kicad/pcbnew/zone_filler.cpp

1179 lines
43 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014-2017 CERN
* Copyright (C) 2014-2020 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Włostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <thread>
#include <algorithm>
#include <future>
#include <class_board.h>
#include <class_zone.h>
#include <class_module.h>
#include <class_edge_mod.h>
#include <class_drawsegment.h>
#include <class_pcb_text.h>
#include <class_pcb_target.h>
#include <class_track.h>
#include <connectivity/connectivity_data.h>
#include <board_commit.h>
#include <widgets/progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_file_io.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <confirm.h>
#include <convert_to_biu.h>
#include <math/util.h> // for KiROUND
#include "zone_filler.h"
class PROGRESS_REPORTER_HIDER
{
public:
PROGRESS_REPORTER_HIDER( WX_PROGRESS_REPORTER* aReporter )
{
m_reporter = aReporter;
if( aReporter )
aReporter->Hide();
}
~PROGRESS_REPORTER_HIDER()
{
if( m_reporter )
m_reporter->Show();
}
private:
WX_PROGRESS_REPORTER* m_reporter;
};
static const double s_RoundPadThermalSpokeAngle = 450;
static const bool s_DumpZonesWhenFilling = false;
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) :
m_board( aBoard ),
m_brdOutlinesValid( false ),
m_commit( aCommit ),
m_progressReporter( nullptr ),
m_high_def( 9 ),
m_low_def( 6 )
{
}
ZONE_FILLER::~ZONE_FILLER()
{
}
void ZONE_FILLER::InstallNewProgressReporter( wxWindow* aParent, const wxString& aTitle,
int aNumPhases )
{
m_uniqueReporter = std::make_unique<WX_PROGRESS_REPORTER>( aParent, aTitle, aNumPhases );
m_progressReporter = m_uniqueReporter.get();
}
bool ZONE_FILLER::Fill( const std::vector<ZONE_CONTAINER*>& aZones, bool aCheck )
{
std::vector<CN_ZONE_ISOLATED_ISLAND_LIST> toFill;
auto connectivity = m_board->GetConnectivity();
bool filledPolyWithOutline = not m_board->GetDesignSettings().m_ZoneUseNoOutlineInFill;
std::unique_lock<std::mutex> lock( connectivity->GetLock(), std::try_to_lock );
if( !lock )
return false;
if( m_progressReporter )
{
m_progressReporter->Report( aCheck ? _( "Checking zone fills..." ) : _( "Building zone fills..." ) );
m_progressReporter->SetMaxProgress( toFill.size() );
}
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours();
m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
// Update the bounding box shape caches in the pads to prevent multi-threaded rebuilds
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
if( pad->IsDirty() )
pad->BuildEffectiveShapes();
}
}
for( auto zone : aZones )
{
// Keepout zones are not filled
if( zone->GetIsKeepout() )
continue;
if( m_commit )
m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later
// to know if the current filled areas are up to date
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
zone->BuildHashValue( layer );
// Add the zone to the list of zones to test or refill
toFill.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST( zone, layer ) );
}
// Remove existing fill first to prevent drawing invalid polygons
// on some platforms
zone->UnFill();
}
std::atomic<size_t> nextItem( 0 );
size_t parallelThreadCount =
std::min<size_t>( std::thread::hardware_concurrency(), aZones.size() );
std::vector<std::future<size_t>> returns( parallelThreadCount );
auto fill_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t
{
size_t num = 0;
for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ )
{
PCB_LAYER_ID layer = toFill[i].m_layer;
ZONE_CONTAINER* zone = toFill[i].m_zone;
zone->SetFilledPolysUseThickness( filledPolyWithOutline );
SHAPE_POLY_SET rawPolys, finalPolys;
fillSingleZone( zone, layer, rawPolys, finalPolys );
zone->SetRawPolysList( layer, rawPolys );
zone->SetFilledPolysList( layer, finalPolys );
zone->SetIsFilled( true );
if( m_progressReporter )
m_progressReporter->AdvanceProgress();
num++;
}
return num;
};
if( parallelThreadCount <= 1 )
fill_lambda( m_progressReporter );
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii] = std::async( std::launch::async, fill_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
// Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status;
do
