kicad/pcbnew/exporters/export_vrml.cpp

1360 lines
40 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2009-2013 Lorenzo Mercantonio
* Copyright (C) 2014 Cirilo Bernado
* Copyright (C) 2013 Jean-Pierre Charras jp.charras at wanadoo.fr
* Copyright (C) 2004-2013 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* NOTE:
* 1. for improved looks, create a DRILL layer for PTH drills.
* To render the improved board, render the vertical outline only
* for the board (no added drill holes), then render the
* outline only for PTH, and finally render the top and bottom
* of the board. NOTE: if we don't want extra eye-candy then
* we must maintain the current board export.
* Additional bits needed for improved eyecandy:
* + CalcOutline: calculates only the outline of a VRML_LAYER or
* a VERTICAL_HOLES
* + WriteVerticalIndices: writes the indices of only the vertical
* facets of a VRML_LAYER or a VRML_HOLES.
* + WriteVerticalVertices: writes only the outline vertices to
* form vertical walls; applies to VRML_LAYER and VRML_HOLES
*
* 2. How can we suppress fiducials such as those in the corners of the pic-programmer demo?
*
* 3. Export Graphics to Layer objects (see 3d_draw.cpp for clues) to ensure that custom
* tracks/fills/logos are rendered.
*
* For mechanical correctness, we should use the following settings with arcs:
* 1. max. deviation: the number of edges should be determined by the max.
* mechanical deviation and the minimum number of edges shall be 6.
* 2. for very large features we may introduce too many edges in a circle;
* to control this, we should specify a MAX number of edges or a threshold
* radius and a deviation for larger features
*
* For example, many mechanical fits are to within +/-0.05mm, so specifying
* a max. deviation of 0.02mm will yield a hole near the max. material
* condition. Calculating sides for a 10mm radius hole will yield about
* 312 points; such large holes (and arcs) will typically have a specified
* tolerance of +/-0.2mm in which case we can set the MAX edges to 32
* provided none of the important holes requires > 32 edges.
*
*/
#include <fctsys.h>
#include <kicad_string.h>
#include <wxPcbStruct.h>
#include <drawtxt.h>
#include <trigo.h>
#include <appl_wxstruct.h>
#include <3d_struct.h>
#include <macros.h>
#include <pcbnew.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_edge_mod.h>
#include <class_pcb_text.h>
#include <convert_from_iu.h>
#include "../3d-viewer/modelparsers.h"
#include <vector>
#include <cmath>
#include <vrml_board.h>
/* helper function:
* some characters cannot be used in names,
* this function change them to "_"
*/
static void ChangeIllegalCharacters( wxString& aFileName, bool aDirSepIsIllegal );
struct VRML_COLOR
{
float diffuse_red;
float diffuse_grn;
float diffuse_blu;
float spec_red;
float spec_grn;
float spec_blu;
float emit_red;
float emit_grn;
float emit_blu;
float ambient;
float transp;
float shiny;
VRML_COLOR()
{
// default green
diffuse_red = 0.13;
diffuse_grn = 0.81;
diffuse_blu = 0.22;
spec_red = 0.13;
spec_grn = 0.81;
spec_blu = 0.22;
emit_red = 0.0;
emit_grn = 0.0;
emit_blu = 0.0;
ambient = 1.0;
transp = 0;
shiny = 0.2;
}
VRML_COLOR( float dr, float dg, float db,
float sr, float sg, float sb,
float er, float eg, float eb,
float am, float tr, float sh )
{
diffuse_red = dr;
diffuse_grn = dg;
diffuse_blu = db;
spec_red = sr;
spec_grn = sg;
spec_blu = sb;
emit_red = er;
emit_grn = eg;
emit_blu = eb;
ambient = am;
transp = tr;
shiny = sh;
}
};
enum VRML_COLOR_INDEX
{
VRML_COLOR_PCB = 0,
VRML_COLOR_TRACK,
VRML_COLOR_SILK,
VRML_COLOR_TIN,
VRML_COLOR_LAST
};
class MODEL_VRML
{
private:
double layer_z[NB_LAYERS];
VRML_COLOR colors[VRML_COLOR_LAST];
public:
VRML_LAYER holes;
VRML_LAYER board;
VRML_LAYER top_copper;
VRML_LAYER bot_copper;
VRML_LAYER top_silk;
VRML_LAYER bot_silk;
VRML_LAYER top_tin;
VRML_LAYER bot_tin;
double scale; // board internal units to output scaling
double tx; // global translation along X
double ty; // global translation along Y
double board_thickness; // depth of the PCB
LAYER_NUM s_text_layer;
int s_text_width;
MODEL_VRML()
{
for( int i = 0; i < NB_LAYERS; ++i )
layer_z[i] = 0;
// this default only makes sense if the output is in mm
board_thickness = 1.6;
// pcb green
colors[ VRML_COLOR_PCB ] = VRML_COLOR( .07, .3, .12, .07, .3, .12,
0, 0, 0, 1, 0, 0.2 );
// track green
colors[ VRML_COLOR_TRACK ] = VRML_COLOR( .08, .5, .1, .08, .5, .1,
0, 0, 0, 1, 0, 0.2 );
// silkscreen white
colors[ VRML_COLOR_SILK ] = VRML_COLOR( .9, .9, .9, .9, .9, .9,
0, 0, 0, 1, 0, 0.2 );
// pad silver
