kicad/pcbnew/footprint.cpp

3601 lines
108 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2015 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2015 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <core/mirror.h>
#include <confirm.h>
#include <refdes_utils.h>
#include <bitmaps.h>
#include <unordered_set>
#include <string_utils.h>
#include <pcb_edit_frame.h>
#include <board.h>
#include <board_design_settings.h>
#include <macros.h>
#include <pad.h>
#include <pcb_marker.h>
#include <pcb_group.h>
#include <pcb_track.h>
#include <pcb_dimension.h>
#include <pcb_reference_image.h>
#include <pcb_textbox.h>
#include <pcb_field.h>
#include <footprint.h>
#include <zone.h>
#include <view/view.h>
#include <i18n_utility.h>
#include <drc/drc_item.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <convert_shape_list_to_polygon.h>
#include <geometry/convex_hull.h>
#include "convert_basic_shapes_to_polygon.h"
FOOTPRINT::FOOTPRINT( BOARD* parent ) :
BOARD_ITEM_CONTAINER((BOARD_ITEM*) parent, PCB_FOOTPRINT_T ),
m_boundingBoxCacheTimeStamp( 0 ),
m_visibleBBoxCacheTimeStamp( 0 ),
m_textExcludedBBoxCacheTimeStamp( 0 ),
m_hullCacheTimeStamp( 0 ),
m_initial_comments( nullptr ),
m_courtyard_cache_timestamp( 0 )
{
m_attributes = 0;
m_layer = F_Cu;
m_orient = ANGLE_0;
m_fpStatus = FP_PADS_are_LOCKED;
m_arflag = 0;
m_link = 0;
m_lastEditTime = 0;
m_localClearance = 0;
m_localSolderMaskMargin = 0;
m_localSolderPasteMargin = 0;
m_localSolderPasteMarginRatio = 0.0;
m_zoneConnection = ZONE_CONNECTION::INHERITED;
m_fileFormatVersionAtLoad = 0;
// These are the mandatory fields for the editor to work
for( int i = 0; i < MANDATORY_FIELDS; i++ )
{
PCB_FIELD* field = new PCB_FIELD( this, i );
m_fields.push_back( field );
switch( i )
{
case REFERENCE_FIELD:
field->SetLayer( F_SilkS );
field->SetVisible( true );
break;
case VALUE_FIELD:
field->SetLayer( F_Fab );
field->SetVisible( true );
break;
default:
field->SetLayer( F_Fab );
field->SetVisible( false );
break;
}
}
m_3D_Drawings.clear();
}
FOOTPRINT::FOOTPRINT( const FOOTPRINT& aFootprint ) :
BOARD_ITEM_CONTAINER( aFootprint )
{
m_pos = aFootprint.m_pos;
m_fpid = aFootprint.m_fpid;
m_attributes = aFootprint.m_attributes;
m_fpStatus = aFootprint.m_fpStatus;
m_orient = aFootprint.m_orient;
m_lastEditTime = aFootprint.m_lastEditTime;
m_link = aFootprint.m_link;
m_path = aFootprint.m_path;
m_cachedBoundingBox = aFootprint.m_cachedBoundingBox;
m_boundingBoxCacheTimeStamp = aFootprint.m_boundingBoxCacheTimeStamp;
m_cachedVisibleBBox = aFootprint.m_cachedVisibleBBox;
m_visibleBBoxCacheTimeStamp = aFootprint.m_visibleBBoxCacheTimeStamp;
m_cachedTextExcludedBBox = aFootprint.m_cachedTextExcludedBBox;
m_textExcludedBBoxCacheTimeStamp = aFootprint.m_textExcludedBBoxCacheTimeStamp;
m_cachedHull = aFootprint.m_cachedHull;
m_hullCacheTimeStamp = aFootprint.m_hullCacheTimeStamp;
m_localClearance = aFootprint.m_localClearance;
m_localSolderMaskMargin = aFootprint.m_localSolderMaskMargin;
m_localSolderPasteMargin = aFootprint.m_localSolderPasteMargin;
m_localSolderPasteMarginRatio = aFootprint.m_localSolderPasteMarginRatio;
m_zoneConnection = aFootprint.m_zoneConnection;
m_netTiePadGroups = aFootprint.m_netTiePadGroups;
m_fileFormatVersionAtLoad = aFootprint.m_fileFormatVersionAtLoad;
std::map<BOARD_ITEM*, BOARD_ITEM*> ptrMap;
// Copy fields
for( PCB_FIELD* field : aFootprint.Fields() )
{
PCB_FIELD* newField = static_cast<PCB_FIELD*>( field->Clone() );
ptrMap[field] = newField;
Add( newField, ADD_MODE::APPEND ); // Append to ensure indexes are identical
}
// Copy pads
for( PAD* pad : aFootprint.Pads() )
{
PAD* newPad = static_cast<PAD*>( pad->Clone() );
ptrMap[ pad ] = newPad;
Add( newPad, ADD_MODE::APPEND ); // Append to ensure indexes are identical
}
// Copy zones
for( ZONE* zone : aFootprint.Zones() )
{
ZONE* newZone = static_cast<ZONE*>( zone->Clone() );
ptrMap[ zone ] = newZone;
Add( newZone, ADD_MODE::APPEND ); // Append to ensure indexes are identical
// Ensure the net info is OK and especially uses the net info list
// living in the current board
// Needed when copying a fp from fp editor that has its own board
// Must be NETINFO_LIST::ORPHANED_ITEM for a keepout that has no net.
newZone->SetNetCode( -1 );
}
// Copy drawings
for( BOARD_ITEM* item : aFootprint.GraphicalItems() )
{
BOARD_ITEM* newItem = static_cast<BOARD_ITEM*>( item->Clone() );
ptrMap[ item ] = newItem;
Add( newItem, ADD_MODE::APPEND ); // Append to ensure indexes are identical
}
// Copy groups
for( PCB_GROUP* group : aFootprint.Groups() )
{
PCB_GROUP* newGroup = static_cast<PCB_GROUP*>( group->Clone() );
ptrMap[ group ] = newGroup;
Add( newGroup, ADD_MODE::APPEND ); // Append to ensure indexes are identical
}
// Rebuild groups
for( PCB_GROUP* group : aFootprint.Groups() )
{
PCB_GROUP* newGroup = static_cast<PCB_GROUP*>( ptrMap[ group ] );
newGroup->GetItems().clear();
for( BOARD_ITEM* member : group->GetItems() )
{
if( ptrMap.count( member ) )
newGroup->AddItem( ptrMap[ member ] );
}
}
// Copy auxiliary data
m_3D_Drawings = aFootprint.m_3D_Drawings;
m_libDescription = aFootprint.m_libDescription;
m_keywords = aFootprint.m_keywords;
m_privateLayers = aFootprint.m_privateLayers;
m_arflag = 0;
m_initial_comments = aFootprint.m_initial_comments ?
new wxArrayString( *aFootprint.m_initial_comments ) : nullptr;
}
FOOTPRINT::FOOTPRINT( FOOTPRINT&& aFootprint ) :
BOARD_ITEM_CONTAINER( aFootprint )
{
*this = std::move( aFootprint );
}
FOOTPRINT::~FOOTPRINT()
{
// Untangle group parents before doing any deleting
for( PCB_GROUP* group : m_groups )
{
for( BOARD_ITEM* item : group->GetItems() )
item->SetParentGroup( nullptr );
}
// Clean up the owned elements
delete m_initial_comments;
for( PCB_FIELD* f : m_fields )
delete f;
m_fields.clear();
for( PAD* p : m_pads )
delete p;
m_pads.clear();
for( ZONE* zone : m_zones )
delete zone;
m_zones.clear();
for( PCB_GROUP* group : m_groups )
delete group;
m_groups.clear();
for( BOARD_ITEM* d : m_drawings )
delete d;
m_drawings.clear();
if( BOARD* board = GetBoard() )
board->IncrementTimeStamp();
}
PCB_FIELD* FOOTPRINT::GetField( MANDATORY_FIELD_T aFieldType )
{
return m_fields[aFieldType];
}
const PCB_FIELD* FOOTPRINT::GetField( MANDATORY_FIELD_T aFieldType ) const
{
return m_fields[aFieldType];
}
PCB_FIELD* FOOTPRINT::GetFieldById( int aFieldId )
{
for( PCB_FIELD* field : m_fields )
{
if( field->GetId() == aFieldId )
return field;
}
return nullptr;
}
bool FOOTPRINT::HasFieldByName( const wxString& aFieldName ) const
{
for( PCB_FIELD* field : m_fields )
{
if( field->GetCanonicalName() == aFieldName )
return true;
}
return false;
}
PCB_FIELD* FOOTPRINT::GetFieldByName( const wxString& aFieldName )
{
if( aFieldName.empty() )
return nullptr;
for( PCB_FIELD* field : m_fields )
{
if( field->GetName() == aFieldName )
return field;
}
return nullptr;
}
wxString FOOTPRINT::GetFieldText( const wxString& aFieldName ) const
{
for( const PCB_FIELD* field : m_fields )
{
if( aFieldName == field->GetName() || aFieldName == field->GetCanonicalName() )
return field->GetText();
}
return wxEmptyString;
}
void FOOTPRINT::GetFields( std::vector<PCB_FIELD*>& aVector, bool aVisibleOnly )
{
for( PCB_FIELD* field : m_fields )
{
if( aVisibleOnly )
{
if( !field->IsVisible() || field->GetText().IsEmpty() )
continue;
}
aVector.push_back( field );
}
}
PCB_FIELD* FOOTPRINT::AddField( const PCB_FIELD& aField )
{
int newNdx = m_fields.size();
m_fields.push_back( new PCB_FIELD( aField ) );
return m_fields[newNdx];
}
void FOOTPRINT::RemoveField( const wxString& aFieldName )
{
for( unsigned i = MANDATORY_FIELDS; i < m_fields.size(); ++i )
{
if( aFieldName == m_fields[i]->GetName( false ) )
{
m_fields.erase( m_fields.begin() + i );
return;
}
}
}
void FOOTPRINT::ApplyDefaultSettings( const BOARD& board, bool aStyleFields, bool aStyleText,
bool aStyleShapes )
{
if( aStyleFields )
{
for( PCB_FIELD* field : m_fields )
field->StyleFromSettings( board.GetDesignSettings() );
}
for( BOARD_ITEM* item : m_drawings )
{
switch( item->Type() )
{
case PCB_TEXT_T:
case PCB_TEXTBOX_T:
if( aStyleText )
item->StyleFromSettings( board.GetDesignSettings() );
break;
case PCB_SHAPE_T:
if( aStyleShapes && !item->IsOnCopperLayer() )
item->StyleFromSettings( board.GetDesignSettings() );
break;
default:
break;
}
}
}
bool FOOTPRINT::FixUuids()
{
// replace null UUIDs if any by a valid uuid
std::vector< BOARD_ITEM* > item_list;
for( PCB_FIELD* field : m_fields )
item_list.push_back( field );
for( PAD* pad : m_pads )
item_list.push_back( pad );
for( BOARD_ITEM* gr_item : m_drawings )
item_list.push_back( gr_item );
// Note: one cannot fix null UUIDs inside the group, but it should not happen
// because null uuids can be found in old footprints, therefore without group
for( PCB_GROUP* group : m_groups )
item_list.push_back( group );
// Probably notneeded, because old fp do not have zones. But just in case.