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) );
} while( status != std::future_status::ready );
}
}
// Now update the connectivity to check for copper islands
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Removing insulated copper islands..." ) );
m_progressReporter->KeepRefreshing();
}
connectivity->SetProgressReporter( m_progressReporter );
connectivity->FindIsolatedCopperIslands( toFill );
// Now remove insulated copper islands and islands outside the board edge
bool outOfDate = false;
for( auto& zone : toFill )
{
std::sort( zone.m_islands.begin(), zone.m_islands.end(), std::greater<int>() );
SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList( zone.m_layer );
long long int minArea = zone.m_zone->GetMinIslandArea();
ISLAND_REMOVAL_MODE mode = zone.m_zone->GetIslandRemovalMode();
// Remove solid areas outside the board cutouts and the insulated islands
// only zones with net code > 0 can have insulated islands by definition
if( zone.m_zone->GetNetCode() > 0 )
{
// solid areas outside the board cutouts are also removed, because they are usually
// insulated islands
for( auto idx : zone.m_islands )
{
double metricMin = minArea * ( MM_PER_IU * MM_PER_IU );
double metricArea = poly.Outline( idx ).Area() * ( MM_PER_IU * MM_PER_IU );
std::cout << ( metricArea < metricMin ) << std::endl;
if( mode == ISLAND_REMOVAL_MODE::ALWAYS
|| ( mode == ISLAND_REMOVAL_MODE::AREA
&& poly.Outline( idx ).Area() < minArea )
|| !m_boardOutline.Contains( poly.Polygon( idx ).front().CPoint( 0 ) ) )
poly.DeletePolygon( idx );
else
zone.m_zone->SetIsIsland( zone.m_layer, idx );
}
}
// Zones with no net can have areas outside the board cutouts.
// By definition, Zones with no net have no isolated island
// (in fact all filled areas are isolated islands)
// but they can have some areas outside the board cutouts.
// A filled area outside the board cutouts has all points outside cutouts,
// so we only need to check one point for each filled polygon.
// Note also non copper zones are already clipped
else if( m_brdOutlinesValid && zone.m_zone->IsOnCopperLayer() )
{
for( int idx = 0; idx < poly.OutlineCount(); )
{
if( poly.Polygon( idx ).empty()
|| !m_boardOutline.Contains( poly.Polygon( idx ).front().CPoint( 0 ) ) )
{
poly.DeletePolygon( idx );
}
else
idx++;
}
}
zone.m_zone->SetFilledPolysList( zone.m_layer, poly );
zone.m_zone->CalculateFilledArea();
if( aCheck && zone.m_zone->GetHashValue( zone.m_layer ) != poly.GetHash() )
outOfDate = true;
}
if( aCheck && outOfDate )
{
PROGRESS_REPORTER_HIDER raii( m_progressReporter );
KIDIALOG dlg( m_progressReporter->GetParent(),
_( "Zone fills are out-of-date. Refill?" ),
_( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING );
dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) );
dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL )
{
if( m_commit )
m_commit->Revert();
connectivity->SetProgressReporter( nullptr );
return false;
}
}
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Performing polygon fills..." ) );
m_progressReporter->SetMaxProgress( toFill.size() );
}
nextItem = 0;
auto tri_lambda = [&] ( PROGRESS_REPORTER* aReporter ) -> size_t
{
size_t num = 0;
for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ )
{
toFill[i].m_zone->CacheTriangulation();
num++;
if( m_progressReporter )
m_progressReporter->AdvanceProgress();
}
return num;
};
if( parallelThreadCount <= 1 )
tri_lambda( m_progressReporter );
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii] = std::async( std::launch::async, tri_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
// Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status;
do
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) );
} while( status != std::future_status::ready );
}
}
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Committing changes..." ) );
m_progressReporter->KeepRefreshing();
}
connectivity->SetProgressReporter( nullptr );
if( m_commit )
{
m_commit->Push( _( "Fill Zone(s)" ), false );
}
else
{
for( auto& i : toFill )
connectivity->Update( i.m_zone );
connectivity->RecalculateRatsnest();
}
return true;
}
/**
* Return true if the given pad has a thermal connection with the given zone.
