kicad/pcbnew/exporters/export_vrml.cpp

1888 lines
59 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2009-2013 Lorenzo Mercantonio
* Copyright (C) 2014-2017 Cirilo Bernardo
* Copyright (C) 2018 Jean-Pierre Charras jp.charras at wanadoo.fr
* Copyright (C) 2004-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
//#include <cmath>
#include <exception>
#include <fstream>
#include <iomanip>
#include <vector>
#include <wx/dir.h>
#include "3d_cache/3d_cache.h"
#include "3d_cache/3d_info.h"
#include "class_board.h"
#include "class_edge_mod.h"
#include "class_module.h"
#include "class_pcb_text.h"
#include "class_track.h"
#include "class_zone.h"
#include "convert_to_biu.h"
#include <filename_resolver.h>
#include "gr_text.h"
#include "plugins/3dapi/ifsg_all.h"
#include "streamwrapper.h"
#include "vrml_layer.h"
#include "pcb_edit_frame.h"
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/geometry_utils.h>
#include <zone_filler.h>
// minimum width (mm) of a VRML line
#define MIN_VRML_LINEWIDTH 0.05 // previously 0.12
// offset for art layers, mm (silk, paste, etc)
#define ART_OFFSET 0.025
// offset for plating
#define PLATE_OFFSET 0.005
static S3D_CACHE* cache;
static bool USE_INLINES; // true to use legacy inline{} behavior
static bool USE_DEFS; // true to reuse component definitions
static bool USE_RELPATH; // true to use relative paths in VRML inline{}
static double WORLD_SCALE = 1.0; // scaling from 0.1 in to desired VRML unit
static double BOARD_SCALE; // scaling from mm to desired VRML world scale
static const int PRECISION = 6; // legacy precision factor (now set to 6)
static wxString SUBDIR_3D; // legacy 3D subdirectory
static wxString PROJ_DIR; // project directory
struct VRML_COLOR
{
float diffuse_red;
float diffuse_grn;
float diffuse_blu;
float spec_red;
float spec_grn;
float spec_blu;
float emit_red;
float emit_grn;
float emit_blu;
float ambient;
float transp;
float shiny;
VRML_COLOR()
{
// default green
diffuse_red = 0.13f;
diffuse_grn = 0.81f;
diffuse_blu = 0.22f;
spec_red = 0.01f;
spec_grn = 0.08f;
spec_blu = 0.02f;
emit_red = 0.0f;
emit_grn = 0.0f;
emit_blu = 0.0f;
ambient = 0.8f;
transp = 0.0f;
shiny = 0.02f;
}
VRML_COLOR( float dr, float dg, float db,
float sr, float sg, float sb,
float er, float eg, float eb,
float am, float tr, float sh )
{
diffuse_red = dr;
diffuse_grn = dg;
diffuse_blu = db;
spec_red = sr;
spec_grn = sg;
spec_blu = sb;
emit_red = er;
emit_grn = eg;
emit_blu = eb;
ambient = am;
transp = tr;
shiny = sh;
}
};
enum VRML_COLOR_INDEX
{
VRML_COLOR_NONE = -1,
VRML_COLOR_PCB = 0,
VRML_COLOR_TRACK,
VRML_COLOR_SILK,
VRML_COLOR_TIN,
VRML_COLOR_LAST
};
static VRML_COLOR colors[VRML_COLOR_LAST];
static SGNODE* sgmaterial[VRML_COLOR_LAST] = { NULL };
class MODEL_VRML
{
private:
double m_layer_z[PCB_LAYER_ID_COUNT];
int m_iMaxSeg; // max. sides to a small circle
double m_arcMinLen, m_arcMaxLen; // min and max lengths of an arc chord
public:
IFSG_TRANSFORM m_OutputPCB;
VRML_LAYER m_holes;
VRML_LAYER m_board;
VRML_LAYER m_top_copper;
VRML_LAYER m_bot_copper;
VRML_LAYER m_top_silk;
VRML_LAYER m_bot_silk;
VRML_LAYER m_top_tin;
VRML_LAYER m_bot_tin;
VRML_LAYER m_plated_holes;
std::list< SGNODE* > m_components;
bool m_plainPCB;
double m_minLineWidth; // minimum width of a VRML line segment
double m_tx; // global translation along X
double m_ty; // global translation along Y
double m_brd_thickness; // depth of the PCB
LAYER_NUM m_text_layer;
int m_text_width;
MODEL_VRML() : m_OutputPCB( (SGNODE*) NULL )
{
for( unsigned i = 0; i < arrayDim( m_layer_z ); ++i )
m_layer_z[i] = 0;
m_holes.GetArcParams( m_iMaxSeg, m_arcMinLen, m_arcMaxLen );
// this default only makes sense if the output is in mm
m_brd_thickness = 1.6;
// pcb green
colors[VRML_COLOR_PCB] = VRML_COLOR(
0.07f, 0.3f, 0.12f, 0.01f, 0.03f, 0.01f, 0.0f, 0.0f, 0.0f, 0.8f, 0.0f, 0.02f );
// track green
colors[VRML_COLOR_TRACK] = VRML_COLOR(
0.08f, 0.5f, 0.1f, 0.01f, 0.05f, 0.01f, 0.0f, 0.0f, 0.0f, 0.8f, 0.0f, 0.02f );
// silkscreen white
colors[VRML_COLOR_SILK] = VRML_COLOR(
0.9f, 0.9f, 0.9f, 0.1f, 0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.9f, 0.0f, 0.02f );
// pad silver
colors[VRML_COLOR_TIN] = VRML_COLOR( 0.749f, 0.756f, 0.761f, 0.749f, 0.756f, 0.761f, 0.0f,
0.0f, 0.0f, 0.8f, 0.0f, 0.8f );
m_plainPCB = false;
SetOffset( 0.0, 0.0 );
m_text_layer = F_Cu;
m_text_width = 1;
m_minLineWidth = MIN_VRML_LINEWIDTH;
}
~MODEL_VRML()
{
// destroy any unassociated material appearances
for( int j = 0; j < VRML_COLOR_LAST; ++j )
{
if( sgmaterial[j] && NULL == S3D::GetSGNodeParent( sgmaterial[j] ) )
S3D::DestroyNode( sgmaterial[j] );
sgmaterial[j] = NULL;
}
if( !m_components.empty() )
{
IFSG_TRANSFORM tmp( false );
for( auto i : m_components )
{
tmp.Attach( i );
tmp.SetParent( NULL );
}
m_components.clear();
m_OutputPCB.Destroy();
}
}
VRML_COLOR& GetColor( VRML_COLOR_INDEX aIndex )
{
return colors[aIndex];
}
void SetOffset( double aXoff, double aYoff )
{
m_tx = aXoff;
m_ty = -aYoff;
m_holes.SetVertexOffsets( aXoff, aYoff );
m_board.SetVertexOffsets( aXoff, aYoff );
m_top_copper.SetVertexOffsets( aXoff, aYoff );
m_bot_copper.SetVertexOffsets( aXoff, aYoff );
m_top_silk.SetVertexOffsets( aXoff, aYoff );
m_bot_silk.SetVertexOffsets( aXoff, aYoff );
m_top_tin.SetVertexOffsets( aXoff, aYoff );
m_bot_tin.SetVertexOffsets( aXoff, aYoff );
m_plated_holes.SetVertexOffsets( aXoff, aYoff );
}
double GetLayerZ( LAYER_NUM aLayer )
{
if( unsigned( aLayer ) >= arrayDim( m_layer_z ) )
return 0;
return m_layer_z[ aLayer ];
}
void SetLayerZ( LAYER_NUM aLayer, double aValue )
{
m_layer_z[aLayer] = aValue;
}
// set the scaling of the VRML world
bool SetScale( double aWorldScale )
{
if( aWorldScale < 0.001 || aWorldScale > 10.0 )
throw( std::runtime_error( "WorldScale out of range (valid range is 0.001 to 10.0)" ) );
m_OutputPCB.SetScale( aWorldScale * 2.54 );
WORLD_SCALE = aWorldScale * 2.54;
return true;
}
};
// static var. for dealing with text
static MODEL_VRML* model_vrml;
// select the VRML layer object to draw on; return true if
// a layer has been selected.