for( ZONE* zone : m_zones )
item_list.push_back( zone );
bool changed = false;
for( BOARD_ITEM* item : item_list )
{
if( item->m_Uuid == niluuid )
{
const_cast<KIID&>( item->m_Uuid ) = KIID();
changed = true;
}
}
return changed;
}
FOOTPRINT& FOOTPRINT::operator=( FOOTPRINT&& aOther )
{
BOARD_ITEM::operator=( aOther );
m_pos = aOther.m_pos;
m_fpid = aOther.m_fpid;
m_attributes = aOther.m_attributes;
m_fpStatus = aOther.m_fpStatus;
m_orient = aOther.m_orient;
m_lastEditTime = aOther.m_lastEditTime;
m_link = aOther.m_link;
m_path = aOther.m_path;
m_cachedBoundingBox = aOther.m_cachedBoundingBox;
m_boundingBoxCacheTimeStamp = aOther.m_boundingBoxCacheTimeStamp;
m_cachedVisibleBBox = aOther.m_cachedVisibleBBox;
m_visibleBBoxCacheTimeStamp = aOther.m_visibleBBoxCacheTimeStamp;
m_cachedTextExcludedBBox = aOther.m_cachedTextExcludedBBox;
m_textExcludedBBoxCacheTimeStamp = aOther.m_textExcludedBBoxCacheTimeStamp;
m_cachedHull = aOther.m_cachedHull;
m_hullCacheTimeStamp = aOther.m_hullCacheTimeStamp;
m_localClearance = aOther.m_localClearance;
m_localSolderMaskMargin = aOther.m_localSolderMaskMargin;
m_localSolderPasteMargin = aOther.m_localSolderPasteMargin;
m_localSolderPasteMarginRatio = aOther.m_localSolderPasteMarginRatio;
m_zoneConnection = aOther.m_zoneConnection;
m_netTiePadGroups = aOther.m_netTiePadGroups;
// Move the fields
m_fields.clear();
for( PCB_FIELD* field : aOther.Fields() )
Add( field );
// Move the pads
m_pads.clear();
for( PAD* pad : aOther.Pads() )
Add( pad );
aOther.Pads().clear();
// Move the zones
m_zones.clear();
for( ZONE* item : aOther.Zones() )
{
Add( item );
// Ensure the net info is OK and especially uses the net info list
// living in the current board
// Needed when copying a fp from fp editor that has its own board
// Must be NETINFO_LIST::ORPHANED_ITEM for a keepout that has no net.
item->SetNetCode( -1 );
}
aOther.Zones().clear();
// Move the drawings
m_drawings.clear();
for( BOARD_ITEM* item : aOther.GraphicalItems() )
Add( item );
aOther.GraphicalItems().clear();
// Move the groups
m_groups.clear();
for( PCB_GROUP* group : aOther.Groups() )
Add( group );
aOther.Groups().clear();
// Copy auxiliary data
m_3D_Drawings = aOther.m_3D_Drawings;
m_libDescription = aOther.m_libDescription;
m_keywords = aOther.m_keywords;
m_privateLayers = aOther.m_privateLayers;
m_initial_comments = aOther.m_initial_comments;
// Clear the other item's containers since this is a move
aOther.Fields().clear();
aOther.Pads().clear();
aOther.Zones().clear();
aOther.GraphicalItems().clear();
aOther.m_initial_comments = nullptr;
return *this;
}
FOOTPRINT& FOOTPRINT::operator=( const FOOTPRINT& aOther )
{
BOARD_ITEM::operator=( aOther );
m_pos = aOther.m_pos;
m_fpid = aOther.m_fpid;
m_attributes = aOther.m_attributes;
m_fpStatus = aOther.m_fpStatus;
m_orient = aOther.m_orient;
m_lastEditTime = aOther.m_lastEditTime;
m_link = aOther.m_link;
m_path = aOther.m_path;
m_cachedBoundingBox = aOther.m_cachedBoundingBox;
m_boundingBoxCacheTimeStamp = aOther.m_boundingBoxCacheTimeStamp;
m_cachedVisibleBBox = aOther.m_cachedVisibleBBox;
m_visibleBBoxCacheTimeStamp = aOther.m_visibleBBoxCacheTimeStamp;
m_cachedTextExcludedBBox = aOther.m_cachedTextExcludedBBox;
m_textExcludedBBoxCacheTimeStamp = aOther.m_textExcludedBBoxCacheTimeStamp;
m_cachedHull = aOther.m_cachedHull;
m_hullCacheTimeStamp = aOther.m_hullCacheTimeStamp;
m_localClearance = aOther.m_localClearance;
m_localSolderMaskMargin = aOther.m_localSolderMaskMargin;
m_localSolderPasteMargin = aOther.m_localSolderPasteMargin;
m_localSolderPasteMarginRatio = aOther.m_localSolderPasteMarginRatio;
m_zoneConnection = aOther.m_zoneConnection;
m_netTiePadGroups = aOther.m_netTiePadGroups;
std::map<BOARD_ITEM*, BOARD_ITEM*> ptrMap;
// Copy fields
m_fields.clear();
for( PCB_FIELD* field : aOther.GetFields() )
{
PCB_FIELD* newField = new PCB_FIELD( *field );
ptrMap[field] = newField;
Add( newField );
}
// Copy pads
m_pads.clear();
for( PAD* pad : aOther.Pads() )
{
PAD* newPad = new PAD( *pad );
ptrMap[ pad ] = newPad;
Add( newPad );
}
// Copy zones
m_zones.clear();
for( ZONE* zone : aOther.Zones() )
{
ZONE* newZone = static_cast<ZONE*>( zone->Clone() );
ptrMap[ zone ] = newZone;
Add( newZone );
// Ensure the net info is OK and especially uses the net info list
// living in the current board
// Needed when copying a fp from fp editor that has its own board
// Must be NETINFO_LIST::ORPHANED_ITEM for a keepout that has no net.
newZone->SetNetCode( -1 );
}
// Copy drawings
m_drawings.clear();
for( BOARD_ITEM* item : aOther.GraphicalItems() )
{
BOARD_ITEM* newItem = static_cast<BOARD_ITEM*>( item->Clone() );
ptrMap[ item ] = newItem;
Add( newItem );
}
// Copy groups
m_groups.clear();
for( PCB_GROUP* group : aOther.Groups() )
{
PCB_GROUP* newGroup = static_cast<PCB_GROUP*>( group->Clone() );
newGroup->GetItems().clear();
for( BOARD_ITEM* member : group->GetItems() )
newGroup->AddItem( ptrMap[ member ] );
Add( newGroup );
}
// Copy auxiliary data
m_3D_Drawings = aOther.m_3D_Drawings;
m_libDescription = aOther.m_libDescription;
m_keywords = aOther.m_keywords;
m_privateLayers = aOther.m_privateLayers;
m_initial_comments = aOther.m_initial_comments ?