*/
bool hasThermalConnection( D_PAD* pad, const ZONE_CONTAINER* aZone )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == ZONE_CONNECTION::THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB_STANDARD )
{
return false;
}
if( aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THERMAL
&& aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THT_THERMAL )
{
return false;
}
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 )
return false;
EDA_RECT item_boundingbox = pad->GetBoundingBox();
int thermalGap = aZone->GetThermalReliefGap( pad );
item_boundingbox.Inflate( thermalGap, thermalGap );
return item_boundingbox.Intersects( aZone->GetBoundingBox() );
}
/**
* Setup aDummyPad to have the same size and shape of aPad's hole. This allows us to create
* thermal reliefs and clearances for holes using the pad code.
*/
static void setupDummyPadForHole( const D_PAD* aPad, D_PAD& aDummyPad )
{
aDummyPad.SetNetCode( aPad->GetNetCode() );
aDummyPad.SetSize( aPad->GetDrillSize() );
aDummyPad.SetOrientation( aPad->GetOrientation() );
aDummyPad.SetShape( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL
: PAD_SHAPE_CIRCLE );
aDummyPad.SetPosition( aPad->GetPosition() );
}
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be
* either the thermal clearance or the electrical clearance).
*/
void ZONE_FILLER::addKnockout( D_PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles )
{
if( aPad->GetShape() == PAD_SHAPE_CUSTOM )
{
SHAPE_POLY_SET poly;
aPad->TransformShapeWithClearanceToPolygon( poly, aGap, m_high_def );
// the pad shape in zone can be its convex hull or the shape itself
if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, poly );
aHoles.NewOutline();
for( const wxPoint& pt : convex_hull )
aHoles.Append( pt );
}
else
aHoles.Append( poly );
}
else
{
// Optimizing polygon vertex count: the high definition is used for round
// and oval pads (pads with large arcs) but low def for other shapes (with
// small arcs)
if( aPad->GetShape() == PAD_SHAPE_CIRCLE || aPad->GetShape() == PAD_SHAPE_OVAL ||
( aPad->GetShape() == PAD_SHAPE_ROUNDRECT && aPad->GetRoundRectRadiusRatio() > 0.4 ) )
aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def );
else
aPad->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_low_def );
}
}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which
* might be either the electrical clearance or the board edge clearance).
*/
void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, int aGap, bool aIgnoreLineWidth,
SHAPE_POLY_SET& aHoles )
{
switch( aItem->Type() )
{
case PCB_LINE_T:
{
DRAWSEGMENT* seg = (DRAWSEGMENT*) aItem;
seg->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth );
break;
}
case PCB_TEXT_T:
{
TEXTE_PCB* text = (TEXTE_PCB*) aItem;
text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap );
break;
}
case PCB_MODULE_EDGE_T:
{
EDGE_MODULE* edge = (EDGE_MODULE*) aItem;
edge->TransformShapeWithClearanceToPolygon( aHoles, aGap, m_high_def, aIgnoreLineWidth );
break;
}
case PCB_MODULE_TEXT_T:
{
TEXTE_MODULE* text = (TEXTE_MODULE*) aItem;
if( text->IsVisible() )
text->TransformBoundingBoxWithClearanceToPolygon( &aHoles, aGap );
break;
}
default:
break;
}
}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add
* in spokes, which must be done later.