static bool GetLayer( MODEL_VRML& aModel, LAYER_NUM layer, VRML_LAYER** vlayer )
{
switch( layer )
{
case B_Cu: *vlayer = &aModel.m_bot_copper; return true;
case F_Cu: *vlayer = &aModel.m_top_copper; return true;
case B_SilkS: *vlayer = &aModel.m_bot_silk; return true;
case F_SilkS: *vlayer = &aModel.m_top_silk; return true;
default: return false;
}
}
static void create_vrml_shell( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, double bottom_z );
static void create_vrml_plane( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double aHeight, bool aTopPlane );
static void write_triangle_bag( std::ostream& aOut_file, VRML_COLOR& aColor,
VRML_LAYER* aLayer, bool aPlane, bool aTop,
double aTop_z, double aBottom_z )
{
/* A lot of nodes are not required, but blender sometimes chokes
* without them */
static const char* shape_boiler[] =
{
"Transform {\n",
" children [\n",
" Group {\n",
" children [\n",
" Shape {\n",
" appearance Appearance {\n",
" material Material {\n",
0, // Material marker
" }\n",
" }\n",
" geometry IndexedFaceSet {\n",
" solid TRUE\n",
" coord Coordinate {\n",
" point [\n",
0, // Coordinates marker
" ]\n",
" }\n",
" coordIndex [\n",
0, // Index marker
" ]\n",
" }\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
0 // End marker
};
int marker_found = 0, lineno = 0;
while( marker_found < 4 )
{
if( shape_boiler[lineno] )
aOut_file << shape_boiler[lineno];
else
{
marker_found++;
switch( marker_found )
{
case 1: // Material marker
aOut_file << " diffuseColor " << std::setprecision(3);
aOut_file << aColor.diffuse_red << " ";
aOut_file << aColor.diffuse_grn << " ";
aOut_file << aColor.diffuse_blu << "\n";
aOut_file << " specularColor ";
aOut_file << aColor.spec_red << " ";
aOut_file << aColor.spec_grn << " ";
aOut_file << aColor.spec_blu << "\n";
aOut_file << " emissiveColor ";
aOut_file << aColor.emit_red << " ";
aOut_file << aColor.emit_grn << " ";
aOut_file << aColor.emit_blu << "\n";
aOut_file << " ambientIntensity " << aColor.ambient << "\n";
aOut_file << " transparency " << aColor.transp << "\n";
aOut_file << " shininess " << aColor.shiny << "\n";
break;
case 2:
if( aPlane )
aLayer->WriteVertices( aTop_z, aOut_file, PRECISION );
else
aLayer->Write3DVertices( aTop_z, aBottom_z, aOut_file, PRECISION );
aOut_file << "\n";
break;
case 3:
if( aPlane )
aLayer->WriteIndices( aTop, aOut_file );
else
aLayer->Write3DIndices( aOut_file );
aOut_file << "\n";
break;
default:
break;
}
}
lineno++;
}
}
static void write_layers( MODEL_VRML& aModel, BOARD* aPcb, const char* aFileName,
OSTREAM* aOutputFile )
{
// VRML_LAYER board;
aModel.m_board.Tesselate( &aModel.m_holes );
double brdz = aModel.m_brd_thickness / 2.0
- ( Millimeter2iu( ART_OFFSET / 2.0 ) ) * BOARD_SCALE;
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_PCB ),
&aModel.m_board, false, false, brdz, -brdz );
}
else
{
create_vrml_shell( aModel.m_OutputPCB, VRML_COLOR_PCB, &aModel.m_board, brdz, -brdz );
}
if( aModel.m_plainPCB )
{
if( !USE_INLINES )
S3D::WriteVRML( aFileName, true, aModel.m_OutputPCB.GetRawPtr(), USE_DEFS, true );
return;
}
// VRML_LAYER m_top_copper;
aModel.m_top_copper.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.m_top_copper, true, true,
aModel.GetLayerZ( F_Cu ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TRACK, &aModel.m_top_copper,
aModel.GetLayerZ( F_Cu ), true );
}
// VRML_LAYER m_top_tin;
aModel.m_top_tin.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.m_top_tin, true, true,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_top_tin,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
true );
}
// VRML_LAYER m_bot_copper;
aModel.m_bot_copper.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.m_bot_copper, true, false,
aModel.GetLayerZ( B_Cu ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TRACK, &aModel.m_bot_copper,
aModel.GetLayerZ( B_Cu ), false );
}
// VRML_LAYER m_bot_tin;
aModel.m_bot_tin.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.m_bot_tin, true, false,
aModel.GetLayerZ( B_Cu )
- Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_bot_tin,
aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
false );
}
// VRML_LAYER PTH;
aModel.m_plated_holes.Tesselate( NULL, true );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.m_plated_holes, false, false,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE );
}
else
{
create_vrml_shell( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_plated_holes,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE );
}
// VRML_LAYER m_top_silk;
aModel.m_top_silk.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_SILK ), &aModel.m_top_silk,
true, true, aModel.GetLayerZ( F_SilkS ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_SILK, &aModel.m_top_silk,
aModel.GetLayerZ( F_SilkS ), true );
}
// VRML_LAYER m_bot_silk;
aModel.m_bot_silk.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_SILK ), &aModel.m_bot_silk,
true, false, aModel.GetLayerZ( B_SilkS ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_SILK, &aModel.m_bot_silk,
aModel.GetLayerZ( B_SilkS ), false );
}
if( !USE_INLINES )
S3D::WriteVRML( aFileName, true, aModel.m_OutputPCB.GetRawPtr(), true, true );
}
static void compute_layer_Zs( MODEL_VRML& aModel, BOARD* pcb )
{
int copper_layers = pcb->GetCopperLayerCount();
// We call it 'layer' thickness, but it's the whole board thickness!