new wxArrayString( *aOther.m_initial_comments ) : nullptr;
return *this;
}
bool FOOTPRINT::IsConflicting() const
{
return HasFlag( COURTYARD_CONFLICT );
}
void FOOTPRINT::GetContextualTextVars( wxArrayString* aVars ) const
{
aVars->push_back( wxT( "REFERENCE" ) );
aVars->push_back( wxT( "VALUE" ) );
aVars->push_back( wxT( "LAYER" ) );
aVars->push_back( wxT( "FOOTPRINT_LIBRARY" ) );
aVars->push_back( wxT( "FOOTPRINT_NAME" ) );
aVars->push_back( wxT( "SHORT_NET_NAME(<pad_number>)" ) );
aVars->push_back( wxT( "NET_NAME(<pad_number>)" ) );
aVars->push_back( wxT( "NET_CLASS(<pad_number>)" ) );
aVars->push_back( wxT( "PIN_NAME(<pad_number>)" ) );
}
bool FOOTPRINT::ResolveTextVar( wxString* token, int aDepth ) const
{
if( GetBoard() && GetBoard()->GetBoardUse() == BOARD_USE::FPHOLDER )
return false;
if( token->IsSameAs( wxT( "REFERENCE" ) ) )
{
*token = Reference().GetShownText( false, aDepth + 1 );
return true;
}
else if( token->IsSameAs( wxT( "VALUE" ) ) )
{
*token = Value().GetShownText( false, aDepth + 1 );
return true;
}
else if( token->IsSameAs( wxT( "LAYER" ) ) )
{
*token = GetLayerName();
return true;
}
else if( token->IsSameAs( wxT( "FOOTPRINT_LIBRARY" ) ) )
{
*token = m_fpid.GetUniStringLibNickname();
return true;
}
else if( token->IsSameAs( wxT( "FOOTPRINT_NAME" ) ) )
{
*token = m_fpid.GetUniStringLibItemName();
return true;
}
else if( token->StartsWith( wxT( "SHORT_NET_NAME(" ) )
|| token->StartsWith( wxT( "NET_NAME(" ) )
|| token->StartsWith( wxT( "NET_CLASS(" ) )
|| token->StartsWith( wxT( "PIN_NAME(" ) ) )
{
wxString padNumber = token->AfterFirst( '(' );
padNumber = padNumber.BeforeLast( ')' );
for( PAD* pad : Pads() )
{
if( pad->GetNumber() == padNumber )
{
if( token->StartsWith( wxT( "SHORT_NET_NAME" ) ) )
*token = pad->GetShortNetname();
else if( token->StartsWith( wxT( "NET_NAME" ) ) )
*token = pad->GetNetname();
else if( token->StartsWith( wxT( "NET_CLASS" ) ) )
*token = pad->GetNetClassName();
else
*token = pad->GetPinFunction();
return true;
}
}
}
else if( HasFieldByName( *token ) )
{
*token = GetFieldText( *token );
return true;
}
if( GetBoard() && GetBoard()->ResolveTextVar( token, aDepth + 1 ) )
return true;
return false;
}
void FOOTPRINT::ClearAllNets()
{
// Force the ORPHANED dummy net info for all pads.
// ORPHANED dummy net does not depend on a board
for( PAD* pad : m_pads )
pad->SetNetCode( NETINFO_LIST::ORPHANED );
}
void FOOTPRINT::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode, bool aSkipConnectivity )
{
switch( aBoardItem->Type() )
{
case PCB_FIELD_T:
// Always append fields
m_fields.push_back( static_cast<PCB_FIELD*>( aBoardItem ) );
break;
case PCB_TEXT_T:
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_SHAPE_T:
case PCB_TEXTBOX_T:
case PCB_REFERENCE_IMAGE_T:
if( aMode == ADD_MODE::APPEND )
m_drawings.push_back( aBoardItem );
else
m_drawings.push_front( aBoardItem );
break;
case PCB_PAD_T:
if( aMode == ADD_MODE::APPEND )
m_pads.push_back( static_cast<PAD*>( aBoardItem ) );
else
m_pads.push_front( static_cast<PAD*>( aBoardItem ) );
break;
case PCB_ZONE_T:
if( aMode == ADD_MODE::APPEND )
m_zones.push_back( static_cast<ZONE*>( aBoardItem ) );
else
m_zones.insert( m_zones.begin(), static_cast<ZONE*>( aBoardItem ) );
break;
case PCB_GROUP_T:
if( aMode == ADD_MODE::APPEND )
m_groups.push_back( static_cast<PCB_GROUP*>( aBoardItem ) );
else
m_groups.insert( m_groups.begin(), static_cast<PCB_GROUP*>( aBoardItem ) );
break;
default:
{
wxString msg;
msg.Printf( wxT( "FOOTPRINT::Add() needs work: BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() );
wxFAIL_MSG( msg );
return;
}
}
aBoardItem->ClearEditFlags();
aBoardItem->SetParent( this );
}
void FOOTPRINT::Remove( BOARD_ITEM* aBoardItem, REMOVE_MODE aMode )
{
switch( aBoardItem->Type() )
{
case PCB_FIELD_T:
{
PCB_FIELD* field = static_cast<PCB_FIELD*>( aBoardItem );
for( auto it = m_fields.begin(); it != m_fields.end(); ++it )
{
if( *it == aBoardItem )
{
m_fields.erase( it );
break;
}
}
}
break;
case PCB_TEXT_T:
case PCB_DIM_ALIGNED_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_LEADER_T:
case PCB_SHAPE_T:
case PCB_TEXTBOX_T:
case PCB_REFERENCE_IMAGE_T:
for( auto it = m_drawings.begin(); it != m_drawings.end(); ++it )
{
if( *it == aBoardItem )
{
m_drawings.erase( it );
break;
}
}
break;
case PCB_PAD_T:
for( auto it = m_pads.begin(); it != m_pads.end(); ++it )
{
if( *it == static_cast<PAD*>( aBoardItem ) )
{
m_pads.erase( it );
break;
}
}
break;
case PCB_ZONE_T:
for( auto it = m_zones.begin(); it != m_zones.end(); ++it )
{
if( *it == static_cast<ZONE*>( aBoardItem ) )
{
m_zones.erase( it );
break;
}
}
break;
case PCB_GROUP_T:
for( auto it = m_groups.begin(); it != m_groups.end(); ++it )
{
if( *it == static_cast<PCB_GROUP*>( aBoardItem ) )
{
m_groups.erase( it );
break;
}
}
break;
default:
{
wxString msg;
msg.Printf( wxT( "FOOTPRINT::Remove() needs work: BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() );
wxFAIL_MSG( msg );
}
}
aBoardItem->SetFlags( STRUCT_DELETED );
PCB_GROUP* parentGroup = aBoardItem->GetParentGroup();
if( parentGroup && !( parentGroup->GetFlags() & STRUCT_DELETED ) )
parentGroup->RemoveItem( aBoardItem );
}
double FOOTPRINT::GetArea( int aPadding ) const
{
BOX2I bbox = GetBoundingBox( false, false );
double w = std::abs( static_cast<double>( bbox.GetWidth() ) ) + aPadding;
double h = std::abs( static_cast<double>( bbox.GetHeight() ) ) + aPadding;
return w * h;
}
int FOOTPRINT::GetLikelyAttribute() const
{
int smd_count = 0;
int tht_count = 0;
for( PAD* pad : m_pads )
{
switch( pad->GetProperty() )
{
case PAD_PROP::FIDUCIAL_GLBL:
case PAD_PROP::FIDUCIAL_LOCAL:
continue;
case PAD_PROP::HEATSINK:
case PAD_PROP::CASTELLATED:
continue;
case PAD_PROP::NONE:
case PAD_PROP::BGA:
case PAD_PROP::TESTPOINT:
break;
}
switch( pad->GetAttribute() )
{
case PAD_ATTRIB::PTH:
tht_count++;
break;
case PAD_ATTRIB::SMD:
if( pad->IsOnCopperLayer() )
smd_count++;
break;
default:
break;
}
}
// Footprints with plated through-hole pads should usually be marked through hole even if they
// also have SMD because they might not be auto-placed. Exceptions to this might be shielded
if( tht_count > 0 )
return FP_THROUGH_HOLE;
if( smd_count > 0 )
return FP_SMD;
return 0;
}
wxString FOOTPRINT::GetTypeName() const
{
if( ( m_attributes & FP_SMD ) == FP_SMD )
return _( "SMD" );
if( ( m_attributes & FP_THROUGH_HOLE ) == FP_THROUGH_HOLE )
return _( "Through hole" );
return _( "Other" );
}
BOX2I FOOTPRINT::GetFpPadsLocalBbox() const
{
BOX2I bbox;
// We want the bounding box of the footprint pads at rot 0, not flipped
// Create such a image:
FOOTPRINT dummy( *this );
dummy.SetPosition( VECTOR2I( 0, 0 ) );
dummy.SetOrientation( ANGLE_0 );
if( dummy.IsFlipped() )
dummy.Flip( VECTOR2I( 0, 0 ), false );
for( PAD* pad : dummy.Pads() )
bbox.Merge( pad->GetBoundingBox() );
// Remove the parent and the group from the dummy footprint before deletion
dummy.SetParent( nullptr );
dummy.SetParentGroup( nullptr );
return bbox;
}
const BOX2I FOOTPRINT::GetBoundingBox() const
{
return GetBoundingBox( true, true );
}
const BOX2I FOOTPRINT::GetBoundingBox( bool aIncludeText, bool aIncludeInvisibleText ) const
{
std::vector<PCB_TEXT*> texts;
const BOARD* board = GetBoard();
bool isFPEdit = board && board->IsFootprintHolder();
if( board )
{
if( aIncludeText && aIncludeInvisibleText )
{
if( m_boundingBoxCacheTimeStamp >= board->GetTimeStamp() )
return m_cachedBoundingBox;
}
else if( aIncludeText )
{
if( m_visibleBBoxCacheTimeStamp >= board->GetTimeStamp() )
return m_cachedVisibleBBox;
}
else
{
if( m_textExcludedBBoxCacheTimeStamp >= board->GetTimeStamp() )
return m_cachedTextExcludedBBox;
}
}
BOX2I bbox( m_pos );
bbox.Inflate( pcbIUScale.mmToIU( 0.25 ) ); // Give a min size to the bbox
// Calculate the footprint side
PCB_LAYER_ID footprintSide = GetSide();
for( BOARD_ITEM* item : m_drawings )
{
if( m_privateLayers.test( item->GetLayer() ) && !isFPEdit )
continue;
// We want the bitmap bounding box just in the footprint editor
// so it will start with the correct initial zoom
if( item->Type() == PCB_REFERENCE_IMAGE_T && !isFPEdit )
continue;
// Handle text separately
if( item->Type() == PCB_TEXT_T )
{
texts.push_back( static_cast<PCB_TEXT*>( item ) );
continue;
}
// If we're not including text then drop annotations as well -- unless, of course, it's
// an unsided footprint -- in which case it's likely to be nothing *but* annotations.