colors[ VRML_COLOR_TIN ] = VRML_COLOR( .749, .756, .761, .749, .756, .761,
0, 0, 0, 0.8, 0, 0.8 );
}
VRML_COLOR& GetColor( VRML_COLOR_INDEX aIndex )
{
return colors[aIndex];
}
void SetOffset( double aXoff, double aYoff )
{
tx = aXoff;
ty = aYoff;
}
double GetLayerZ( LAYER_NUM aLayer )
{
if( aLayer >= NB_LAYERS )
return 0;
return layer_z[ aLayer ];
}
void SetLayerZ( LAYER_NUM aLayer, double aValue )
{
layer_z[aLayer] = aValue;
}
void SetMaxDev( double dev )
{
holes.SetMaxDev( dev );
board.SetMaxDev( dev );
top_copper.SetMaxDev( dev );
bot_copper.SetMaxDev( dev );
top_silk.SetMaxDev( dev );
bot_silk.SetMaxDev( dev );
top_tin.SetMaxDev( dev );
bot_tin.SetMaxDev( dev );
}
};
// static var. for dealing with text
namespace VRMLEXPORT
{
static MODEL_VRML* model_vrml;
bool GetLayer( MODEL_VRML& aModel, LAYER_NUM layer, VRML_LAYER** vlayer );
}
// select the VRML layer object to draw on; return true if
// a layer has been selected.
bool VRMLEXPORT::GetLayer( MODEL_VRML& aModel, LAYER_NUM layer, VRML_LAYER** vlayer )
{
switch( layer )
{
case FIRST_COPPER_LAYER:
*vlayer = &aModel.bot_copper;
break;
case LAST_COPPER_LAYER:
*vlayer = &aModel.top_copper;
break;
case SILKSCREEN_N_BACK:
*vlayer = &aModel.bot_silk;
break;
case SILKSCREEN_N_FRONT:
*vlayer = &aModel.top_silk;
break;
default:
return false;
}
return true;
}
static void write_triangle_bag( FILE* output_file, VRML_COLOR& color,
VRML_LAYER* layer, bool plane, bool top,
double top_z, double bottom_z )
{
/* A lot of nodes are not required, but blender sometimes chokes
* without them */
static const char* shape_boiler[] =
{
"Transform {\n",
" children [\n",
" Group {\n",
" children [\n",
" Shape {\n",
" appearance Appearance {\n",
" material Material {\n",
0, // Material marker
" }\n",
" }\n",
" geometry IndexedFaceSet {\n",
" solid TRUE\n",
" coord Coordinate {\n",
" point [\n",
0, // Coordinates marker
" ]\n",
" }\n",
" coordIndex [\n",
0, // Index marker
" ]\n",
" }\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
0 // End marker
};
int marker_found = 0, lineno = 0;
while( marker_found < 4 )
{
if( shape_boiler[lineno] )
fputs( shape_boiler[lineno], output_file );
else
{
marker_found++;
switch( marker_found )
{
case 1: // Material marker
fprintf( output_file,
" diffuseColor %g %g %g\n",
color.diffuse_red,
color.diffuse_grn,
color.diffuse_blu );
fprintf( output_file,
" specularColor %g %g %g\n",
color.spec_red,
color.spec_grn,
color.spec_blu );
fprintf( output_file,
" emissiveColor %g %g %g\n",
color.emit_red,
color.emit_grn,
color.emit_blu );
fprintf( output_file,
" ambientIntensity %g\n", color.ambient );
fprintf( output_file,
" transparency %g\n", color.transp );
fprintf( output_file,
" shininess %g\n", color.shiny );
break;
case 2:
if( plane )
layer->WriteVertices( top_z, output_file );
else
layer->Write3DVertices( top_z, bottom_z, output_file );
fprintf( output_file, "\n" );
break;
case 3:
if( plane )
layer->WriteIndices( top, output_file );
else
layer->Write3DIndices( output_file );
fprintf( output_file, "\n" );
break;
default:
break;
}
}
lineno++;
}
}
static void write_layers( MODEL_VRML& aModel, FILE* output_file, BOARD* aPcb )
{
// VRML_LAYER board;
aModel.board.Tesselate( &aModel.holes );
double brdz = aModel.board_thickness / 2.0 - 40000 * aModel.scale;
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_PCB ),
&aModel.board, false, false, brdz, -brdz );
// VRML_LAYER top_copper;
aModel.top_copper.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.top_copper, true, true,
aModel.GetLayerZ( LAST_COPPER_LAYER ), 0 );
// VRML_LAYER top_tin;
aModel.top_tin.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.top_tin, true, true,
aModel.GetLayerZ( LAST_COPPER_LAYER ), 0 );
// VRML_LAYER bot_copper;
aModel.bot_copper.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.bot_copper, true, false,
aModel.GetLayerZ( FIRST_COPPER_LAYER ), 0 );
// VRML_LAYER bot_tin;
aModel.bot_tin.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.bot_tin, true, false,
aModel.GetLayerZ( FIRST_COPPER_LAYER ), 0 );
// VRML_LAYER top_silk;
aModel.top_silk.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_SILK ),
&aModel.top_silk, true, true,
aModel.GetLayerZ( SILKSCREEN_N_FRONT ), 0 );
// VRML_LAYER bot_silk;
aModel.bot_silk.Tesselate( &aModel.holes );
write_triangle_bag( output_file, aModel.GetColor( VRML_COLOR_SILK ),
&aModel.bot_silk, true, false,
aModel.GetLayerZ( SILKSCREEN_N_BACK ), 0 );
}
static void compute_layer_Zs( MODEL_VRML& aModel, BOARD* pcb )
{
int copper_layers = pcb->GetCopperLayerCount();
// We call it 'layer' thickness, but it's the whole board thickness!