aModel.m_brd_thickness = pcb->GetDesignSettings().GetBoardThickness() * BOARD_SCALE;
double half_thickness = aModel.m_brd_thickness / 2;
// Compute each layer's Z value, more or less like the 3d view
for( LSEQ seq = LSET::AllCuMask().Seq(); seq; ++seq )
{
PCB_LAYER_ID i = *seq;
if( i < copper_layers )
aModel.SetLayerZ( i, half_thickness - aModel.m_brd_thickness * i / (copper_layers - 1) );
else
aModel.SetLayerZ( i, - half_thickness ); // bottom layer
}
/* To avoid rounding interference, we apply an epsilon to each
* successive layer */
double epsilon_z = Millimeter2iu( ART_OFFSET ) * BOARD_SCALE;
aModel.SetLayerZ( B_Paste, -half_thickness - epsilon_z * 4 );
aModel.SetLayerZ( B_Adhes, -half_thickness - epsilon_z * 3 );
aModel.SetLayerZ( B_SilkS, -half_thickness - epsilon_z * 2 );
aModel.SetLayerZ( B_Mask, -half_thickness - epsilon_z );
aModel.SetLayerZ( F_Mask, half_thickness + epsilon_z );
aModel.SetLayerZ( F_SilkS, half_thickness + epsilon_z * 2 );
aModel.SetLayerZ( F_Adhes, half_thickness + epsilon_z * 3 );
aModel.SetLayerZ( F_Paste, half_thickness + epsilon_z * 4 );
aModel.SetLayerZ( Dwgs_User, half_thickness + epsilon_z * 5 );
aModel.SetLayerZ( Cmts_User, half_thickness + epsilon_z * 6 );
aModel.SetLayerZ( Eco1_User, half_thickness + epsilon_z * 7 );
aModel.SetLayerZ( Eco2_User, half_thickness + epsilon_z * 8 );
aModel.SetLayerZ( Edge_Cuts, 0 );
}
static void export_vrml_line( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.m_minLineWidth)
width = aModel.m_minLineWidth;
starty = -starty;
endy = -endy;
double angle = atan2( endy - starty, endx - startx ) * 180.0 / M_PI;
double length = Distance( startx, starty, endx, endy ) + width;
double cx = ( startx + endx ) / 2.0;
double cy = ( starty + endy ) / 2.0;
if( !vlayer->AddSlot( cx, cy, length, width, angle, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
static void export_vrml_circle( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.m_minLineWidth )
width = aModel.m_minLineWidth;
starty = -starty;
endy = -endy;
double hole, radius;
radius = Distance( startx, starty, endx, endy ) + ( width / 2);
hole = radius - width;
if( !vlayer->AddCircle( startx, starty, radius, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
if( hole > 0.0001 )
{
if( !vlayer->AddCircle( startx, starty, hole, true ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
}
static void export_vrml_arc( MODEL_VRML& aModel, LAYER_NUM layer,
double centerx, double centery,
double arc_startx, double arc_starty,
double width, double arc_angle )
{
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.m_minLineWidth )
width = aModel.m_minLineWidth;
centery = -centery;
arc_starty = -arc_starty;
if( !vlayer->AddArc( centerx, centery, arc_startx, arc_starty, width, -arc_angle, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
static void export_vrml_polygon( MODEL_VRML& aModel, LAYER_NUM layer,
DRAWSEGMENT *aOutline, double aOrientation, wxPoint aPos )
{
if( aOutline->IsPolyShapeValid() )
{
SHAPE_POLY_SET shape = aOutline->GetPolyShape();
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( aOutline->GetWidth() )
{
int numSegs = GetArcToSegmentCount( aOutline->GetWidth() / 2, ARC_HIGH_DEF, 360.0 );
shape.Inflate( aOutline->GetWidth() / 2, numSegs );
shape.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
shape.Rotate( -aOrientation, VECTOR2I( 0, 0 ) );
shape.Move( aPos );
const SHAPE_LINE_CHAIN& outline = shape.COutline( 0 );
int seg = vlayer->NewContour();
for( int j = 0; j < outline.PointCount(); j++ )
{
if( !vlayer->AddVertex( seg, outline.CPoint( j ).x * BOARD_SCALE,
-outline.CPoint( j ).y * BOARD_SCALE ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
vlayer->EnsureWinding( seg, false );
}
}
static void export_vrml_drawsegment( MODEL_VRML& aModel, DRAWSEGMENT* drawseg )
{
LAYER_NUM layer = drawseg->GetLayer();
double w = drawseg->GetWidth() * BOARD_SCALE;
double x = drawseg->GetStart().x * BOARD_SCALE;
double y = drawseg->GetStart().y * BOARD_SCALE;
double xf = drawseg->GetEnd().x * BOARD_SCALE;
double yf = drawseg->GetEnd().y * BOARD_SCALE;
double r = sqrt( pow( x - xf, 2 ) + pow( y - yf, 2 ) );
// Items on the edge layer are handled elsewhere; just return
if( layer == Edge_Cuts )
return;
switch( drawseg->GetShape() )
{
case S_ARC:
export_vrml_arc( aModel, layer,
(double) drawseg->GetCenter().x * BOARD_SCALE,
(double) drawseg->GetCenter().y * BOARD_SCALE,
(double) drawseg->GetArcStart().x * BOARD_SCALE,
(double) drawseg->GetArcStart().y * BOARD_SCALE,
w, drawseg->GetAngle() / 10 );
break;
case S_CIRCLE:
// Break circles into two 180 arcs to prevent the vrml hole from obscuring objects
// within the hole area of the circle.