if( !aIncludeText && footprintSide != UNDEFINED_LAYER )
{
if( BaseType( item->Type() ) == PCB_DIMENSION_T )
continue;
if( item->GetLayer() == Cmts_User || item->GetLayer() == Dwgs_User
|| item->GetLayer() == Eco1_User || item->GetLayer() == Eco2_User )
{
continue;
}
}
bbox.Merge( item->GetBoundingBox() );
}
for( PCB_FIELD* field : m_fields )
{
// Reference and value get their own processing
if( !field->IsReference() && !field->IsValue() )
texts.push_back( field );
}
for( PAD* pad : m_pads )
bbox.Merge( pad->GetBoundingBox() );
for( ZONE* zone : m_zones )
bbox.Merge( zone->GetBoundingBox() );
bool noDrawItems = ( m_drawings.empty() && m_pads.empty() && m_zones.empty() );
// Groups do not contribute to the rect, only their members
if( aIncludeText || noDrawItems )
{
// Only PCB_TEXT and PCB_FIELD items are independently selectable;
// PCB_TEXTBOX items go in with other graphic items above.
for( PCB_TEXT* text : texts )
{
if( !isFPEdit && m_privateLayers.test( text->GetLayer() ) )
continue;
if( aIncludeInvisibleText || text->IsVisible() )
bbox.Merge( text->GetBoundingBox() );
}
// This can be further optimized when aIncludeInvisibleText is true, but currently
// leaving this as is until it's determined there is a noticeable speed hit.
bool valueLayerIsVisible = true;
bool refLayerIsVisible = true;
if( board )
{
// The first "&&" conditional handles the user turning layers off as well as layers
// not being present in the current PCB stackup. Values, references, and all
// footprint text can also be turned off via the GAL meta-layers, so the 2nd and
// 3rd "&&" conditionals handle that.
valueLayerIsVisible = board->IsLayerVisible( Value().GetLayer() )
&& board->IsElementVisible( LAYER_FP_VALUES )
&& board->IsElementVisible( LAYER_FP_TEXT );
refLayerIsVisible = board->IsLayerVisible( Reference().GetLayer() )
&& board->IsElementVisible( LAYER_FP_REFERENCES )
&& board->IsElementVisible( LAYER_FP_TEXT );
}
if( ( Value().IsVisible() && valueLayerIsVisible )
|| aIncludeInvisibleText
|| noDrawItems )
{
bbox.Merge( Value().GetBoundingBox() );
}
if( ( Reference().IsVisible() && refLayerIsVisible )
|| aIncludeInvisibleText
|| noDrawItems )
{
bbox.Merge( Reference().GetBoundingBox() );
}
}
if( board )
{
if( ( aIncludeText && aIncludeInvisibleText ) || noDrawItems )
{
m_boundingBoxCacheTimeStamp = board->GetTimeStamp();
m_cachedBoundingBox = bbox;
}
else if( aIncludeText )
{
m_visibleBBoxCacheTimeStamp = board->GetTimeStamp();
m_cachedVisibleBBox = bbox;
}
else
{
m_textExcludedBBoxCacheTimeStamp = board->GetTimeStamp();
m_cachedTextExcludedBBox = bbox;
}
}
return bbox;
}
const BOX2I FOOTPRINT::GetLayerBoundingBox( LSET aLayers ) const
{
std::vector<PCB_TEXT*> texts;
const BOARD* board = GetBoard();
bool isFPEdit = board && board->IsFootprintHolder();
// Start with an uninitialized bounding box
BOX2I bbox;
for( BOARD_ITEM* item : m_drawings )
{
if( m_privateLayers.test( item->GetLayer() ) && !isFPEdit )
continue;
if( ( aLayers & item->GetLayerSet() ).none() )
continue;
// We want the bitmap bounding box just in the footprint editor
// so it will start with the correct initial zoom
if( item->Type() == PCB_REFERENCE_IMAGE_T && !isFPEdit )
continue;
bbox.Merge( item->GetBoundingBox() );
}
for( PAD* pad : m_pads )
{
if( ( aLayers & pad->GetLayerSet() ).none() )
continue;
bbox.Merge( pad->GetBoundingBox() );
}
for( ZONE* zone : m_zones )
{
if( ( aLayers & zone->GetLayerSet() ).none() )
continue;
bbox.Merge( zone->GetBoundingBox() );
}
return bbox;
}
SHAPE_POLY_SET FOOTPRINT::GetBoundingHull() const
{
const BOARD* board = GetBoard();
bool isFPEdit = board && board->IsFootprintHolder();
if( board )
{
if( m_hullCacheTimeStamp >= board->GetTimeStamp() )
return m_cachedHull;
}
SHAPE_POLY_SET rawPolys;
SHAPE_POLY_SET hull;
for( BOARD_ITEM* item : m_drawings )
{
if( !isFPEdit && m_privateLayers.test( item->GetLayer() ) )
continue;
if( item->Type() != PCB_TEXT_T && item->Type() != PCB_REFERENCE_IMAGE_T )
{
item->TransformShapeToPolygon( rawPolys, UNDEFINED_LAYER, 0, ARC_LOW_DEF,
ERROR_OUTSIDE );
}
// We intentionally exclude footprint text from the bounding hull.
}
for( PAD* pad : m_pads )
{
pad->TransformShapeToPolygon( rawPolys, UNDEFINED_LAYER, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
// In case hole is larger than pad
pad->TransformHoleToPolygon( rawPolys, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
}
for( ZONE* zone : m_zones )
{
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
const SHAPE_POLY_SET& layerPoly = *zone->GetFilledPolysList( layer );
for( int ii = 0; ii < layerPoly.OutlineCount(); ii++ )
{
const SHAPE_LINE_CHAIN& poly = layerPoly.COutline( ii );
rawPolys.AddOutline( poly );
}
}
}
// If there are some graphic items, build the actual hull.
// However if no items, create a minimal polygon (can happen if a footprint
// is created with no item: it contains only 2 texts.
if( rawPolys.OutlineCount() == 0 )
{
// generate a small dummy rectangular outline around the anchor
const int halfsize = pcbIUScale.mmToIU( 1.0 );
rawPolys.NewOutline();
// add a square:
rawPolys.Append( GetPosition().x - halfsize, GetPosition().y - halfsize );
rawPolys.Append( GetPosition().x + halfsize, GetPosition().y - halfsize );
rawPolys.Append( GetPosition().x + halfsize, GetPosition().y + halfsize );
rawPolys.Append( GetPosition().x - halfsize, GetPosition().y + halfsize );
}
std::vector<VECTOR2I> convex_hull;
BuildConvexHull( convex_hull, rawPolys );
m_cachedHull.RemoveAllContours();
m_cachedHull.NewOutline();
for( const VECTOR2I& pt : convex_hull )
m_cachedHull.Append( pt );
if( board )
m_hullCacheTimeStamp = board->GetTimeStamp();
return m_cachedHull;
}
void FOOTPRINT::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg, msg2;
// Don't use GetShownText(); we want to see the variable references here
aList.emplace_back( UnescapeString( Reference().GetText() ),
UnescapeString( Value().GetText() ) );
if( aFrame->IsType( FRAME_FOOTPRINT_VIEWER )
|| aFrame->IsType( FRAME_FOOTPRINT_CHOOSER )
|| aFrame->IsType( FRAME_FOOTPRINT_EDITOR ) )
{
size_t padCount = GetPadCount( DO_NOT_INCLUDE_NPTH );
aList.emplace_back( _( "Library" ), GetFPID().GetLibNickname().wx_str() );
aList.emplace_back( _( "Footprint Name" ), GetFPID().GetLibItemName().wx_str() );
aList.emplace_back( _( "Pads" ), wxString::Format( wxT( "%zu" ), padCount ) );
aList.emplace_back( wxString::Format( _( "Doc: %s" ), GetLibDescription() ),
wxString::Format( _( "Keywords: %s" ), GetKeywords() ) );
return;
}
// aFrame is the board editor:
switch( GetSide() )
{
case F_Cu: aList.emplace_back( _( "Board Side" ), _( "Front" ) ); break;
case B_Cu: aList.emplace_back( _( "Board Side" ), _( "Back (Flipped)" ) ); break;
default: /* unsided: user-layers only, etc. */ break;
}
auto addToken = []( wxString* aStr, const wxString& aAttr )
{
if( !aStr->IsEmpty() )
*aStr += wxT( ", " );
*aStr += aAttr;
};
wxString status;
wxString attrs;
if( IsLocked() )
addToken( &status, _( "Locked" ) );
if( m_fpStatus & FP_is_PLACED )
addToken( &status, _( "autoplaced" ) );
if( m_attributes & FP_BOARD_ONLY )
addToken( &attrs, _( "not in schematic" ) );
if( m_attributes & FP_EXCLUDE_FROM_POS_FILES )
addToken( &attrs, _( "exclude from pos files" ) );
if( m_attributes & FP_EXCLUDE_FROM_BOM )
addToken( &attrs, _( "exclude from BOM" ) );
if( m_attributes & FP_DNP )
addToken( &attrs, _( "DNP" ) );
aList.emplace_back( _( "Status: " ) + status, _( "Attributes:" ) + wxS( " " ) + attrs );
aList.emplace_back( _( "Rotation" ), wxString::Format( wxT( "%.4g" ),
GetOrientation().AsDegrees() ) );
msg.Printf( _( "Footprint: %s" ), m_fpid.GetUniStringLibId() );
msg2.Printf( _( "3D-Shape: %s" ), m_3D_Drawings.empty() ? _( "<none>" )
: m_3D_Drawings.front().m_Filename );
aList.emplace_back( msg, msg2 );
msg.Printf( _( "Doc: %s" ), m_libDescription );
msg2.Printf( _( "Keywords: %s" ), m_keywords );
aList.emplace_back( msg, msg2 );
}
PCB_LAYER_ID FOOTPRINT::GetSide() const
{
if( const BOARD* board = GetBoard() )
{
if( board->IsFootprintHolder() )
return UNDEFINED_LAYER;
}
// Test pads first; they're the most likely to return a quick answer.