aModel.board_thickness = pcb->GetDesignSettings().GetBoardThickness() * aModel.scale;
double half_thickness = aModel.board_thickness / 2;
// Compute each layer's Z value, more or less like the 3d view
for( LAYER_NUM i = FIRST_LAYER; i <= LAYER_N_FRONT; ++i )
{
if( i < copper_layers )
aModel.SetLayerZ( i, aModel.board_thickness * i / (copper_layers - 1) - half_thickness );
else
aModel.SetLayerZ( i, half_thickness ); // component layer
}
/* To avoid rounding interference, we apply an epsilon to each
* successive layer */
double epsilon_z = Millimeter2iu( 0.02 ) * aModel.scale;
aModel.SetLayerZ( SOLDERPASTE_N_BACK, -half_thickness - epsilon_z * 4 );
aModel.SetLayerZ( ADHESIVE_N_BACK, -half_thickness - epsilon_z * 3 );
aModel.SetLayerZ( SILKSCREEN_N_BACK, -half_thickness - epsilon_z * 2 );
aModel.SetLayerZ( SOLDERMASK_N_BACK, -half_thickness - epsilon_z );
aModel.SetLayerZ( SOLDERMASK_N_FRONT, half_thickness + epsilon_z );
aModel.SetLayerZ( SILKSCREEN_N_FRONT, half_thickness + epsilon_z * 2 );
aModel.SetLayerZ( ADHESIVE_N_FRONT, half_thickness + epsilon_z * 3 );
aModel.SetLayerZ( SOLDERPASTE_N_FRONT, half_thickness + epsilon_z * 4 );
aModel.SetLayerZ( DRAW_N, half_thickness + epsilon_z * 5 );
aModel.SetLayerZ( COMMENT_N, half_thickness + epsilon_z * 6 );
aModel.SetLayerZ( ECO1_N, half_thickness + epsilon_z * 7 );
aModel.SetLayerZ( ECO2_N, half_thickness + epsilon_z * 8 );
aModel.SetLayerZ( EDGE_N, 0 );
}
static void export_vrml_line( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
if( !VRMLEXPORT::GetLayer( aModel, layer, &vlayer ) )
return;
starty = -starty;
endy = -endy;
double angle = atan2( endy - starty, endx - startx );
double length = Distance( startx, starty, endx, endy ) + width;
double cx = ( startx + endx ) / 2.0;
double cy = ( starty + endy ) / 2.0;
vlayer->AddSlot( cx, cy, length, width, angle, 1, false );
}
static void export_vrml_circle( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
if( !VRMLEXPORT::GetLayer( aModel, layer, &vlayer ) )
return;
starty = -starty;
endy = -endy;
double hole, radius;
radius = Distance( startx, starty, endx, endy ) + ( width / 2);
hole = radius - width;
vlayer->AddCircle( startx, starty, radius, 1, false );
if( hole > 0.0001 )
{
vlayer->AddCircle( startx, starty, hole, 1, true );
}
}
static void export_vrml_arc( MODEL_VRML& aModel, LAYER_NUM layer,
double centerx, double centery,
double arc_startx, double arc_starty,
double width, double arc_angle )
{
VRML_LAYER* vlayer;
if( !VRMLEXPORT::GetLayer( aModel, layer, &vlayer ) )
return;
centery = -centery;
arc_starty = -arc_starty;
arc_angle *= -M_PI / 180;
vlayer->AddArc( centerx, centery, arc_startx, arc_starty,
width, arc_angle, 1, false );
}
static void export_vrml_drawsegment( MODEL_VRML& aModel, DRAWSEGMENT* drawseg )
{
LAYER_NUM layer = drawseg->GetLayer();
double w = drawseg->GetWidth() * aModel.scale;
double x = drawseg->GetStart().x * aModel.scale + aModel.tx;
double y = drawseg->GetStart().y * aModel.scale + aModel.ty;
double xf = drawseg->GetEnd().x * aModel.scale + aModel.tx;
double yf = drawseg->GetEnd().y * aModel.scale + aModel.ty;
// Items on the edge layer are handled elsewhere; just return
if( layer == EDGE_N )
return;
switch( drawseg->GetShape() )
{
case S_ARC:
export_vrml_arc( aModel, layer,
(double) drawseg->GetCenter().x,
(double) drawseg->GetCenter().y,
(double) drawseg->GetArcStart().x,
(double) drawseg->GetArcStart().y,
w, drawseg->GetAngle() / 10 );
break;
case S_CIRCLE:
export_vrml_circle( aModel, layer, x, y, xf, yf, w );
break;
default:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
}
}
/* C++ doesn't have closures and neither continuation forms... this is