export_vrml_arc( aModel, layer, x, y, x, y-r, w, 180.0 );
export_vrml_arc( aModel, layer, x, y, x, y+r, w, 180.0 );
break;
case S_POLYGON:
export_vrml_polygon( aModel, layer, drawseg, 0.0, wxPoint( 0, 0 ) );
break;
case S_SEGMENT:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
case S_RECT:
export_vrml_line( aModel, layer, x, y, xf, y, w );
export_vrml_line( aModel, layer, xf, y, xf, yf, w );
export_vrml_line( aModel, layer, xf, yf, x, yf, w );
export_vrml_line( aModel, layer, x, yf, x, y, w );
break;
default:
break;
}
}
/* C++ doesn't have closures and neither continuation forms... this is
* for coupling the vrml_text_callback with the common parameters */
static void vrml_text_callback( int x0, int y0, int xf, int yf, void* aData )
{
LAYER_NUM m_text_layer = model_vrml->m_text_layer;
int m_text_width = model_vrml->m_text_width;
export_vrml_line( *model_vrml, m_text_layer,
x0 * BOARD_SCALE, y0 * BOARD_SCALE,
xf * BOARD_SCALE, yf * BOARD_SCALE,
m_text_width * BOARD_SCALE );
}
static void export_vrml_pcbtext( MODEL_VRML& aModel, TEXTE_PCB* text )
{
wxSize size = text->GetTextSize();
if( text->IsMirrored() )
size.x = -size.x;
bool forceBold = true;
int penWidth = text->GetEffectiveTextPenWidth();
COLOR4D color = COLOR4D::BLACK; // not actually used, but needed by GRText
model_vrml->m_text_layer = text->GetLayer();
model_vrml->m_text_width = penWidth;
if( text->IsMultilineAllowed() )
{
wxArrayString strings_list;
wxStringSplit( text->GetShownText(), strings_list, '\n' );
std::vector<wxPoint> positions;
positions.reserve( strings_list.Count() );
text->GetLinePositions( positions, strings_list.Count() );
for( unsigned ii = 0; ii < strings_list.Count(); ii++ )
{
GRText( nullptr, positions[ii], color, strings_list[ii], text->GetTextAngle(), size,
text->GetHorizJustify(), text->GetVertJustify(), penWidth, text->IsItalic(),
forceBold, vrml_text_callback );
}
}
else
{
GRText( nullptr, text->GetTextPos(), color, text->GetShownText(), text->GetTextAngle(),
size, text->GetHorizJustify(), text->GetVertJustify(), penWidth, text->IsItalic(),
forceBold, vrml_text_callback );
}
}
static void export_vrml_drawings( MODEL_VRML& aModel, BOARD* pcb )
{
// draw graphic items
for( auto drawing : pcb->Drawings() )
{
PCB_LAYER_ID layer = drawing->GetLayer();
if( layer != F_Cu && layer != B_Cu && layer != B_SilkS && layer != F_SilkS )
continue;
switch( drawing->Type() )
{
case PCB_LINE_T:
export_vrml_drawsegment( aModel, (DRAWSEGMENT*) drawing );
break;
case PCB_TEXT_T:
export_vrml_pcbtext( aModel, (TEXTE_PCB*) drawing );
break;
default:
break;
}
}
}
// board edges and cutouts
static void export_vrml_board( MODEL_VRML& aModel, BOARD* aPcb )
{
SHAPE_POLY_SET pcbOutlines; // stores the board main outlines
wxString msg;
if( !aPcb->GetBoardPolygonOutlines( pcbOutlines, &msg ) )
{
msg << "\n\n" <<
_( "Unable to calculate the board outlines; fall back to using the board boundary box." );
wxMessageBox( msg );
}
int seg;
for( int cnt = 0; cnt < pcbOutlines.OutlineCount(); cnt++ )
{
const SHAPE_LINE_CHAIN& outline = pcbOutlines.COutline( cnt );
seg = aModel.m_board.NewContour();
for( int j = 0; j < outline.PointCount(); j++ )
{
aModel.m_board.AddVertex( seg, (double)outline.CPoint(j).x * BOARD_SCALE,
-((double)outline.CPoint(j).y * BOARD_SCALE ) );
}
aModel.m_board.EnsureWinding( seg, false );
// Generate holes:
for( int ii = 0; ii < pcbOutlines.HoleCount( cnt ); ii++ )
{
const SHAPE_LINE_CHAIN& hole = pcbOutlines.Hole( cnt, ii );
seg = aModel.m_holes.NewContour();
if( seg < 0 )
{
msg << "\n\n" <<
_( "VRML Export Failed: Could not add holes to contours." );
wxMessageBox( msg );
return;
}
for( int j = 0; j < hole.PointCount(); j++ )
{
aModel.m_holes.AddVertex( seg, (double)hole.CPoint(j).x * BOARD_SCALE,
-((double)hole.CPoint(j).y * BOARD_SCALE ) );
}
aModel.m_holes.EnsureWinding( seg, true );
}
}
}
static void export_round_padstack( MODEL_VRML& aModel, BOARD* pcb,
double x, double y, double r,
LAYER_NUM bottom_layer, LAYER_NUM top_layer,
double hole )
{
LAYER_NUM layer = top_layer;
bool thru = true;
// if not a thru hole do not put a hole in the board
if( top_layer != F_Cu || bottom_layer != B_Cu )
thru = false;
if( thru && hole > 0 )
aModel.m_holes.AddCircle( x, -y, hole, true );
if( aModel.m_plainPCB )
return;
while( true )
{
if( layer == B_Cu )
{
aModel.m_bot_copper.AddCircle( x, -y, r );
if( hole > 0 && !thru )
aModel.m_bot_copper.AddCircle( x, -y, hole, true );
}
else if( layer == F_Cu )
{
aModel.m_top_copper.AddCircle( x, -y, r );
if( hole > 0 && !thru )
aModel.m_top_copper.AddCircle( x, -y, hole, true );
}
if( layer == bottom_layer )
break;
layer = bottom_layer;
}
}
static void export_vrml_via( MODEL_VRML& aModel, BOARD* aPcb, const VIA* aVia )
{
double x, y, r, hole;
PCB_LAYER_ID top_layer, bottom_layer;
hole = aVia->GetDrillValue() * BOARD_SCALE / 2.0;
r = aVia->GetWidth() * BOARD_SCALE / 2.0;
x = aVia->GetStart().x * BOARD_SCALE;
y = aVia->GetStart().y * BOARD_SCALE;
aVia->LayerPair( &top_layer, &bottom_layer );
// do not render a buried via
if( top_layer != F_Cu && bottom_layer != B_Cu )
return;
// Export the via padstack
export_round_padstack( aModel, aPcb, x, y, r, bottom_layer, top_layer, hole );
}
static void export_vrml_tracks( MODEL_VRML& aModel, BOARD* pcb )
{
for( TRACK* track : pcb->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
export_vrml_via( aModel, pcb, (const VIA*) track );
}
else if( ( track->GetLayer() == B_Cu || track->GetLayer() == F_Cu )
&& !aModel.m_plainPCB )
{
if( track->Type() == PCB_ARC_T )
{
ARC* arc = static_cast<ARC*>( track );
VECTOR2D center( arc->GetCenter() );
double arc_angle_degree = arc->GetAngle()/10;
// Vrml exporter does not export arcs with angle < 1.0 degree
// ( to avoid issues with vrml viewers).