*/
void ZONE_FILLER::knockoutThermalReliefs( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aFill )
{
SHAPE_POLY_SET holes;
// Use a dummy pad to calculate relief when a pad has a hole but is not on the zone's
// copper layer. The dummy pad has the size and shape of the original pad's hole. We have
// to give it a parent because some functions expect a non-null parent to find clearance
// data, etc.
MODULE dummymodule( m_board );
D_PAD dummypad( &dummymodule );
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
if( !hasThermalConnection( pad, aZone ) )
continue;
// If the pad isn't on the current layer but has a hole, knock out a thermal relief
// for the hole.
if( !pad->IsOnLayer( aLayer ) )
{
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
setupDummyPadForHole( pad, dummypad );
pad = &dummypad;
}
addKnockout( pad, aZone->GetThermalReliefGap( pad ), holes );
}
}
holes.Simplify( SHAPE_POLY_SET::PM_FAST );
aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST );
}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are
* not connected to it.
*/
void ZONE_FILLER::buildCopperItemClearances( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aHoles )
{
static DRAWSEGMENT dummyEdge;
dummyEdge.SetLayer( Edge_Cuts );
// a small extra clearance to be sure actual track clearance is not smaller
// than requested clearance due to many approximations in calculations,
// like arc to segment approx, rounding issues...
// 2 microns are a good value
int extra_margin = Millimeter2iu( 0.002 );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
int zone_clearance = aZone->GetLocalClearance();
EDA_RECT zone_boundingbox = aZone->GetBoundingBox();
// items outside the zone bounding box are skipped, so it needs to be inflated by
// the largest clearance value found in the netclasses and rules
int biggest_clearance = std::max( zone_clearance, bds.GetBiggestClearanceValue() );
zone_boundingbox.Inflate( biggest_clearance + extra_margin );
// Use a dummy pad to calculate hole clearance when a pad has a hole but is not on the
// zone's copper layer. The dummy pad has the size and shape of the original pad's hole.
// We have to give it a parent because some functions expect a non-null parent to find
// clearance data, etc.
MODULE dummymodule( m_board );
D_PAD dummypad( &dummymodule );
// Add non-connected pad clearances
//
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
if( !pad->IsOnLayer( aLayer ) )
{
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
setupDummyPadForHole( pad, dummypad );
pad = &dummypad;
}
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0
|| aZone->GetPadConnection( pad ) == ZONE_CONNECTION::NONE )
{
if( pad->GetBoundingBox().Intersects( zone_boundingbox ) )
{
int gap;
// for pads having the same netcode as the zone, the net clearance has no
// meaning so use the greater of the zone clearance and the thermal relief
if( pad->GetNetCode() > 0 && pad->GetNetCode() == aZone->GetNetCode() )
gap = std::max( zone_clearance, aZone->GetThermalReliefGap( pad ) );
else
gap = aZone->GetClearance( pad );
addKnockout( pad, gap, aHoles );
}
}
}
}
// Add non-connected track clearances
//
for( auto track : m_board->Tracks() )
{
if( !track->IsOnLayer( aLayer ) )
continue;
if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) )
continue;
if( track->GetBoundingBox().Intersects( zone_boundingbox ) )
{
int gap = aZone->GetClearance( track ) + extra_margin;
track->TransformShapeWithClearanceToPolygon( aHoles, gap, m_low_def );
}
}
// Add graphic item clearances. They are by definition unconnected, and have no clearance
// definitions of their own.