* for coupling the vrml_text_callback with the common parameters */
static void vrml_text_callback( int x0, int y0, int xf, int yf )
{
LAYER_NUM s_text_layer = VRMLEXPORT::model_vrml->s_text_layer;
int s_text_width = VRMLEXPORT::model_vrml->s_text_width;
double scale = VRMLEXPORT::model_vrml->scale;
double tx = VRMLEXPORT::model_vrml->tx;
double ty = VRMLEXPORT::model_vrml->ty;
export_vrml_line( *VRMLEXPORT::model_vrml, s_text_layer,
x0 * scale + tx, y0 * scale + ty,
xf * scale + tx, yf * scale + ty,
s_text_width * scale );
}
static void export_vrml_pcbtext( MODEL_VRML& aModel, TEXTE_PCB* text )
{
VRMLEXPORT::model_vrml->s_text_layer = text->GetLayer();
VRMLEXPORT::model_vrml->s_text_width = text->GetThickness();
wxSize size = text->GetSize();
if( text->IsMirrored() )
NEGATE( size.x );
if( text->IsMultilineAllowed() )
{
wxPoint pos = text->GetTextPosition();
wxArrayString* list = wxStringSplit( text->GetText(), '\n' );
wxPoint offset;
offset.y = text->GetInterline();
RotatePoint( &offset, text->GetOrientation() );
for( unsigned i = 0; i<list->Count(); i++ )
{
wxString txt = list->Item( i );
DrawGraphicText( NULL, NULL, pos, BLACK,
txt, text->GetOrientation(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
pos += offset;
}
delete (list);
}
else
{
DrawGraphicText( NULL, NULL, text->GetTextPosition(), BLACK,
text->GetText(), text->GetOrientation(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_drawings( MODEL_VRML& aModel, BOARD* pcb )
{
// draw graphic items
for( EDA_ITEM* drawing = pcb->m_Drawings; drawing != 0; drawing = drawing->Next() )
{
LAYER_NUM layer = ( (DRAWSEGMENT*) drawing )->GetLayer();
if( layer != FIRST_COPPER_LAYER && layer != LAST_COPPER_LAYER
&& layer != SILKSCREEN_N_BACK && layer != SILKSCREEN_N_FRONT )
continue;
switch( drawing->Type() )
{
case PCB_LINE_T:
export_vrml_drawsegment( aModel, (DRAWSEGMENT*) drawing );
break;
case PCB_TEXT_T:
export_vrml_pcbtext( aModel, (TEXTE_PCB*) drawing );
break;
default:
break;
}
}
}
// board edges and cutouts
static void export_vrml_board( MODEL_VRML& aModel, BOARD* pcb )
{
CPOLYGONS_LIST bufferPcbOutlines; // stores the board main outlines
CPOLYGONS_LIST allLayerHoles; // Contains through holes, calculated only once
allLayerHoles.reserve( 20000 );
// Build a polygon from edge cut items
wxString msg;
if( !pcb->GetBoardPolygonOutlines( bufferPcbOutlines,
allLayerHoles, &msg ) )
{
msg << wxT( "\n\n" ) <<
_( "Unable to calculate the board outlines;\n"
"fall back to using the board boundary box." );
wxMessageBox( msg );
}
double scale = aModel.scale;
double dx = aModel.tx;
double dy = aModel.ty;
int i = 0;
int seg;
// deal with the solid outlines
int nvert = bufferPcbOutlines.GetCornersCount();
while( i < nvert )
{
seg = aModel.board.NewContour();
if( seg < 0 )
{
msg << wxT( "\n\n" ) <<
_( "VRML Export Failed:\nCould not add outline to contours." );
wxMessageBox( msg );
return;
}
while( i < nvert )
{
aModel.board.AddVertex( seg, bufferPcbOutlines[i].x * scale + dx,
-(bufferPcbOutlines[i].y * scale + dy) );
if( bufferPcbOutlines[i].end_contour )
break;
++i;
}
aModel.board.EnsureWinding( seg, false );
++i;
}
// deal with the holes
nvert = allLayerHoles.GetCornersCount();
i = 0;
while( i < nvert )
{
seg = aModel.holes.NewContour();
if( seg < 0 )
{
msg << wxT( "\n\n" ) <<
_( "VRML Export Failed:\nCould not add holes to contours." );
wxMessageBox( msg );
return;
}
while( i < nvert )
{
aModel.holes.AddVertex( seg, allLayerHoles[i].x * scale + dx,
-(allLayerHoles[i].y * scale + dy) );
if( allLayerHoles[i].end_contour )
break;
++i;
}
aModel.holes.EnsureWinding( seg, true );
++i;
}
}
static void export_round_padstack( MODEL_VRML& aModel, BOARD* pcb,