// The best way is to convert them to a small straight line
if( arc_angle_degree < -1.0 || arc_angle_degree > 1.0 )
{
export_vrml_arc( aModel, track->GetLayer(),
center.x * BOARD_SCALE, center.y * BOARD_SCALE,
arc->GetStart().x * BOARD_SCALE,
arc->GetStart().y * BOARD_SCALE,
arc->GetWidth() * BOARD_SCALE, arc_angle_degree );
}
else
{
export_vrml_line( aModel, arc->GetLayer(),
arc->GetStart().x * BOARD_SCALE,
arc->GetStart().y * BOARD_SCALE,
arc->GetEnd().x * BOARD_SCALE,
arc->GetEnd().y * BOARD_SCALE,
arc->GetWidth() * BOARD_SCALE );
}
}
else
{
export_vrml_line( aModel, track->GetLayer(),
track->GetStart().x * BOARD_SCALE,
track->GetStart().y * BOARD_SCALE,
track->GetEnd().x * BOARD_SCALE,
track->GetEnd().y * BOARD_SCALE,
track->GetWidth() * BOARD_SCALE );
}
}
}
}
static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb, COMMIT* aCommit )
{
for( ZONE_CONTAINER* zone : aPcb->Zones() )
{
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
VRML_LAYER* vl;
if( !GetLayer( aModel, layer, &vl ) )
continue;
if( !zone->IsFilled() )
{
ZONE_FILLER filler( aPcb, aCommit );
zone->SetFillMode( ZONE_FILL_MODE::POLYGONS ); // use filled polygons
// If the zone fill failed, don't try adding it to the export
if( !filler.Fill( { zone } ) )
continue;
}
const SHAPE_POLY_SET& poly = zone->GetFilledPolysList( layer );
for( int i = 0; i < poly.OutlineCount(); i++ )
{
const SHAPE_LINE_CHAIN& outline = poly.COutline( i );
int seg = vl->NewContour();
for( int j = 0; j < outline.PointCount(); j++ )
{
if( !vl->AddVertex( seg, (double) outline.CPoint( j ).x * BOARD_SCALE,
-( (double) outline.CPoint( j ).y * BOARD_SCALE ) ) )
{
throw( std::runtime_error( vl->GetError() ) );
}
}
vl->EnsureWinding( seg, false );
}
}
}
}
static void export_vrml_text_module( TEXTE_MODULE* item )
{
if( item->IsVisible() )
{
wxSize size = item->GetTextSize();
if( item->IsMirrored() )
size.x = -size.x; // Text is mirrored
bool forceBold = true;
int penWidth = item->GetEffectiveTextPenWidth();
model_vrml->m_text_layer = item->GetLayer();
model_vrml->m_text_width = penWidth;
GRText( NULL, item->GetTextPos(), BLACK, item->GetShownText(), item->GetDrawRotation(),
size, item->GetHorizJustify(), item->GetVertJustify(), penWidth, item->IsItalic(),
forceBold, vrml_text_callback );
}
}
static void export_vrml_edge_module( MODEL_VRML& aModel, EDGE_MODULE* aOutline,
MODULE* aModule )
{
LAYER_NUM layer = aOutline->GetLayer();
double x = aOutline->GetStart().x * BOARD_SCALE;
double y = aOutline->GetStart().y * BOARD_SCALE;
double xf = aOutline->GetEnd().x * BOARD_SCALE;
double yf = aOutline->GetEnd().y * BOARD_SCALE;
double w = aOutline->GetWidth() * BOARD_SCALE;
switch( aOutline->GetShape() )
{
case S_SEGMENT:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
case S_ARC:
export_vrml_arc( aModel, layer, x, y, xf, yf, w, aOutline->GetAngle() / 10 );
break;
case S_CIRCLE:
export_vrml_circle( aModel, layer, x, y, xf, yf, w );
break;
case S_POLYGON:
export_vrml_polygon( aModel, layer, aOutline, aModule->GetOrientationRadians(),
aModule->GetPosition() );
break;
case S_RECT:
export_vrml_line( aModel, layer, x, y, xf, y, w );
export_vrml_line( aModel, layer, xf, y, xf, yf, w );
export_vrml_line( aModel, layer, xf, yf, x, yf, w );
export_vrml_line( aModel, layer, x, yf, x, y, w );
break;
default:
break;
}
}
static void export_vrml_padshape( MODEL_VRML& aModel, VRML_LAYER* aTinLayer, D_PAD* aPad )
{
// The (maybe offset) pad position
wxPoint pad_pos = aPad->ShapePos();
double pad_x = pad_pos.x * BOARD_SCALE;
double pad_y = pad_pos.y * BOARD_SCALE;
wxSize pad_delta = aPad->GetDelta();
double pad_dx = pad_delta.x * BOARD_SCALE / 2.0;
double pad_dy = pad_delta.y * BOARD_SCALE / 2.0;
double pad_w = aPad->GetSize().x * BOARD_SCALE / 2.0;
double pad_h = aPad->GetSize().y * BOARD_SCALE / 2.0;
switch( aPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
if( !aTinLayer->AddCircle( pad_x, -pad_y, pad_w, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
case PAD_SHAPE_OVAL:
if( !aTinLayer->AddSlot( pad_x, -pad_y, pad_w * 2.0, pad_h * 2.0,
aPad->GetOrientation()/10.0, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_CHAMFERED_RECT:
{
SHAPE_POLY_SET polySet;
const int corner_radius = aPad->GetRoundRectCornerRadius();
TransformRoundChamferedRectToPolygon( polySet, wxPoint( 0, 0 ), aPad->GetSize(),
0.0, corner_radius, 0.0, 0, ARC_HIGH_DEF );
std::vector< wxRealPoint > cornerList;
// TransformRoundChamferedRectToPolygon creates only one convex polygon
SHAPE_LINE_CHAIN poly( polySet.Outline( 0 ) );
cornerList.reserve( poly.PointCount() );
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back(
poly.CPoint( ii ).x * BOARD_SCALE, -poly.CPoint( ii ).y * BOARD_SCALE );
// Close polygon
cornerList.push_back( cornerList[0] );
if( !aTinLayer->AddPolygon( cornerList, pad_x, -pad_y, aPad->GetOrientation() ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
}
case PAD_SHAPE_CUSTOM:
{
SHAPE_POLY_SET polySet;
std::vector< wxRealPoint > cornerList;
aPad->MergePrimitivesAsPolygon( &polySet, UNDEFINED_LAYER );
for( int cnt = 0; cnt < polySet.OutlineCount(); ++cnt )
{
SHAPE_LINE_CHAIN& poly = polySet.Outline( cnt );
cornerList.clear();
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back(
poly.CPoint( ii ).x * BOARD_SCALE, -poly.CPoint( ii ).y * BOARD_SCALE );
// Close polygon
cornerList.push_back( cornerList[0] );
if( !aTinLayer->AddPolygon( cornerList, pad_x, -pad_y, aPad->GetOrientation() ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
}
break;
}
case PAD_SHAPE_RECT:
// Just to be sure :D
pad_dx = 0;
pad_dy = 0;