//
auto doGraphicItem =
[&]( BOARD_ITEM* aItem )
{
// A item on the Edge_Cuts is always seen as on any layer:
if( !aItem->IsOnLayer( aLayer ) && !aItem->IsOnLayer( Edge_Cuts ) )
return;
if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
{
bool ignoreLineWidth = aItem->IsOnLayer( Edge_Cuts );
int gap = aZone->GetClearance( aItem );
addKnockout( aItem, gap, ignoreLineWidth, aHoles );
}
};
for( auto module : m_board->Modules() )
{
doGraphicItem( &module->Reference() );
doGraphicItem( &module->Value() );
for( auto item : module->GraphicalItems() )
doGraphicItem( item );
}
for( auto item : m_board->Drawings() )
doGraphicItem( item );
// Add zones outlines having an higher priority and keepout
//
for( ZONE_CONTAINER* zone : m_board->GetZoneList( true ) )
{
// If the zones share no common layers
if( !zone->GetLayerSet().test( aLayer ) )
continue;
if( !zone->GetIsKeepout() && zone->GetPriority() <= aZone->GetPriority() )
continue;
if( zone->GetIsKeepout() && !zone->GetDoNotAllowCopperPour() )
continue;
// A higher priority zone or keepout area is found: remove this area
EDA_RECT item_boundingbox = zone->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
// Add the zone outline area. Don't use any clearance for keepouts, or for zones
// with the same net (they will be connected but will honor their own clearance,
// thermal connections, etc.).
int gap = 0;
if( !zone->GetIsKeepout() && aZone->GetNetCode() != zone->GetNetCode() )
gap = aZone->GetClearance( zone );
zone->TransformOutlinesShapeWithClearanceToPolygon( aHoles, gap );
}
}
aHoles.Simplify( SHAPE_POLY_SET::PM_FAST );
}
/**
* 1 - Creates the main zone outline using a correction to shrink the resulting area by
* m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2
* so that when drawing outline with segments having a thickness of m_ZoneMinThickness the
* outlines will match exactly the initial outlines
* 2 - Knocks out thermal reliefs around thermally-connected pads
* 3 - Builds a set of thermal spoke for the whole zone
* 4 - Knocks out unconnected copper items, deleting any affected spokes
* 5 - Removes unconnected copper islands, deleting any affected spokes
* 6 - Adds in the remaining spokes
*/
void ZONE_FILLER::computeRawFilledArea( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer,
const SHAPE_POLY_SET& aSmoothedOutline,
std::set<VECTOR2I>* aPreserveCorners,
SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys )
{
m_high_def = m_board->GetDesignSettings().m_MaxError;
m_low_def = std::min( ARC_LOW_DEF, int( m_high_def*1.5 ) ); // Reasonable value
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = Millimeter2iu( 0.001 );
int numSegs = std::max( GetArcToSegmentCount( half_min_width, m_high_def, 360.0 ), 6 );
// solid polygons are deflated and inflated during calculations.
// Polygons deflate usually do not create issues.
// Polygons inflate is a tricky transform, because it can create excessively long and narrow 'spikes'
// especially for acute angles.
// But in very case, the inflate transform caannot create bigger shapes than initial shapes.
// so the corner strategy is very important.
// The best is SHAPE_POLY_SET::ROUND_ALL_CORNERS.
// unfortunately, it creates a lot of small segments.
// SHAPE_POLY_SET::ALLOW_ACUTE_CORNERS is not acceptable
// So for intermediate transforms, we use CHAMFER_ALL_CORNERS.