double x, double y, double r,
LAYER_NUM bottom_layer, LAYER_NUM top_layer,
double hole )
{
LAYER_NUM layer = top_layer;
bool thru = true;
// if not a thru hole do not put a hole in the board
if( top_layer != LAST_COPPER_LAYER || bottom_layer != FIRST_COPPER_LAYER )
thru = false;
while( 1 )
{
if( layer == FIRST_COPPER_LAYER )
{
aModel.bot_copper.AddCircle( x, -y, r, 1 );
if( hole > 0 )
{
if( thru )
aModel.holes.AddCircle( x, -y, hole, 1, true );
else
aModel.bot_copper.AddCircle( x, -y, hole, 1, true );
}
}
else if( layer == LAST_COPPER_LAYER )
{
aModel.top_copper.AddCircle( x, -y, r, 1 );
if( hole > 0 )
{
if( thru )
aModel.holes.AddCircle( x, -y, hole, 1, true );
else
aModel.top_copper.AddCircle( x, -y, hole, 1, true );
}
}
if( layer == bottom_layer )
break;
layer = bottom_layer;
}
}
static void export_vrml_via( MODEL_VRML& aModel, BOARD* pcb, SEGVIA* via )
{
double x, y, r, hole;
LAYER_NUM top_layer, bottom_layer;
hole = via->GetDrillValue() * aModel.scale / 2.0;
r = via->GetWidth() * aModel.scale / 2.0;
x = via->GetStart().x * aModel.scale + aModel.tx;
y = via->GetStart().y * aModel.scale + aModel.ty;
via->ReturnLayerPair( &top_layer, &bottom_layer );
// do not render a buried via
if( top_layer != LAST_COPPER_LAYER && bottom_layer != FIRST_COPPER_LAYER )
return;
// Export the via padstack
export_round_padstack( aModel, pcb, x, y, r, bottom_layer, top_layer, hole );
}
static void export_vrml_tracks( MODEL_VRML& aModel, BOARD* pcb )
{
for( TRACK* track = pcb->m_Track; track != NULL; track = track->Next() )
{
if( track->Type() == PCB_VIA_T )
{
export_vrml_via( aModel, pcb, (SEGVIA*) track );
}
else if( track->GetLayer() == FIRST_COPPER_LAYER
|| track->GetLayer() == LAST_COPPER_LAYER )
export_vrml_line( aModel, track->GetLayer(),
track->GetStart().x * aModel.scale + aModel.tx,
track->GetStart().y * aModel.scale + aModel.ty,
track->GetEnd().x * aModel.scale + aModel.tx,
track->GetEnd().y * aModel.scale + aModel.ty,
track->GetWidth() * aModel.scale );
}
}
static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb )
{
double scale = aModel.scale;
double dx = aModel.tx;
double dy = aModel.ty;
double x, y;
for( int ii = 0; ii < aPcb->GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = aPcb->GetArea( ii );
VRML_LAYER* vl;
if( !VRMLEXPORT::GetLayer( aModel, zone->GetLayer(), &vl ) )
continue;
if( !zone->IsFilled() )
{
zone->SetFillMode( 0 ); // use filled polygons
zone->BuildFilledSolidAreasPolygons( aPcb );
}
const CPOLYGONS_LIST& poly = zone->GetFilledPolysList();
int nvert = poly.GetCornersCount();
int i = 0;
while( i < nvert )
{
int seg = vl->NewContour();
bool first = true;
if( seg < 0 )
break;
while( i < nvert )
{
x = poly.GetX(i) * scale + dx;
y = -(poly.GetY(i) * scale + dy);
vl->AddVertex( seg, x, y );
if( poly.IsEndContour(i) )
break;
++i;
}
// KiCad ensures that the first polygon is the outline
// and all others are holes
vl->EnsureWinding( seg, first ? false : true );
if( first )
first = false;
++i;
}
}
}
static void export_vrml_text_module( TEXTE_MODULE* module )
{
if( module->IsVisible() )
{
wxSize size = module->GetSize();
if( module->IsMirrored() )
NEGATE( size.x ); // Text is mirrored
VRMLEXPORT::model_vrml->s_text_layer = module->GetLayer();
VRMLEXPORT::model_vrml->s_text_width = module->GetThickness();
DrawGraphicText( NULL, NULL, module->GetTextPosition(), BLACK,
module->GetText(), module->GetDrawRotation(), size,
module->GetHorizJustify(), module->GetVertJustify(),
module->GetThickness(), module->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_edge_module( MODEL_VRML& aModel, EDGE_MODULE* aOutline )
{
LAYER_NUM layer = aOutline->GetLayer();