// Intentionally fall through and treat a rectangle as a trapezoid with no sloped sides
KI_FALLTHROUGH;
case PAD_SHAPE_TRAPEZOID:
{
double coord[8] =
{
-pad_w + pad_dy, -pad_h - pad_dx,
-pad_w - pad_dy, pad_h + pad_dx,
+pad_w - pad_dy, -pad_h + pad_dx,
+pad_w + pad_dy, pad_h - pad_dx
};
for( int i = 0; i < 4; i++ )
{
RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() );
coord[i * 2] += pad_x;
coord[i * 2 + 1] += pad_y;
}
int lines;
lines = aTinLayer->NewContour();
if( lines < 0 )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[0], -coord[1] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[4], -coord[5] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[6], -coord[7] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[2], -coord[3] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->EnsureWinding( lines, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
}
}
}
static void export_vrml_pad( MODEL_VRML& aModel, BOARD* aPcb, D_PAD* aPad )
{
double hole_drill_w = (double) aPad->GetDrillSize().x * BOARD_SCALE / 2.0;
double hole_drill_h = (double) aPad->GetDrillSize().y * BOARD_SCALE / 2.0;
double hole_drill = std::min( hole_drill_w, hole_drill_h );
double hole_x = aPad->GetPosition().x * BOARD_SCALE;
double hole_y = aPad->GetPosition().y * BOARD_SCALE;
// Export the hole on the edge layer
if( hole_drill > 0 )
{
bool pth = false;
if( ( aPad->GetAttribute() != PAD_ATTRIB_HOLE_NOT_PLATED )
&& !aModel.m_plainPCB )
pth = true;
if( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG )
{
// Oblong hole (slot)
if( pth )
{
aModel.m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0 + PLATE_OFFSET,
hole_drill_h * 2.0 + PLATE_OFFSET,
aPad->GetOrientation()/10.0, true, true );
aModel.m_plated_holes.AddSlot( hole_x, -hole_y,
hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, false );
}
else
{
aModel.m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, false );
}
}
else
{
// Drill a round hole
if( pth )
{
aModel.m_holes.AddCircle( hole_x, -hole_y, hole_drill + PLATE_OFFSET, true, true );
aModel.m_plated_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false );
}
else
{
aModel.m_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false );
}
}
}
if( aModel.m_plainPCB )
return;
// The pad proper, on the selected layers
LSET layer_mask = aPad->GetLayerSet();
if( layer_mask[B_Cu] )
{
if( layer_mask[B_Mask] )
export_vrml_padshape( aModel, &aModel.m_bot_tin, aPad );
else
export_vrml_padshape( aModel, &aModel.m_bot_copper, aPad );
}
if( layer_mask[F_Cu] )
{
if( layer_mask[F_Mask] )
export_vrml_padshape( aModel, &aModel.m_top_tin, aPad );
else
export_vrml_padshape( aModel, &aModel.m_top_copper, aPad );
}
}
// From axis/rot to quaternion
static void build_quat( double x, double y, double z, double a, double q[4] )
{
double sina = sin( a / 2 );
q[0] = x * sina;
q[1] = y * sina;
q[2] = z * sina;
q[3] = cos( a / 2 );
}
// From quaternion to axis/rot
static void from_quat( double q[4], double rot[4] )
{
rot[3] = acos( q[3] ) * 2;
for( int i = 0; i < 3; i++ )
rot[i] = q[i] / sin( rot[3] / 2 );
}
// Quaternion composition
static void compose_quat( double q1[4], double q2[4], double qr[4] )
{
double tmp[4];
tmp[0] = q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1];
tmp[1] = q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2];
tmp[2] = q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0];
tmp[3] = q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2];
qr[0] = tmp[0];
qr[1] = tmp[1];
qr[2] = tmp[2];
qr[3] = tmp[3];
}
static void export_vrml_module( MODEL_VRML& aModel, BOARD* aPcb,
MODULE* aModule, std::ostream* aOutputFile )
{
if( !aModel.m_plainPCB )
{
// Reference and value
if( aModule->Reference().IsVisible() )
export_vrml_text_module( &aModule->Reference() );
if( aModule->Value().IsVisible() )
export_vrml_text_module( &aModule->Value() );
// Export module edges
for( BOARD_ITEM* item : aModule->GraphicalItems() )
{
switch( item->Type() )
{
case PCB_MODULE_TEXT_T:
export_vrml_text_module( static_cast<TEXTE_MODULE*>( item ) );
break;
case PCB_MODULE_EDGE_T:
export_vrml_edge_module( aModel, static_cast<EDGE_MODULE*>( item ), aModule );
break;
default:
break;
}
}
}
// Export pads
for( D_PAD* pad : aModule->Pads() )
export_vrml_pad( aModel, aPcb, pad );
bool isFlipped = aModule->GetLayer() == B_Cu;
// Export the object VRML model(s)
auto sM = aModule->Models().begin();
auto eM = aModule->Models().end();
wxFileName subdir( SUBDIR_3D, "" );
while( sM != eM )
{
SGNODE* mod3d = (SGNODE*) cache->Load( sM->m_Filename );
if( NULL == mod3d )
{
++sM;
continue;
}
/* Calculate 3D shape rotation:
* this is the rotation parameters, with an additional 180 deg rotation
* for footprints that are flipped
* When flipped, axis rotation is the horizontal axis (X axis)
*/
double rotx = -sM->m_Rotation.x;
double roty = -sM->m_Rotation.y;
double rotz = -sM->m_Rotation.z;
if( isFlipped )
{
rotx += 180.0;
roty = -roty;
rotz = -rotz;
}
// Do some quaternion munching
double q1[4], q2[4], rot[4];
build_quat( 1, 0, 0, DEG2RAD( rotx ), q1 );
build_quat( 0, 1, 0, DEG2RAD( roty ), q2 );
compose_quat( q1, q2, q1 );
build_quat( 0, 0, 1, DEG2RAD( rotz ), q2 );
compose_quat( q1, q2, q1 );
// Note here aModule->GetOrientation() is in 0.1 degrees,
// so module rotation has to be converted to radians
build_quat( 0, 0, 1, DECIDEG2RAD( aModule->GetOrientation() ), q2 );
compose_quat( q1, q2, q1 );
from_quat( q1, rot );
double offsetFactor = 1000.0f * IU_PER_MILS / 25.4f;
// adjust 3D shape local offset position
// they are given in mm, so they are converted in board IU.