// For final transform, we use ROUND_ALL_CORNERS
SHAPE_POLY_SET::CORNER_STRATEGY intermediatecornerStrategy = SHAPE_POLY_SET::CHAMFER_ALL_CORNERS;
SHAPE_POLY_SET::CORNER_STRATEGY finalcornerStrategy = SHAPE_POLY_SET::ROUND_ALL_CORNERS;
std::deque<SHAPE_LINE_CHAIN> thermalSpokes;
SHAPE_POLY_SET clearanceHoles;
std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO(
s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) );
aRawPolys = aSmoothedOutline;
if( s_DumpZonesWhenFilling )
dumper->BeginGroup( "clipper-zone" );
knockoutThermalReliefs( aZone, aLayer, aRawPolys );
if( s_DumpZonesWhenFilling )
dumper->Write( &aRawPolys, "solid-areas-minus-thermal-reliefs" );
buildCopperItemClearances( aZone, aLayer, clearanceHoles );
if( s_DumpZonesWhenFilling )
dumper->Write( &aRawPolys, "clearance holes" );
buildThermalSpokes( aZone, aLayer, thermalSpokes );
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true;
SHAPE_POLY_SET testAreas = aRawPolys;
testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
{
testAreas.Deflate( half_min_width - epsilon, numSegs, intermediatecornerStrategy );
testAreas.Inflate( half_min_width - epsilon, numSegs, intermediatecornerStrategy );
}
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches();
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes )
{
const VECTOR2I& testPt = spoke.CPoint( 3 );
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) )
{
aRawPolys.AddOutline( spoke );
continue;
}
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes )
{
if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) )
{
aRawPolys.AddOutline( spoke );
break;
}
}
}
// Ensure previous changes (adding thermal stubs) do not add
// filled areas outside the zone boundary
aRawPolys.BooleanIntersection( aSmoothedOutline, SHAPE_POLY_SET::PM_FAST );
aRawPolys.Simplify( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &aRawPolys, "solid-areas-with-thermal-spokes" );
aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
aRawPolys.Deflate( half_min_width - epsilon, numSegs, intermediatecornerStrategy );
if( s_DumpZonesWhenFilling )
dumper->Write( &aRawPolys, "solid-areas-before-hatching" );
// Now remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
addHatchFillTypeOnZone( aZone, aLayer, aRawPolys );
if( s_DumpZonesWhenFilling )
dumper->Write( &aRawPolys, "solid-areas-after-hatching" );
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() )
{
// If we're stroking the zone with a min_width stroke then this will naturally
// inflate the zone by half_min_width
}
else if( half_min_width - epsilon > epsilon )
{
aRawPolys.Simplify( SHAPE_POLY_SET::PM_FAST );
aRawPolys.Inflate( half_min_width - epsilon, numSegs, finalcornerStrategy );
// If we've deflated/inflated by something near our corner radius then we will have
// ended up with too-sharp corners. Apply outline smoothing again.
if( aZone->GetMinThickness() > (int)aZone->GetCornerRadius() )
aRawPolys.BooleanIntersection( aSmoothedOutline, SHAPE_POLY_SET::PM_FAST );
}
aRawPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
if( s_DumpZonesWhenFilling )
dumper->Write( &aRawPolys, "areas_fractured" );
aFinalPolys = aRawPolys;
if( s_DumpZonesWhenFilling )
dumper->EndGroup();
}
/*
* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
* ( holes are linked by overlapping segments to the main outline)
*/
bool ZONE_FILLER::fillSingleZone( ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aRawPolys, SHAPE_POLY_SET& aFinalPolys )
{
SHAPE_POLY_SET smoothedPoly;
std::set<VECTOR2I> colinearCorners;
aZone->GetColinearCorners( m_board, colinearCorners );
/*
* convert outlines + holes to outlines without holes (adding extra segments if necessary)
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building
* this zone
*/
if ( !aZone->BuildSmoothedPoly( smoothedPoly, &colinearCorners ) )
return false;
if( aZone->IsOnCopperLayer() )
{
computeRawFilledArea(
aZone, aLayer, smoothedPoly, &colinearCorners, aRawPolys, aFinalPolys );
}
else
{
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = Millimeter2iu( 0.001 );
int numSegs = std::max( GetArcToSegmentCount( half_min_width, m_high_def, 360.0 ), 6 );
if( m_brdOutlinesValid )
smoothedPoly.BooleanIntersection( m_boardOutline, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
smoothedPoly.Deflate( half_min_width/* - epsilon*/, numSegs );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
addHatchFillTypeOnZone( aZone, aLayer, smoothedPoly );
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() )
{
// If we're stroking the zone with a min_width stroke then this will naturally
// inflate the zone by half_min_width
}
else if( half_min_width - epsilon > epsilon )
smoothedPoly.Deflate( -( half_min_width - epsilon ), numSegs );
aRawPolys = smoothedPoly;
aFinalPolys = smoothedPoly;
aFinalPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
aZone->SetNeedRefill( false );
return true;
}
/**
* Function buildThermalSpokes
*/
void ZONE_FILLER::buildThermalSpokes( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer,
std::deque<SHAPE_LINE_CHAIN>& aSpokesList )
{
auto zoneBB = aZone->GetBoundingBox();
int zone_clearance = aZone->GetZoneClearance();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance );
zoneBB.Inflate( biggest_clearance );
// Is a point on the boundary of the polygon inside or outside? This small epsilon lets
// us avoid the question.
