cluster->Contains( aZone ) && cluster->IsOrphaned() )
{
for( auto z : *cluster )
{
if( z->Parent() == aZone )
{
aIslands.push_back( static_cast<CN_ZONE*>(z)->SubpolyIndex() );
}
}
}
}
wxLogTrace( "CN", "Found %llu isolated islands\n", aIslands.size() );
}
const CN_CONNECTIVITY_ALGO::CLUSTERS& CN_CONNECTIVITY_ALGO::GetClusters()
{
m_ratsnestClusters = SearchClusters( CSM_RATSNEST );
return m_ratsnestClusters;
}
void CN_CONNECTIVITY_ALGO::markNetAsDirty( int aNet )
{
if( aNet <= 0 )
return;
if(m_dirtyNets.size() <= aNet )
m_dirtyNets.resize( aNet + 1 );
m_dirtyNets[aNet] = true;
}
int CN_ITEM::AnchorCount() const
{
return m_parent->Type() == PCB_TRACE_T ? 2 : 1;
}
const VECTOR2I CN_ITEM::GetAnchor( int n ) const
{
switch( m_parent->Type() )
{
case PCB_PAD_T:
return static_cast<const D_PAD*>( m_parent )->ShapePos();
break;
case PCB_TRACE_T:
{
auto tr = static_cast<const TRACK*>( m_parent );
return ( n == 0 ? tr->GetStart() : tr->GetEnd() );
break;
}
case PCB_VIA_T:
return static_cast<const VIA*>( m_parent )->GetStart();
default:
assert( false );
return VECTOR2I();
}
}
int CN_ZONE::AnchorCount() const
{
const auto zone = static_cast<const ZONE_CONTAINER*>( Parent() );
const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.PointCount() ? 1 : 0;
}
const VECTOR2I CN_ZONE::GetAnchor( int n ) const
{
const auto zone = static_cast<const ZONE_CONTAINER*> ( Parent() );
const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.CPoint( 0 );
}
int CN_ITEM::Net() const
{
if( !m_parent )
return -1;
return m_parent->GetNetCode();
}
BOARD_CONNECTED_ITEM* CN_ANCHOR::Parent() const
{
return m_item->Parent();
}
bool CN_ANCHOR::Valid() const
{
if( !m_item )
return false;
return m_item->Valid();
}
void CN_CONNECTIVITY_ALGO::Clear()
{
m_ratsnestClusters.clear();
m_connClusters.clear();
m_itemMap.clear();
m_padList.Clear();
m_trackList.Clear();
m_viaList.Clear();
m_zoneList.Clear();
}
void CN_CONNECTIVITY_ALGO::ForEachItem( std::function<void(CN_ITEM*)> aFunc )
{
for( auto item : m_padList )
aFunc( item );
for( auto item : m_viaList )
aFunc( item );
for( auto item : m_trackList )
aFunc( item );
for( auto item : m_zoneList )
aFunc( item );
}
void CN_CONNECTIVITY_ALGO::ForEachAnchor( std::function<void(CN_ANCHOR_PTR)> aFunc )
{
for( auto anchor : m_padList.Anchors() )
aFunc( anchor );
for( auto anchor : m_viaList.Anchors() )
aFunc( anchor );
for( auto anchor : m_trackList.Anchors() )
aFunc( anchor );
for( auto anchor : m_zoneList.Anchors() )
aFunc( anchor );
}
bool CN_ANCHOR::IsDangling() const
{
if( !m_cluster )
return true;
int validCount = 0;
for( auto item : *m_cluster )
{
if( item->Valid() )
validCount++;
}
return validCount <= 1;
}