double offsetx = sM->m_Offset.x * offsetFactor;
double offsety = sM->m_Offset.y * offsetFactor;
double offsetz = sM->m_Offset.z * offsetFactor;
if( isFlipped )
offsetz = -offsetz;
else // In normal mode, Y axis is reversed in Pcbnew.
offsety = -offsety;
RotatePoint( &offsetx, &offsety, aModule->GetOrientation() );
SGPOINT trans;
trans.x = ( offsetx + aModule->GetPosition().x ) * BOARD_SCALE + aModel.m_tx;
trans.y = -(offsety + aModule->GetPosition().y) * BOARD_SCALE - aModel.m_ty;
trans.z = (offsetz * BOARD_SCALE ) + aModel.GetLayerZ( aModule->GetLayer() );
if( USE_INLINES )
{
wxFileName srcFile = cache->GetResolver()->ResolvePath( sM->m_Filename );
wxFileName dstFile;
dstFile.SetPath( SUBDIR_3D );
dstFile.SetName( srcFile.GetName() );
dstFile.SetExt( "wrl" );
// copy the file if necessary
wxDateTime srcModTime = srcFile.GetModificationTime();
wxDateTime destModTime = srcModTime;
destModTime.SetToCurrent();
if( dstFile.FileExists() )
destModTime = dstFile.GetModificationTime();
if( srcModTime != destModTime )
{
wxString fileExt = srcFile.GetExt();
fileExt.LowerCase();
// copy VRML models and use the scenegraph library to
// translate other model types
if( fileExt == "wrl" )
{
if( !wxCopyFile( srcFile.GetFullPath(), dstFile.GetFullPath() ) )
continue;
}
else
{
if( !S3D::WriteVRML( dstFile.GetFullPath().ToUTF8(), true, mod3d, USE_DEFS, true ) )
continue;
}
}
(*aOutputFile) << "Transform {\n";
// only write a rotation if it is >= 0.1 deg
if( std::abs( rot[3] ) > 0.0001745 )
{
(*aOutputFile) << " rotation " << std::setprecision( 5 );
(*aOutputFile) << rot[0] << " " << rot[1] << " " << rot[2] << " " << rot[3] << "\n";
}
(*aOutputFile) << " translation " << std::setprecision( PRECISION );
(*aOutputFile) << trans.x << " ";
(*aOutputFile) << trans.y << " ";
(*aOutputFile) << trans.z << "\n";
(*aOutputFile) << " scale ";
(*aOutputFile) << sM->m_Scale.x << " ";
(*aOutputFile) << sM->m_Scale.y << " ";
(*aOutputFile) << sM->m_Scale.z << "\n";
(*aOutputFile) << " children [\n Inline {\n url \"";
if( USE_RELPATH )
{
wxFileName tmp = dstFile;
tmp.SetExt( "" );
tmp.SetName( "" );
tmp.RemoveLastDir();
dstFile.MakeRelativeTo( tmp.GetPath() );
}
wxString fn = dstFile.GetFullPath();
fn.Replace( "\\", "/" );
(*aOutputFile) << TO_UTF8( fn ) << "\"\n } ]\n";
(*aOutputFile) << " }\n";
}
else
{
IFSG_TRANSFORM* modelShape = new IFSG_TRANSFORM( aModel.m_OutputPCB.GetRawPtr() );
// only write a rotation if it is >= 0.1 deg
if( std::abs( rot[3] ) > 0.0001745 )
modelShape->SetRotation( SGVECTOR( rot[0], rot[1], rot[2] ), rot[3] );
modelShape->SetTranslation( trans );
modelShape->SetScale( SGPOINT( sM->m_Scale.x, sM->m_Scale.y, sM->m_Scale.z ) );
if( NULL == S3D::GetSGNodeParent( mod3d ) )
{
aModel.m_components.push_back( mod3d );
modelShape->AddChildNode( mod3d );
}
else
{
modelShape->AddRefNode( mod3d );
}
}
++sM;
}
}
bool PCB_EDIT_FRAME::ExportVRML_File( const wxString& aFullFileName, double aMMtoWRMLunit,
bool aExport3DFiles, bool aUseRelativePaths,
bool aUsePlainPCB, const wxString& a3D_Subdir,
double aXRef, double aYRef )
{
BOARD* pcb = GetBoard();
bool ok = true;
BOARD_COMMIT commit( this ); // We may need to modify the board (for instance to
// fill zones), so make sure we can revert.
USE_INLINES = aExport3DFiles;
USE_DEFS = true;
USE_RELPATH = aUseRelativePaths;
cache = Prj().Get3DCacheManager();
PROJ_DIR = Prj().GetProjectPath();
SUBDIR_3D = a3D_Subdir;
MODEL_VRML model3d;
model_vrml = &model3d;
model3d.SetScale( aMMtoWRMLunit );
if( USE_INLINES )
{
BOARD_SCALE = MM_PER_IU / 2.54;
model3d.SetOffset( -aXRef / 2.54, aYRef / 2.54 );
}
else
{
BOARD_SCALE = MM_PER_IU;
model3d.SetOffset( -aXRef, aYRef );
}
// plain PCB or else PCB with copper and silkscreen
model3d.m_plainPCB = aUsePlainPCB;
try
{
// Preliminary computation: the z value for each layer
compute_layer_Zs( model3d, pcb );
// board edges and cutouts
export_vrml_board( model3d, pcb );
// Drawing and text on the board
if( !aUsePlainPCB )
export_vrml_drawings( model3d, pcb );
// Export vias and trackage
export_vrml_tracks( model3d, pcb );
// Export zone fills
if( !aUsePlainPCB )
export_vrml_zones( model3d, pcb, &commit );
if( USE_INLINES )
{
// check if the 3D Subdir exists - create if not
wxFileName subdir( SUBDIR_3D, "" );
if( ! subdir.DirExists() )
{
if( !wxDir::Make( subdir.GetFullPath() ) )
throw( std::runtime_error( "Could not create 3D model subdirectory" ) );
}
OPEN_OSTREAM( output_file, TO_UTF8( aFullFileName ) );
if( output_file.fail() )
{
std::ostringstream ostr;
ostr << "Could not open file '" << TO_UTF8( aFullFileName ) << "'";
throw( std::runtime_error( ostr.str().c_str() ) );
}
output_file.imbue( std::locale( "C" ) );
// Begin with the usual VRML boilerplate
wxString fn = aFullFileName;
fn.Replace( "\\" , "/" );
output_file << "#VRML V2.0 utf8\n";
output_file << "WorldInfo {\n";
output_file << " title \"" << TO_UTF8( fn ) << " - Generated by Pcbnew\"\n";
output_file << "}\n";
output_file << "Transform {\n";
output_file << " scale " << std::setprecision( PRECISION );
output_file << WORLD_SCALE << " ";
output_file << WORLD_SCALE << " ";
output_file << WORLD_SCALE << "\n";
output_file << " children [\n";
// Export footprints
for( MODULE* module : pcb->Modules() )
export_vrml_module( model3d, pcb, module, &output_file );
// write out the board and all layers
write_layers( model3d, pcb, TO_UTF8( aFullFileName ), &output_file );