int epsilon = KiROUND( IU_PER_MM * 0.04 ); // about 1.5 mil
for( auto module : m_board->Modules() )
{
for( auto pad : module->Pads() )
{
if( !hasThermalConnection( pad, aZone ) )
continue;
// We currently only connect to pads, not pad holes
if( !pad->IsOnLayer( aLayer ) )
continue;
int thermalReliefGap = aZone->GetThermalReliefGap( pad );
// Calculate thermal bridge half width
int spoke_w = aZone->GetThermalReliefCopperBridge( pad );
// Avoid spoke_w bigger than the smaller pad size, because
// it is not possible to create stubs bigger than the pad.
// Possible refinement: have a separate size for vertical and horizontal stubs
spoke_w = std::min( spoke_w, pad->GetSize().x );
spoke_w = std::min( spoke_w, pad->GetSize().y );
// Cannot create stubs having a width < zone min thickness
if( spoke_w <= aZone->GetMinThickness() )
continue;
int spoke_half_w = spoke_w / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = pad->GetBoundingBox();
itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) )
continue;
// Thermal spokes consist of segments from the pad center to points just outside
// the thermal relief.
//
// We use the bounding-box to lay out the spokes, but for this to work the
// bounding box has to be built at the same rotation as the spokes.
// We have to use a dummy pad to avoid dirtying the cached shapes
wxPoint shapePos = pad->ShapePos();
double padAngle = pad->GetOrientation();
D_PAD dummy_pad( *pad );
dummy_pad.SetOrientation( 0.0 );
dummy_pad.SetPosition( { 0, 0 } );
BOX2I reliefBB = dummy_pad.GetBoundingBox();
reliefBB.Inflate( thermalReliefGap + epsilon );
// For circle pads, the thermal spoke orientation is 45 deg
if( pad->GetShape() == PAD_SHAPE_CIRCLE )
padAngle = s_RoundPadThermalSpokeAngle;
for( int i = 0; i < 4; i++ )
{
SHAPE_LINE_CHAIN spoke;
switch( i )
{
case 0: // lower stub
spoke.Append( +spoke_half_w, -spoke_half_w );
spoke.Append( -spoke_half_w, -spoke_half_w );
spoke.Append( -spoke_half_w, reliefBB.GetBottom() );
spoke.Append( 0, reliefBB.GetBottom() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetBottom() );
break;
case 1: // upper stub
spoke.Append( +spoke_half_w, spoke_half_w );
spoke.Append( -spoke_half_w, spoke_half_w );
spoke.Append( -spoke_half_w, reliefBB.GetTop() );
spoke.Append( 0, reliefBB.GetTop() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetTop() );
break;
case 2: // right stub
spoke.Append( -spoke_half_w, spoke_half_w );
spoke.Append( -spoke_half_w, -spoke_half_w );
spoke.Append( reliefBB.GetRight(), -spoke_half_w );
spoke.Append( reliefBB.GetRight(), 0 ); // test pt
spoke.Append( reliefBB.GetRight(), spoke_half_w );
break;
case 3: // left stub
spoke.Append( spoke_half_w, spoke_half_w );
spoke.Append( spoke_half_w, -spoke_half_w );
spoke.Append( reliefBB.GetLeft(), -spoke_half_w );
spoke.Append( reliefBB.GetLeft(), 0 ); // test pt
spoke.Append( reliefBB.GetLeft(), spoke_half_w );
break;
}
spoke.Rotate( -DECIDEG2RAD( padAngle ) );
spoke.Move( shapePos );
spoke.SetClosed( true );
spoke.GenerateBBoxCache();
aSpokesList.push_back( std::move( spoke ) );
}
}
}
}
void ZONE_FILLER::addHatchFillTypeOnZone( const ZONE_CONTAINER* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aRawPolys )
{
// Build grid:
// obviously line thickness must be > zone min thickness.