double x = aOutline->GetStart().x * aModel.scale + aModel.tx;
double y = aOutline->GetStart().y * aModel.scale + aModel.ty;
double xf = aOutline->GetEnd().x * aModel.scale + aModel.tx;
double yf = aOutline->GetEnd().y * aModel.scale + aModel.ty;
double w = aOutline->GetWidth() * aModel.scale;
switch( aOutline->GetShape() )
{
case S_ARC:
export_vrml_arc( aModel, layer, x, y, xf, yf, w, aOutline->GetAngle() / 10 );
break;
case S_CIRCLE:
export_vrml_circle( aModel, layer, x, y, xf, yf, w );
break;
default:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
}
}
static void export_vrml_padshape( MODEL_VRML& aModel, VRML_LAYER* aLayer,
VRML_LAYER* aTinLayer, D_PAD* aPad )
{
// The (maybe offset) pad position
wxPoint pad_pos = aPad->ReturnShapePos();
double pad_x = pad_pos.x * aModel.scale + aModel.tx;
double pad_y = pad_pos.y * aModel.scale + aModel.ty;
wxSize pad_delta = aPad->GetDelta();
double pad_dx = pad_delta.x * aModel.scale / 2.0;
double pad_dy = pad_delta.y * aModel.scale / 2.0;
double pad_w = aPad->GetSize().x * aModel.scale / 2.0;
double pad_h = aPad->GetSize().y * aModel.scale / 2.0;
switch( aPad->GetShape() )
{
case PAD_CIRCLE:
aLayer->AddCircle( pad_x, -pad_y, pad_w, 1, true );
aTinLayer->AddCircle( pad_x, -pad_y, pad_w, 1, false );
break;
case PAD_OVAL:
aLayer->AddSlot( pad_x, -pad_y, pad_w * 2.0, pad_h * 2.0,
DECIDEG2RAD( aPad->GetOrientation() ), 1, true );
aTinLayer->AddSlot( pad_x, -pad_y, pad_w * 2.0, pad_h * 2.0,
DECIDEG2RAD( aPad->GetOrientation() ), 1, false );
break;
case PAD_RECT:
// Just to be sure :D
pad_dx = 0;
pad_dy = 0;
case PAD_TRAPEZOID:
{
double coord[8] =
{
-pad_w + pad_dy, -pad_h - pad_dx,
-pad_w - pad_dy, pad_h + pad_dx,
+pad_w - pad_dy, -pad_h + pad_dx,
+pad_w + pad_dy, pad_h - pad_dx
};
for( int i = 0; i < 4; i++ )
{
RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() );
coord[i * 2] += pad_x;
coord[i * 2 + 1] += pad_y;
}
int lines = aLayer->NewContour();
if( lines < 0 )
return;
aLayer->AddVertex( lines, coord[2], -coord[3] );
aLayer->AddVertex( lines, coord[6], -coord[7] );
aLayer->AddVertex( lines, coord[4], -coord[5] );
aLayer->AddVertex( lines, coord[0], -coord[1] );
aLayer->EnsureWinding( lines, true );
lines = aTinLayer->NewContour();
if( lines < 0 )
return;
aTinLayer->AddVertex( lines, coord[0], -coord[1] );
aTinLayer->AddVertex( lines, coord[4], -coord[5] );
aTinLayer->AddVertex( lines, coord[6], -coord[7] );
aTinLayer->AddVertex( lines, coord[2], -coord[3] );
aTinLayer->EnsureWinding( lines, false );
}
break;
default:
;
}
}
static void export_vrml_pad( MODEL_VRML& aModel, BOARD* pcb, D_PAD* aPad )
{
double hole_drill_w = (double) aPad->GetDrillSize().x * aModel.scale / 2.0;
double hole_drill_h = (double) aPad->GetDrillSize().y * aModel.scale / 2.0;
double hole_drill = std::min( hole_drill_w, hole_drill_h );
double hole_x = aPad->GetPosition().x * aModel.scale + aModel.tx;
double hole_y = aPad->GetPosition().y * aModel.scale + aModel.ty;
// Export the hole on the edge layer
if( hole_drill > 0 )
{
if( aPad->GetDrillShape() == PAD_DRILL_OBLONG )
{
// Oblong hole (slot)
aModel.holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0,
DECIDEG2RAD( aPad->GetOrientation() ), 1, true );
}
else
{
// Drill a round hole
aModel.holes.AddCircle( hole_x, -hole_y, hole_drill, 1, true );
}
}
// The pad proper, on the selected layers
LAYER_MSK layer_mask = aPad->GetLayerMask();
if( layer_mask & LAYER_BACK )
{
export_vrml_padshape( aModel, &aModel.bot_copper, &aModel.bot_tin, aPad );
}
if( layer_mask & LAYER_FRONT )
{
export_vrml_padshape( aModel, &aModel.top_copper, &aModel.top_tin, aPad );
}
}
// From axis/rot to quaternion