// Close the outer 'transform' node
output_file << "]\n}\n";
CLOSE_STREAM( output_file );
}
else
{
// Export footprints
for( MODULE* module : pcb->Modules() )
export_vrml_module( model3d, pcb, module, NULL );
// write out the board and all layers
write_layers( model3d, pcb, TO_UTF8( aFullFileName ), NULL );
}
}
catch( const std::exception& e )
{
wxString msg;
msg << _( "IDF Export Failed:\n" ) << FROM_UTF8( e.what() );
wxMessageBox( msg );
ok = false;
}
commit.Revert();
return ok;
}
static SGNODE* getSGColor( VRML_COLOR_INDEX colorIdx )
{
if( colorIdx == -1 )
colorIdx = VRML_COLOR_PCB;
else if( colorIdx == VRML_COLOR_LAST )
return NULL;
if( sgmaterial[colorIdx] )
return sgmaterial[colorIdx];
IFSG_APPEARANCE vcolor( (SGNODE*) NULL );
VRML_COLOR* cp = &colors[colorIdx];
vcolor.SetSpecular( cp->spec_red, cp->spec_grn, cp->spec_blu );
vcolor.SetDiffuse( cp->diffuse_red, cp->diffuse_grn, cp->diffuse_blu );
vcolor.SetShininess( cp->shiny );
// NOTE: XXX - replace with a better equation; using this definition
// of ambient will not yield the best results
vcolor.SetAmbient( cp->ambient, cp->ambient, cp->ambient );
vcolor.SetTransparency( cp->transp );
sgmaterial[colorIdx] = vcolor.GetRawPtr();
return sgmaterial[colorIdx];
}
static void create_vrml_plane( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, bool aTopPlane )
{
std::vector< double > vertices;
std::vector< int > idxPlane;
if( !( *layer ).Get2DTriangles( vertices, idxPlane, top_z, aTopPlane ) )
{
return;
}
if( ( idxPlane.size() % 3 ) )
{
throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a triangle list)" ) );
}
std::vector< SGPOINT > vlist;
size_t nvert = vertices.size() / 3;
size_t j = 0;
for( size_t i = 0; i < nvert; ++i, j+= 3 )
vlist.emplace_back( vertices[j], vertices[j+1], vertices[j+2] );
// create the intermediate scenegraph
IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline
IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals
IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes
IFSG_COORDS cp( face ); // coordinates for all faces
cp.SetCoordsList( nvert, &vlist[0] );
IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only
coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] );
IFSG_NORMALS norms( face ); // normals for the top and bottom planes
// set the normals
if( aTopPlane )
{
for( size_t i = 0; i < nvert; ++i )
norms.AddNormal( 0.0, 0.0, 1.0 );
}
else
{
for( size_t i = 0; i < nvert; ++i )
norms.AddNormal( 0.0, 0.0, -1.0 );
}
// assign a color from the palette
SGNODE* modelColor = getSGColor( colorID );
if( NULL != modelColor )
{
if( NULL == S3D::GetSGNodeParent( modelColor ) )
shape.AddChildNode( modelColor );
else
shape.AddRefNode( modelColor );
}
}
static void create_vrml_shell( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, double bottom_z )
{
std::vector< double > vertices;
std::vector< int > idxPlane;
std::vector< int > idxSide;
if( top_z < bottom_z )
{
double tmp = top_z;
top_z = bottom_z;
bottom_z = tmp;
}
if( !( *layer ).Get3DTriangles( vertices, idxPlane, idxSide, top_z, bottom_z )
|| idxPlane.empty() || idxSide.empty() )
{
return;
}
if( ( idxPlane.size() % 3 ) || ( idxSide.size() % 3 ) )
{
throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a "
"triangle list)" ) );
}
std::vector< SGPOINT > vlist;
size_t nvert = vertices.size() / 3;
size_t j = 0;
for( size_t i = 0; i < nvert; ++i, j+= 3 )
vlist.emplace_back( vertices[j], vertices[j+1], vertices[j+2] );
// create the intermediate scenegraph
IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline
IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals
IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes
IFSG_COORDS cp( face ); // coordinates for all faces
cp.SetCoordsList( nvert, &vlist[0] );
IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only
coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] );
IFSG_NORMALS norms( face ); // normals for the top and bottom planes
// number of TOP (and bottom) vertices
j = nvert / 2;
// set the TOP normals
for( size_t i = 0; i < j; ++i )
norms.AddNormal( 0.0, 0.0, 1.0 );
// set the BOTTOM normals
for( size_t i = 0; i < j; ++i )
norms.AddNormal( 0.0, 0.0, -1.0 );
// assign a color from the palette
SGNODE* modelColor = getSGColor( colorID );
if( NULL != modelColor )
{
if( NULL == S3D::GetSGNodeParent( modelColor ) )
shape.AddChildNode( modelColor );
else
shape.AddRefNode( modelColor );
}
// create a second shape describing the vertical walls of the extrusion
// using per-vertex-per-face-normals
shape.NewNode( tx0 );
shape.AddRefNode( modelColor ); // set the color to be the same as the top/bottom
face.NewNode( shape );
cp.NewNode( face ); // new vertex list
norms.NewNode( face ); // new normals list
coordIdx.NewNode( face ); // new index list
// populate the new per-face vertex list and its indices and normals
std::vector< int >::iterator sI = idxSide.begin();
std::vector< int >::iterator eI = idxSide.end();
size_t sidx = 0; // index to the new coord set
SGPOINT p1, p2, p3;
SGVECTOR vnorm;
while( sI != eI )
{
p1 = vlist[*sI];
cp.AddCoord( p1 );
++sI;
p2 = vlist[*sI];
cp.AddCoord( p2 );
++sI;
p3 = vlist[*sI];
cp.AddCoord( p3 );
++sI;
vnorm.SetVector( S3D::CalcTriNorm( p1, p2, p3 ) );
norms.AddNormal( vnorm );
norms.AddNormal( vnorm );
norms.AddNormal( vnorm );
coordIdx.AddIndex( (int)sidx );
++sidx;
coordIdx.AddIndex( (int)sidx );
++sidx;
coordIdx.AddIndex( (int)sidx );
++sidx;
}
}