// It can happens if a board file was edited by hand by a python script
// Use 1 micron margin to be *sure* there is no issue in Gerber files
// (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
// This margin also avoid problems due to rounding coordinates in next calculations
// that can create incorrect polygons
int thickness = std::max( aZone->GetHatchFillTypeThickness(),
aZone->GetMinThickness()+Millimeter2iu( 0.001 ) );
int linethickness = thickness - aZone->GetMinThickness();
int gridsize = thickness + aZone->GetHatchFillTypeGap();
double orientation = aZone->GetHatchFillTypeOrientation();
SHAPE_POLY_SET filledPolys = aRawPolys;
// Use a area that contains the rotated bbox by orientation,
// and after rotate the result by -orientation.
if( orientation != 0.0 )
{
filledPolys.Rotate( M_PI/180.0 * orientation, VECTOR2I( 0,0 ) );
}
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchFillTypeGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base;
int hole_size = aZone->GetHatchFillTypeGap() + aZone->GetMinThickness();
VECTOR2I corner( 0, 0 );;
hole_base.Append( corner );
corner.x += hole_size;
hole_base.Append( corner );
corner.y += hole_size;
hole_base.Append( corner );
corner.x = 0;
hole_base.Append( corner );
hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() / 2;
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchFillTypeSmoothingLevel() > 0 )
{
// the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchFillTypeSmoothingValue()
// aZone->GetHatchFillTypeSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchFillTypeGap()
* aZone->GetHatchFillTypeSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonnable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > Millimeter2iu( SMOOTH_MIN_VAL_MM ) )
{
SHAPE_POLY_SET smooth_hole;
smooth_hole.AddOutline( hole_base );
int smooth_level = aZone->GetHatchFillTypeSmoothingLevel();
if( smooth_value < Millimeter2iu( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 )
smooth_level = 1;
// Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness()/2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchFillTypeGap()/2 );
// the error to approximate a circle by segments when smoothing corners by a arc
int error_max = std::max( Millimeter2iu( 0.01), smooth_value/20 );
switch( smooth_level )
{
case 1:
// Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 );
break;
default:
if( aZone->GetHatchFillTypeSmoothingLevel() > 2 )
error_max /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, error_max ).Outline( 0 );
break;
case 0:
break;
};
}
}
// Build holes
SHAPE_POLY_SET holes;
for( int xx = 0; ; xx++ )
{
int xpos = xx * gridsize;
if( xpos > bbox.GetWidth() )
break;
for( int yy = 0; ; yy++ )
{
int ypos = yy * gridsize;
if( ypos > bbox.GetHeight() )
break;
// Generate hole
SHAPE_LINE_CHAIN hole( hole_base );
hole.Move( VECTOR2I( xpos, ypos ) );
holes.AddOutline( hole );
}
}
holes.Move( bbox.GetPosition() );
// Clamp holes to the area of filled zones with a outline thickness
// > aZone->GetMinThickness() to be sure the thermal pads can be built
int outline_margin = std::max( (aZone->GetMinThickness()*10)/9, linethickness/2 );
filledPolys.Deflate( outline_margin, 16 );
holes.BooleanIntersection( filledPolys, SHAPE_POLY_SET::PM_FAST );
if( orientation != 0.0 )
holes.Rotate( -M_PI/180.0 * orientation, VECTOR2I( 0,0 ) );
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); )
{
double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii );
else
++ii;
}
// create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons needed by Gerber files and Fracture()
aRawPolys.BooleanSubtract( aRawPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}