static void build_quat( double x, double y, double z, double a, double q[4] )
{
double sina = sin( a / 2 );
q[0] = x * sina;
q[1] = y * sina;
q[2] = z * sina;
q[3] = cos( a / 2 );
}
// From quaternion to axis/rot
static void from_quat( double q[4], double rot[4] )
{
rot[3] = acos( q[3] ) * 2;
for( int i = 0; i < 3; i++ )
{
rot[i] = q[i] / sin( rot[3] / 2 );
}
}
// Quaternion composition
static void compose_quat( double q1[4], double q2[4], double qr[4] )
{
double tmp[4];
tmp[0] = q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1];
tmp[1] = q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2];
tmp[2] = q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0];
tmp[3] = q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2];
qr[0] = tmp[0];
qr[1] = tmp[1];
qr[2] = tmp[2];
qr[3] = tmp[3];
}
static void export_vrml_module( MODEL_VRML& aModel, BOARD* aPcb, MODULE* aModule,
FILE* aOutputFile,
double aVRMLModelsToBiu,
bool aExport3DFiles, const wxString& a3D_Subdir )
{
// Reference and value
if( aModule->Reference().IsVisible() )
export_vrml_text_module( &aModule->Reference() );
if( aModule->Value().IsVisible() )
export_vrml_text_module( &aModule->Value() );
// Export module edges
for( EDA_ITEM* item = aModule->GraphicalItems(); item != NULL; item = item->Next() )
{
switch( item->Type() )
{
case PCB_MODULE_TEXT_T:
export_vrml_text_module( dynamic_cast<TEXTE_MODULE*>( item ) );
break;
case PCB_MODULE_EDGE_T:
export_vrml_edge_module( aModel, dynamic_cast<EDGE_MODULE*>( item ) );
break;
default:
break;
}
}
// Export pads
for( D_PAD* pad = aModule->Pads(); pad; pad = pad->Next() )
export_vrml_pad( aModel, aPcb, pad );
bool isFlipped = aModule->GetLayer() == LAYER_N_BACK;
// Export the object VRML model(s)
for( S3D_MASTER* vrmlm = aModule->Models(); vrmlm; vrmlm = vrmlm->Next() )
{
if( !vrmlm->Is3DType( S3D_MASTER::FILE3D_VRML ) )
continue;
// expand environment variables
wxString fname = wxExpandEnvVars( vrmlm->GetShape3DName() );
fname.Replace( wxT( "\\" ), wxT( "/" ) );
wxString source_fname = fname;
if( aExport3DFiles ) // Change illegal characters
{
ChangeIllegalCharacters( fname, true );
fname = a3D_Subdir + wxT( "/" ) + fname;
if( !wxFileExists( fname ) )
wxCopyFile( source_fname, fname );
}
/* Calculate 3D shape rotation:
* this is the rotation parameters, with an additional 180 deg rotation
* for footprints that are flipped
* When flipped, axis rotation is the horizontal axis (X axis)
*/
double rotx = -vrmlm->m_MatRotation.x;
double roty = -vrmlm->m_MatRotation.y;
double rotz = -vrmlm->m_MatRotation.z;
if( isFlipped )
{
rotx += 180.0;
NEGATE( roty );
NEGATE( rotz );
}
// Do some quaternion munching
double q1[4], q2[4], rot[4];
build_quat( 1, 0, 0, DEG2RAD( rotx ), q1 );
build_quat( 0, 1, 0, DEG2RAD( roty ), q2 );
compose_quat( q1, q2, q1 );
build_quat( 0, 0, 1, DEG2RAD( rotz ), q2 );
compose_quat( q1, q2, q1 );
// Note here aModule->GetOrientation() is in 0.1 degrees,
// so module rotation has to be converted to radians
build_quat( 0, 0, 1, DECIDEG2RAD( aModule->GetOrientation() ), q2 );
compose_quat( q1, q2, q1 );
from_quat( q1, rot );
fprintf( aOutputFile, "Transform {\n" );
// A null rotation would fail the acos!
if( rot[3] != 0.0 )
{
fprintf( aOutputFile, " rotation %g %g %g %g\n", rot[0], rot[1], rot[2], rot[3] );
}
// adjust 3D shape local offset position
// they are given in inch, so they are converted in board IU.
double offsetx = vrmlm->m_MatPosition.x * IU_PER_MILS * 1000.0;
double offsety = vrmlm->m_MatPosition.y * IU_PER_MILS * 1000.0;
double offsetz = vrmlm->m_MatPosition.z * IU_PER_MILS * 1000.0;
if( isFlipped )
NEGATE( offsetz );
else // In normal mode, Y axis is reversed in Pcbnew.