for( PAD* pad : m_pads )
{
if( ( LSET::SideSpecificMask() & pad->GetLayerSet() ).any() )
return GetLayer();
}
for( BOARD_ITEM* item : m_drawings )
{
if( LSET::SideSpecificMask().test( item->GetLayer() ) )
return GetLayer();
}
for( ZONE* zone : m_zones )
{
if( ( LSET::SideSpecificMask() & zone->GetLayerSet() ).any() )
return GetLayer();
}
return UNDEFINED_LAYER;
}
bool FOOTPRINT::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
// If we have any pads, fall back on normal checking
for( PAD* pad : m_pads )
{
if( pad->IsOnLayer( aLayer ) )
return true;
}
for( ZONE* zone : m_zones )
{
if( zone->IsOnLayer( aLayer ) )
return true;
}
for( PCB_FIELD* field : m_fields )
{
if( field->IsOnLayer( aLayer ) )
return true;
}
for( BOARD_ITEM* item : m_drawings )
{
if( item->IsOnLayer( aLayer ) )
return true;
}
return false;
}
bool FOOTPRINT::HitTestOnLayer( const VECTOR2I& aPosition, PCB_LAYER_ID aLayer, int aAccuracy ) const
{
for( PAD* pad : m_pads )
{
if( pad->IsOnLayer( aLayer ) && pad->HitTest( aPosition, aAccuracy ) )
return true;
}
for( ZONE* zone : m_zones )
{
if( zone->IsOnLayer( aLayer ) && zone->HitTest( aPosition, aAccuracy ) )
return true;
}
for( BOARD_ITEM* item : m_drawings )
{
if( item->Type() != PCB_TEXT_T && item->IsOnLayer( aLayer )
&& item->HitTest( aPosition, aAccuracy ) )
{
return true;
}
}
return false;
}
bool FOOTPRINT::HitTestOnLayer( const BOX2I& aRect, bool aContained, PCB_LAYER_ID aLayer, int aAccuracy ) const
{
std::vector<BOARD_ITEM*> items;
for( PAD* pad : m_pads )
{
if( pad->IsOnLayer( aLayer ) )
items.push_back( pad );
}
for( ZONE* zone : m_zones )
{
if( zone->IsOnLayer( aLayer ) )
items.push_back( zone );
}
for( BOARD_ITEM* item : m_drawings )
{
if( item->Type() != PCB_TEXT_T && item->IsOnLayer( aLayer ) )
items.push_back( item );
}
// If we require the elements to be contained in the rect and any of them are not,
// we can return false;
// Conversely, if we just require any of the elements to have a hit, we can return true
// when the first one is found.
for( BOARD_ITEM* item : items )
{
if( !aContained && item->HitTest( aRect, aContained, aAccuracy ) )
return true;
else if( aContained && !item->HitTest( aRect, aContained, aAccuracy ) )
return false;
}
// If we didn't exit in the loop, that means that we did not return false for aContained or
// we did not return true for !aContained. So we can just return the bool with a test of
// whether there were any elements or not.
return !items.empty() && aContained;
}
bool FOOTPRINT::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
BOX2I rect = GetBoundingBox( false, false );
return rect.Inflate( aAccuracy ).Contains( aPosition );
}
bool FOOTPRINT::HitTestAccurate( const VECTOR2I& aPosition, int aAccuracy ) const
{
return GetBoundingHull().Collide( aPosition, aAccuracy );
}
bool FOOTPRINT::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
if( aContained )
{
return arect.Contains( GetBoundingBox( false, false ) );
}
else
{
// If the rect does not intersect the bounding box, skip any tests
if( !aRect.Intersects( GetBoundingBox( false, false ) ) )
return false;
// If there are no pads, zones, or drawings, allow intersection with text
if( m_pads.empty() && m_zones.empty() && m_drawings.empty() )
return GetBoundingBox( true, false ).Intersects( arect );
// Determine if any elements in the FOOTPRINT intersect the rect
for( PAD* pad : m_pads )
{
if( pad->HitTest( arect, false, 0 ) )
return true;
}
for( ZONE* zone : m_zones )
{
if( zone->HitTest( arect, false, 0 ) )
return true;
}
// PCB fields are selectable on their own, so they don't get tested
for( BOARD_ITEM* item : m_drawings )
{
// Text items are selectable on their own, and are therefore excluded from this
// test. TextBox items are NOT selectable on their own, and so MUST be included
// here. Bitmaps aren't selectable since they aren't displayed.
if( item->Type() != PCB_TEXT_T && item->HitTest( arect, false, 0 ) )
return true;
}
// Groups are not hit-tested; only their members
// No items were hit
return false;
}
}
PAD* FOOTPRINT::FindPadByNumber( const wxString& aPadNumber, PAD* aSearchAfterMe ) const
{
bool can_select = aSearchAfterMe ? false : true;
for( PAD* pad : m_pads )
{
if( !can_select && pad == aSearchAfterMe )
{
can_select = true;
continue;
}
if( can_select && pad->GetNumber() == aPadNumber )
return pad;
}
return nullptr;
}
PAD* FOOTPRINT::GetPad( const VECTOR2I& aPosition, LSET aLayerMask )
{
for( PAD* pad : m_pads )
{
// ... and on the correct layer.
if( !( pad->GetLayerSet() & aLayerMask ).any() )
continue;
if( pad->HitTest( aPosition ) )
return pad;
}
return nullptr;
}
std::vector<const PAD*> FOOTPRINT::GetPads( const wxString& aPadNumber, const PAD* aIgnore ) const
{
std::vector<const PAD*> retv;
for( const PAD* pad : m_pads )
{
if( ( aIgnore && aIgnore == pad ) || ( pad->GetNumber() != aPadNumber ) )
continue;
retv.push_back( pad );
}
return retv;
}
unsigned FOOTPRINT::GetPadCount( INCLUDE_NPTH_T aIncludeNPTH ) const
{
if( aIncludeNPTH )
return m_pads.size();
unsigned cnt = 0;
for( PAD* pad : m_pads )
{
if( pad->GetAttribute() == PAD_ATTRIB::NPTH )
continue;
cnt++;
}
return cnt;
}
std::set<wxString> FOOTPRINT::GetUniquePadNumbers( INCLUDE_NPTH_T aIncludeNPTH ) const
{
std::set<wxString> usedNumbers;
// Create a set of used pad numbers
for( PAD* pad : m_pads )
{
// Skip pads not on copper layers (used to build complex
// solder paste shapes for instance)
if( ( pad->GetLayerSet() & LSET::AllCuMask() ).none() )
continue;
// Skip pads with no name, because they are usually "mechanical"
// pads, not "electrical" pads
if( pad->GetNumber().IsEmpty() )
continue;
if( !aIncludeNPTH )
{
// skip NPTH
if( pad->GetAttribute() == PAD_ATTRIB::NPTH )
continue;
}
usedNumbers.insert( pad->GetNumber() );
}
return usedNumbers;
}
unsigned FOOTPRINT::GetUniquePadCount( INCLUDE_NPTH_T aIncludeNPTH ) const
{
return GetUniquePadNumbers( aIncludeNPTH ).size();
}
void FOOTPRINT::Add3DModel( FP_3DMODEL* a3DModel )
{
if( nullptr == a3DModel )
return;
if( !a3DModel->m_Filename.empty() )
m_3D_Drawings.push_back( *a3DModel );
}
// see footprint.h
INSPECT_RESULT FOOTPRINT::Visit( INSPECTOR inspector, void* testData,
const std::vector<KICAD_T>& aScanTypes )
{
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
bool drawingsScanned = false;
for( KICAD_T scanType : aScanTypes )
{
switch( scanType )
{
case PCB_FOOTPRINT_T:
if( inspector( this, testData ) == INSPECT_RESULT::QUIT )
return INSPECT_RESULT::QUIT;
break;
case PCB_PAD_T:
if( IterateForward<PAD*>( m_pads, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
case PCB_ZONE_T:
if( IterateForward<ZONE*>( m_zones, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
case PCB_FIELD_T:
if( IterateForward<PCB_FIELD*>( m_fields, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
case PCB_TEXT_T:
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_SHAPE_T:
case PCB_TEXTBOX_T:
if( !drawingsScanned )
{
if( IterateForward<BOARD_ITEM*>( m_drawings, inspector, testData, aScanTypes )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
drawingsScanned = true;
}
break;
case PCB_GROUP_T:
if( IterateForward<PCB_GROUP*>( m_groups, inspector, testData, { scanType } )
== INSPECT_RESULT::QUIT )
{
return INSPECT_RESULT::QUIT;
}
break;
default:
break;
}
}
return INSPECT_RESULT::CONTINUE;
}
wxString FOOTPRINT::GetItemDescription( UNITS_PROVIDER* aUnitsProvider ) const
{
wxString reference = GetReference();
if( reference.IsEmpty() )
reference = _( "<no reference designator>" );
return wxString::Format( _( "Footprint %s" ), reference );
}
BITMAPS FOOTPRINT::GetMenuImage() const
{
return BITMAPS::module;
}
EDA_ITEM* FOOTPRINT::Clone() const
{
return new FOOTPRINT( *this );
}
void FOOTPRINT::RunOnChildren( const std::function<void ( BOARD_ITEM* )>& aFunction ) const
{
try
{
for( PCB_FIELD* field : m_fields )
aFunction( field );
for( PAD* pad : m_pads )
aFunction( pad );
for( ZONE* zone : m_zones )
aFunction( zone );
for( PCB_GROUP* group : m_groups )
aFunction( group );
for( BOARD_ITEM* drawing : m_drawings )
aFunction( drawing );
}
catch( std::bad_function_call& )
{
wxFAIL_MSG( wxT( "Error running FOOTPRINT::RunOnChildren" ) );
}
}
void FOOTPRINT::RunOnDescendants( const std::function<void( BOARD_ITEM* )>& aFunction,
int aDepth ) const
{
// Avoid freezes with infinite recursion
if( aDepth > 20 )
return;
try
{
for( PCB_FIELD* field : m_fields )
aFunction( field );
for( PAD* pad : m_pads )
aFunction( pad );
for( ZONE* zone : m_zones )
aFunction( zone );
for( PCB_GROUP* group : m_groups )
{
aFunction( group );
group->RunOnDescendants( aFunction, aDepth + 1 );
}
for( BOARD_ITEM* drawing : m_drawings )
{
aFunction( drawing );
drawing->RunOnDescendants( aFunction, aDepth + 1 );
}
}
catch( std::bad_function_call& )
{
wxFAIL_MSG( wxT( "Error running FOOTPRINT::RunOnDescendants" ) );
}
}
void FOOTPRINT::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 2;
aLayers[0] = LAYER_ANCHOR;
switch( m_layer )
{
default:
wxASSERT_MSG( false, wxT( "Illegal layer" ) ); // do you really have footprints placed
// on other layers?
KI_FALLTHROUGH;
case F_Cu:
aLayers[1] = LAYER_FOOTPRINTS_FR;
break;
case B_Cu:
aLayers[1] = LAYER_FOOTPRINTS_BK;
break;
}
if( IsLocked() )
aLayers[ aCount++ ] = LAYER_LOCKED_ITEM_SHADOW;
if( IsConflicting() )
aLayers[ aCount++ ] = LAYER_CONFLICTS_SHADOW;
// If there are no pads, and only drawings on a silkscreen layer, then report the silkscreen
// layer as well so that the component can be edited with the silkscreen layer
bool f_silk = false, b_silk = false, non_silk = false;
for( BOARD_ITEM* item : m_drawings )
{
if( item->GetLayer() == F_SilkS )
f_silk = true;
else if( item->GetLayer() == B_SilkS )
b_silk = true;
else
non_silk = true;
}
if( ( f_silk || b_silk ) && !non_silk && m_pads.empty() )
{
if( f_silk )
aLayers[ aCount++ ] = F_SilkS;
if( b_silk )
aLayers[ aCount++ ] = B_SilkS;
}
}
double FOOTPRINT::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
if( aLayer == LAYER_LOCKED_ITEM_SHADOW )
{
// The locked shadow shape is shown only if the footprint itself is visible
if( ( m_layer == F_Cu ) && aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) )
return 0.0;
if( ( m_layer == B_Cu ) && aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) )
return 0.0;
return std::numeric_limits<double>::max();
}
if( aLayer == LAYER_CONFLICTS_SHADOW && IsConflicting() )
{
// The locked shadow shape is shown only if the footprint itself is visible
if( ( m_layer == F_Cu ) && aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) )
return 0.0;
if( ( m_layer == B_Cu ) && aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) )
return 0.0;
return std::numeric_limits<double>::max();
}
int layer = ( m_layer == F_Cu ) ? LAYER_FOOTPRINTS_FR :
( m_layer == B_Cu ) ? LAYER_FOOTPRINTS_BK : LAYER_ANCHOR;
// Currently this is only pertinent for the anchor layer; everything else is drawn from the
// children.
// The "good" value is experimentally chosen.
#define MINIMAL_ZOOM_LEVEL_FOR_VISIBILITY 1.5
if( aView->IsLayerVisible( layer ) )
return MINIMAL_ZOOM_LEVEL_FOR_VISIBILITY;
return std::numeric_limits<double>::max();
}
const BOX2I FOOTPRINT::ViewBBox() const
{
BOX2I area = GetBoundingBox( true, true );
// Inflate in case clearance lines are drawn around pads, etc.
if( const BOARD* board = GetBoard() )
{
int biggest_clearance = board->GetMaxClearanceValue();
area.Inflate( biggest_clearance );
}
return area;
}
bool FOOTPRINT::IsLibNameValid( const wxString & aName )
{
const wxChar * invalids = StringLibNameInvalidChars( false );
if( aName.find_first_of( invalids ) != std::string::npos )
return false;
return true;
}
const wxChar* FOOTPRINT::StringLibNameInvalidChars( bool aUserReadable )
{
// This list of characters is also duplicated in validators.cpp and
// lib_id.cpp
// TODO: Unify forbidden character lists - Warning, invalid filename characters are not the same
// as invalid LIB_ID characters. We will need to separate the FP filenames from FP names before this
// can be unified
static const wxChar invalidChars[] = wxT("%$<>\t\n\r\"\\/:");
static const wxChar invalidCharsReadable[] = wxT("% $ < > 'tab' 'return' 'line feed' \\ \" / :");
if( aUserReadable )
return invalidCharsReadable;
else
return invalidChars;
}
void FOOTPRINT::Move( const VECTOR2I& aMoveVector )
{
if( aMoveVector.x == 0 && aMoveVector.y == 0 )
return;
VECTOR2I newpos = m_pos + aMoveVector;
SetPosition( newpos );
}
void FOOTPRINT::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
if( aAngle == ANGLE_0 )
return;
EDA_ANGLE orientation = GetOrientation();
EDA_ANGLE newOrientation = orientation + aAngle;
VECTOR2I newpos = m_pos;
RotatePoint( newpos, aRotCentre, aAngle );
SetPosition( newpos );
SetOrientation( newOrientation );
for( PCB_FIELD* field : m_fields )
field->KeepUpright();
for( BOARD_ITEM* item : m_drawings )
{
if( item->Type() == PCB_TEXT_T )
static_cast<PCB_TEXT*>( item )->KeepUpright();
}
m_boundingBoxCacheTimeStamp = 0;
m_visibleBBoxCacheTimeStamp = 0;
m_textExcludedBBoxCacheTimeStamp = 0;
m_hullCacheTimeStamp = 0;
m_courtyard_cache_timestamp = 0;
}
void FOOTPRINT::SetLayerAndFlip( PCB_LAYER_ID aLayer )
{
wxASSERT( aLayer == F_Cu || aLayer == B_Cu );
if( aLayer != GetLayer() )
Flip( GetPosition(), true );
}
void FOOTPRINT::Flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
// Move footprint to its final position:
VECTOR2I finalPos = m_pos;
// Now Flip the footprint.
// Flipping a footprint is a specific transform: it is not mirrored like a text.
// We have to change the side, and ensure the footprint rotation is modified according to the
// transform, because this parameter is used in pick and place files, and when updating the
// footprint from library.
// When flipped around the X axis (Y coordinates changed) orientation is negated
// When flipped around the Y axis (X coordinates changed) orientation is 180 - old orient.
// Because it is specific to a footprint, we flip around the X axis, and after rotate 180 deg
MIRROR( finalPos.y, aCentre.y ); /// Mirror the Y position (around the X axis)
SetPosition( finalPos );
// Flip layer
BOARD_ITEM::SetLayer( FlipLayer( GetLayer() ) );
// Calculate the new orientation, and then clear it for pad flipping.