NEGATE( offsety );
RotatePoint( &offsetx, &offsety, aModule->GetOrientation() );
fprintf( aOutputFile, " translation %g %g %g\n",
(offsetx + aModule->GetPosition().x) * aModel.scale + aModel.tx,
-(offsety + aModule->GetPosition().y) * aModel.scale - aModel.ty,
(offsetz * aModel.scale ) + aModel.GetLayerZ( aModule->GetLayer() ) );
fprintf( aOutputFile, " scale %g %g %g\n",
vrmlm->m_MatScale.x * aVRMLModelsToBiu,
vrmlm->m_MatScale.y * aVRMLModelsToBiu,
vrmlm->m_MatScale.z * aVRMLModelsToBiu );
if( fname.EndsWith( wxT( "x3d" ) ) )
{
X3D_MODEL_PARSER* parser = new X3D_MODEL_PARSER( vrmlm );
if( parser )
{
// embed x3d model in vrml format
parser->Load( fname );
fprintf( aOutputFile,
" children [\n %s ]\n", TO_UTF8( parser->VRML_representation() ) );
fprintf( aOutputFile, " }\n" );
delete parser;
}
}
else
{
fprintf( aOutputFile,
" children [\n Inline {\n url \"%s\"\n } ]\n",
TO_UTF8( fname ) );
fprintf( aOutputFile, " }\n" );
}
}
}
bool PCB_EDIT_FRAME::ExportVRML_File( const wxString& aFullFileName,
double aMMtoWRMLunit, bool aExport3DFiles,
const wxString& a3D_Subdir )
{
wxString msg;
FILE* output_file;
BOARD* pcb = GetBoard();
MODEL_VRML model3d;
VRMLEXPORT::model_vrml = &model3d;
output_file = wxFopen( aFullFileName, wxT( "wt" ) );
if( output_file == NULL )
return false;
// Switch the locale to standard C (needed to print floating point numbers like 1.3)
SetLocaleTo_C_standard();
// Begin with the usual VRML boilerplate
wxString name = aFullFileName;
name.Replace( wxT( "\\" ), wxT( "/" ) );
ChangeIllegalCharacters( name, false );
fprintf( output_file, "#VRML V2.0 utf8\n"
"WorldInfo {\n"
" title \"%s - Generated by Pcbnew\"\n"
"}\n", TO_UTF8( name ) );
// Global VRML scale to export to a different scale.
model3d.scale = aMMtoWRMLunit / MM_PER_IU;
// Set the mechanical deviation limit (in this case 0.02mm)
// XXX - NOTE: the value should be set via the GUI
model3d.SetMaxDev( 20000 * model3d.scale );
fprintf( output_file, "Transform {\n" );
// compute the offset to center the board on (0, 0, 0)
// XXX - NOTE: we should allow the user a GUI option to specify the offset
EDA_RECT bbbox = pcb->ComputeBoundingBox();
model3d.SetOffset( -model3d.scale * bbbox.Centre().x, -model3d.scale * bbbox.Centre().y );
fprintf( output_file, " children [\n" );
// Preliminary computation: the z value for each layer
compute_layer_Zs( model3d, pcb );
// board edges and cutouts
export_vrml_board( model3d, pcb );
// Drawing and text on the board
export_vrml_drawings( model3d, pcb );
// Export vias and trackage
export_vrml_tracks( model3d, pcb );
// Export zone fills
export_vrml_zones( model3d, pcb);
/* scaling factor to convert 3D models to board units (decimils)
* Usually we use Wings3D to create thems.
* One can consider the 3D units is 0.1 inch (2.54 mm)
* So the scaling factor from 0.1 inch to board units
* is 2.54 * aMMtoWRMLunit
*/
double wrml_3D_models_scaling_factor = 2.54 * aMMtoWRMLunit;
// Export footprints
for( MODULE* module = pcb->m_Modules; module != 0; module = module->Next() )
export_vrml_module( model3d, pcb, module, output_file,
wrml_3D_models_scaling_factor,
aExport3DFiles, a3D_Subdir );
// write out the board and all layers
write_layers( model3d, output_file, pcb );
// Close the outer 'transform' node
fputs( "]\n}\n", output_file );
// End of work
fclose( output_file );
SetLocaleTo_Default(); // revert to the current locale
return true;
}
/*
* some characters cannot be used in filenames,
* this function change them to "_"
*/
static void ChangeIllegalCharacters( wxString& aFileName, bool aDirSepIsIllegal )
{
if( aDirSepIsIllegal )
aFileName.Replace( wxT( "/" ), wxT( "_" ) );
aFileName.Replace( wxT( " " ), wxT( "_" ) );
aFileName.Replace( wxT( ":" ), wxT( "_" ) );
}