EDA_ANGLE newOrientation = -m_orient;
newOrientation.Normalize180();
m_orient = ANGLE_0;
// Mirror fields to other side of board.
for( PCB_FIELD* field : m_fields )
field->Flip( m_pos, false );
// Mirror pads to other side of board.
for( PAD* pad : m_pads )
pad->Flip( m_pos, false );
// Now set the new orientation.
m_orient = newOrientation;
// Mirror zones to other side of board.
for( ZONE* zone : m_zones )
zone->Flip( m_pos, false );
// Reverse mirror footprint graphics and texts.
for( BOARD_ITEM* item : m_drawings )
item->Flip( m_pos, false );
// Now rotate 180 deg if required
if( aFlipLeftRight )
Rotate( aCentre, ANGLE_180 );
m_boundingBoxCacheTimeStamp = 0;
m_visibleBBoxCacheTimeStamp = 0;
m_textExcludedBBoxCacheTimeStamp = 0;
m_courtyard_cache_timestamp = 0;
m_cachedHull.Mirror( aFlipLeftRight, !aFlipLeftRight, m_pos );
std::swap( m_courtyard_cache_front, m_courtyard_cache_back );
}
void FOOTPRINT::SetPosition( const VECTOR2I& aPos )
{
VECTOR2I delta = aPos - m_pos;
m_pos += delta;
for( PCB_FIELD* field : m_fields )
field->EDA_TEXT::Offset( delta );
for( PAD* pad : m_pads )
pad->SetPosition( pad->GetPosition() + delta );
for( ZONE* zone : m_zones )
zone->Move( delta );
for( BOARD_ITEM* item : m_drawings )
item->Move( delta );
m_cachedBoundingBox.Move( delta );
m_cachedVisibleBBox.Move( delta );
m_cachedTextExcludedBBox.Move( delta );
m_courtyard_cache_back.Move( delta );
m_courtyard_cache_front.Move( delta );
m_cachedHull.Move( delta );
}
void FOOTPRINT::MoveAnchorPosition( const VECTOR2I& aMoveVector )
{
/*
* Move the reference point of the footprint
* the footprints elements (pads, outlines, edges .. ) are moved
* but:
* - the footprint position is not modified.
* - the relative (local) coordinates of these items are modified
* - Draw coordinates are updated
*/
// Update (move) the relative coordinates relative to the new anchor point.
VECTOR2I moveVector = aMoveVector;
RotatePoint( moveVector, -GetOrientation() );
// Update field local coordinates
for( PCB_FIELD* field : m_fields )
field->Move( moveVector );
// Update the pad local coordinates.
for( PAD* pad : m_pads )
pad->Move( moveVector );
// Update the draw element coordinates.
for( BOARD_ITEM* item : GraphicalItems() )
item->Move( moveVector );
// Update the keepout zones
for( ZONE* zone : Zones() )
zone->Move( moveVector );
// Update the 3D models
for( FP_3DMODEL& model : Models() )
{
model.m_Offset.x += pcbIUScale.IUTomm( moveVector.x );
model.m_Offset.y -= pcbIUScale.IUTomm( moveVector.y );
}
m_cachedBoundingBox.Move( moveVector );
m_cachedVisibleBBox.Move( moveVector );
m_cachedTextExcludedBBox.Move( moveVector );
m_cachedHull.Move( moveVector );
}
void FOOTPRINT::SetOrientation( const EDA_ANGLE& aNewAngle )
{
EDA_ANGLE angleChange = aNewAngle - m_orient; // change in rotation
m_orient = aNewAngle;
m_orient.Normalize180();
for( PCB_FIELD* field : m_fields )
field->Rotate( GetPosition(), angleChange );
for( PAD* pad : m_pads )
pad->Rotate( GetPosition(), angleChange );
for( ZONE* zone : m_zones )
zone->Rotate( GetPosition(), angleChange );
for( BOARD_ITEM* item : m_drawings )
item->Rotate( GetPosition(), angleChange );
m_boundingBoxCacheTimeStamp = 0;
m_visibleBBoxCacheTimeStamp = 0;
m_textExcludedBBoxCacheTimeStamp = 0;
m_courtyard_cache_timestamp = 0;
m_cachedHull.Rotate( angleChange, GetPosition() );
}
BOARD_ITEM* FOOTPRINT::Duplicate() const
{
FOOTPRINT* dupe = static_cast<FOOTPRINT*>( BOARD_ITEM::Duplicate() );
dupe->RunOnDescendants( [&]( BOARD_ITEM* child )
{
const_cast<KIID&>( child->m_Uuid ) = KIID();
});
return dupe;
}
BOARD_ITEM* FOOTPRINT::DuplicateItem( const BOARD_ITEM* aItem, bool aAddToFootprint )
{
BOARD_ITEM* new_item = nullptr;
switch( aItem->Type() )
{
case PCB_PAD_T:
{
PAD* new_pad = new PAD( *static_cast<const PAD*>( aItem ) );
const_cast<KIID&>( new_pad->m_Uuid ) = KIID();
if( aAddToFootprint )
m_pads.push_back( new_pad );
new_item = new_pad;
break;
}
case PCB_ZONE_T:
{
ZONE* new_zone = new ZONE( *static_cast<const ZONE*>( aItem ) );
const_cast<KIID&>( new_zone->m_Uuid ) = KIID();
if( aAddToFootprint )
m_zones.push_back( new_zone );
new_item = new_zone;
break;
}
case PCB_FIELD_T:
case PCB_TEXT_T:
{
PCB_TEXT* new_text = new PCB_TEXT( *static_cast<const PCB_TEXT*>( aItem ) );
const_cast<KIID&>( new_text->m_Uuid ) = KIID();
if( aItem->Type() == PCB_FIELD_T )
{
switch( static_cast<const PCB_FIELD*>( aItem )->GetId() )
{
case REFERENCE_FIELD: new_text->SetText( wxT( "${REFERENCE}" ) ); break;
case VALUE_FIELD: new_text->SetText( wxT( "${VALUE}" ) ); break;
case DATASHEET_FIELD: new_text->SetText( wxT( "${DATASHEET}" ) ); break;
case FOOTPRINT_FIELD: new_text->SetText( wxT( "${FOOTPRINT}" ) ); break;
}
}
if( aAddToFootprint )
Add( new_text );
new_item = new_text;
break;
}
case PCB_SHAPE_T:
{
PCB_SHAPE* new_shape = new PCB_SHAPE( *static_cast<const PCB_SHAPE*>( aItem ) );
const_cast<KIID&>( new_shape->m_Uuid ) = KIID();
if( aAddToFootprint )
Add( new_shape );
new_item = new_shape;
break;
}
case PCB_TEXTBOX_T:
{
PCB_TEXTBOX* new_textbox = new PCB_TEXTBOX( *static_cast<const PCB_TEXTBOX*>( aItem ) );
const_cast<KIID&>( new_textbox->m_Uuid ) = KIID();
if( aAddToFootprint )
Add( new_textbox );
new_item = new_textbox;
break;
}
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
{
PCB_DIMENSION_BASE* dimension = static_cast<PCB_DIMENSION_BASE*>( aItem->Duplicate() );
if( aAddToFootprint )
Add( dimension );
new_item = dimension;
break;
}
case PCB_GROUP_T:
{
PCB_GROUP* group = static_cast<const PCB_GROUP*>( aItem )->DeepDuplicate();
if( aAddToFootprint )
{
group->RunOnDescendants(
[&]( BOARD_ITEM* aCurrItem )
{
Add( aCurrItem );
} );
Add( new_item );
}
new_item = group;
break;
}
case PCB_FOOTPRINT_T:
// Ignore the footprint itself
break;
default:
// Un-handled item for duplication
wxFAIL_MSG( wxT( "Duplication not supported for items of class " ) + aItem->GetClass() );
break;
}
return new_item;
}
wxString FOOTPRINT::GetNextPadNumber( const wxString& aLastPadNumber ) const
{
std::set<wxString> usedNumbers;
// Create a set of used pad numbers
for( PAD* pad : m_pads )
usedNumbers.insert( pad->GetNumber() );
// Pad numbers aren't technically reference designators, but the formatting is close enough
// for these to give us what we need.
wxString prefix = UTIL::GetRefDesPrefix( aLastPadNumber );
int num = GetTrailingInt( aLastPadNumber );
while( usedNumbers.count( wxString::Format( wxT( "%s%d" ), prefix, num ) ) )
num++;
return wxString::Format( wxT( "%s%d" ), prefix, num );
}
void FOOTPRINT::AutoPositionFields()
{
// Auto-position reference and value
BOX2I bbox = GetBoundingBox( false, false );
bbox.Inflate( pcbIUScale.mmToIU( 0.2 ) ); // Gap between graphics and text
if( Reference().GetPosition() == VECTOR2I( 0, 0 ) )
{
Reference().SetHorizJustify( GR_TEXT_H_ALIGN_CENTER );
Reference().SetVertJustify( GR_TEXT_V_ALIGN_CENTER );
Reference().SetTextAngle( ANGLE_0 );
Reference().SetX( bbox.GetCenter().x );
Reference().SetY( bbox.GetTop() - Reference().GetTextSize().y / 2 );
}
if( Value().GetPosition() == VECTOR2I( 0, 0 ) )
{
Value().SetHorizJustify( GR_TEXT_H_ALIGN_CENTER );
Value().SetVertJustify( GR_TEXT_V_ALIGN_CENTER );
Value().SetTextAngle( ANGLE_0 );
Value().SetX( bbox.GetCenter().x );
Value().SetY( bbox.GetBottom() + Value().GetTextSize().y / 2 );
}
}
void FOOTPRINT::IncrementReference( int aDelta )
{
const wxString& refdes = GetReference();
SetReference( wxString::Format( wxT( "%s%i" ),
UTIL::GetRefDesPrefix( refdes ),
GetTrailingInt( refdes ) + aDelta ) );
}
// Calculate the area of a PolySet, polygons with hole are allowed.
static double polygonArea( SHAPE_POLY_SET& aPolySet )
{
// Ensure all outlines are closed, before calculating the SHAPE_POLY_SET area
for( int ii = 0; ii < aPolySet.OutlineCount(); ii++ )
{
SHAPE_LINE_CHAIN& outline = aPolySet.Outline( ii );
outline.SetClosed( true );
for( int jj = 0; jj < aPolySet.HoleCount( ii ); jj++ )
aPolySet.Hole( ii, jj ).SetClosed( true );
}
return aPolySet.Area();
}
double FOOTPRINT::GetCoverageArea( const BOARD_ITEM* aItem, const GENERAL_COLLECTOR& aCollector )
{
int textMargin = aCollector.GetGuide()->Accuracy();
SHAPE_POLY_SET poly;
if( aItem->Type() == PCB_MARKER_T )
{
const PCB_MARKER* marker = static_cast<const PCB_MARKER*>( aItem );
SHAPE_LINE_CHAIN markerShape;
marker->ShapeToPolygon( markerShape );
return markerShape.Area();
}
else if( aItem->Type() == PCB_GROUP_T || aItem->Type() == PCB_GENERATOR_T )
{
double combinedArea = 0.0;
for( BOARD_ITEM* member : static_cast<const PCB_GROUP*>( aItem )->GetItems() )
combinedArea += GetCoverageArea( member, aCollector );
return combinedArea;
}
if( aItem->Type() == PCB_FOOTPRINT_T )
{
const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( aItem );
poly = footprint->GetBoundingHull();
}
else if( aItem->Type() == PCB_FIELD_T || aItem->Type() == PCB_TEXT_T )
{
const PCB_TEXT* text = static_cast<const PCB_TEXT*>( aItem );
text->TransformTextToPolySet( poly, textMargin, ARC_LOW_DEF, ERROR_INSIDE );
}
else if( aItem->Type() == PCB_TEXTBOX_T )
{
const PCB_TEXTBOX* tb = static_cast<const PCB_TEXTBOX*>( aItem );
tb->TransformTextToPolySet( poly, textMargin, ARC_LOW_DEF, ERROR_INSIDE );
}
else if( aItem->Type() == PCB_SHAPE_T )
{
// Approximate "linear" shapes with just their width squared, as we don't want to consider
// a linear shape as being much bigger than another for purposes of selection filtering
// just because it happens to be really long.
const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( aItem );
switch( shape->GetShape() )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::ARC:
case SHAPE_T::BEZIER:
return shape->GetWidth() * shape->GetWidth();
case SHAPE_T::RECTANGLE:
case SHAPE_T::CIRCLE:
case SHAPE_T::POLY:
{
if( !shape->IsFilled() )
return shape->GetWidth() * shape->GetWidth();
KI_FALLTHROUGH;
}
default:
shape->TransformShapeToPolygon( poly, UNDEFINED_LAYER, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
}
}
else if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_ARC_T )
{
double width = static_cast<const PCB_TRACK*>( aItem )->GetWidth();
return width * width;
}
else
{
aItem->TransformShapeToPolygon( poly, UNDEFINED_LAYER, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
}
return polygonArea( poly );
}
double FOOTPRINT::CoverageRatio( const GENERAL_COLLECTOR& aCollector ) const
{
int textMargin = aCollector.GetGuide()->Accuracy();
SHAPE_POLY_SET footprintRegion( GetBoundingHull() );
SHAPE_POLY_SET coveredRegion;
TransformPadsToPolySet( coveredRegion, UNDEFINED_LAYER, 0, ARC_LOW_DEF, ERROR_OUTSIDE );
TransformFPShapesToPolySet( coveredRegion, UNDEFINED_LAYER, textMargin, ARC_LOW_DEF,
ERROR_OUTSIDE,
true, /* include text */
false, /* include shapes */
false /* include private items */ );
for( int i = 0; i < aCollector.GetCount(); ++i )
{
const BOARD_ITEM* item = aCollector[i];
switch( item->Type() )
{
case PCB_FIELD_T:
case PCB_TEXT_T:
case PCB_TEXTBOX_T:
case PCB_SHAPE_T:
case PCB_TRACE_T:
case PCB_ARC_T:
case PCB_VIA_T:
if( item->GetParent() != this )
{
item->TransformShapeToPolygon( coveredRegion, UNDEFINED_LAYER, 0, ARC_LOW_DEF,
ERROR_OUTSIDE );
}
break;
case PCB_FOOTPRINT_T:
if( item != this )
{
const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( item );
coveredRegion.AddOutline( footprint->GetBoundingHull().Outline( 0 ) );
}
break;
default:
break;
}
}
coveredRegion.BooleanIntersection( footprintRegion, SHAPE_POLY_SET::PM_FAST );
double footprintRegionArea = polygonArea( footprintRegion );
double uncoveredRegionArea = footprintRegionArea - polygonArea( coveredRegion );
double coveredArea = footprintRegionArea - uncoveredRegionArea;
double ratio = ( coveredArea / footprintRegionArea );
// Test for negative ratio (should not occur).
// better to be conservative (this will result in the disambiguate dialog)
if( ratio < 0.0 )
return 1.0;
return std::min( ratio, 1.0 );
}
std::shared_ptr<SHAPE> FOOTPRINT::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
std::shared_ptr<SHAPE_COMPOUND> shape = std::make_shared<SHAPE_COMPOUND>();
// There are several possible interpretations here:
// 1) the bounding box (without or without invisible items)
// 2) just the pads and "edges" (ie: non-text graphic items)
// 3) the courtyard
// We'll go with (2) for now, unless the caller is clearly looking for (3)
if( aLayer == F_CrtYd || aLayer == B_CrtYd )
{
const SHAPE_POLY_SET& courtyard = GetCourtyard( aLayer );
if( courtyard.OutlineCount() == 0 ) // malformed/empty polygon
return shape;
shape->AddShape( new SHAPE_SIMPLE( courtyard.COutline( 0 ) ) );
}
else
{
for( PAD* pad : Pads() )
shape->AddShape( pad->GetEffectiveShape( aLayer, aFlash )->Clone() );
for( BOARD_ITEM* item : GraphicalItems() )
{
if( item->Type() == PCB_SHAPE_T )
shape->AddShape( item->GetEffectiveShape( aLayer, aFlash )->Clone() );
}
}
return shape;
}
const SHAPE_POLY_SET& FOOTPRINT::GetCourtyard( PCB_LAYER_ID aLayer ) const
{
std::lock_guard<std::mutex> lock( m_courtyard_cache_mutex );
if( GetBoard() && GetBoard()->GetTimeStamp() > m_courtyard_cache_timestamp )
const_cast<FOOTPRINT*>( this )->BuildCourtyardCaches();
if( IsBackLayer( aLayer ) )
return m_courtyard_cache_back;
else
return m_courtyard_cache_front;
}
void FOOTPRINT::BuildCourtyardCaches( OUTLINE_ERROR_HANDLER* aErrorHandler )
{
m_courtyard_cache_front.RemoveAllContours();
m_courtyard_cache_back.RemoveAllContours();
ClearFlags( MALFORMED_COURTYARDS );
m_courtyard_cache_timestamp = GetBoard()->GetTimeStamp();
// Build the courtyard area from graphic items on the courtyard.
// Only PCB_SHAPE_T have meaning, graphic texts are ignored.
// Collect items:
std::vector<PCB_SHAPE*> list_front;
std::vector<PCB_SHAPE*> list_back;
std::map<int, int> front_width_histogram;
std::map<int, int> back_width_histogram;
for( BOARD_ITEM* item : GraphicalItems() )
{
if( item->GetLayer() == B_CrtYd && item->Type() == PCB_SHAPE_T )
{
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( item );
list_back.push_back( shape );
back_width_histogram[ shape->GetStroke().GetWidth() ]++;
}
if( item->GetLayer() == F_CrtYd && item->Type() == PCB_SHAPE_T )
{
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( item );
list_front.push_back( shape );
front_width_histogram[ shape->GetStroke().GetWidth() ]++;
}
}
if( !list_front.size() && !list_back.size() )
return;
int maxError = pcbIUScale.mmToIU( 0.005 ); // max error for polygonization
int chainingEpsilon = pcbIUScale.mmToIU( 0.02 ); // max dist from one endPt to next startPt
if( ConvertOutlineToPolygon( list_front, m_courtyard_cache_front, maxError, chainingEpsilon,
true, aErrorHandler ) )
{
int width = 0;
// Touching courtyards, or courtyards -at- the clearance distance are legal.
m_courtyard_cache_front.Inflate( -1, CORNER_STRATEGY::CHAMFER_ACUTE_CORNERS, maxError );
m_courtyard_cache_front.CacheTriangulation( false );
auto max = std::max_element( front_width_histogram.begin(), front_width_histogram.end(),
[]( const std::pair<int, int>& a, const std::pair<int, int>& b )
{
return a.second < b.second;
} );
if( max != front_width_histogram.end() )
width = max->first;
if( width == 0 )
width = pcbIUScale.mmToIU( DEFAULT_COURTYARD_WIDTH );
if( m_courtyard_cache_front.OutlineCount() > 0 )
m_courtyard_cache_front.Outline( 0 ).SetWidth( width );
}
else
{
SetFlags( MALFORMED_F_COURTYARD );
}
if( ConvertOutlineToPolygon( list_back, m_courtyard_cache_back, maxError, chainingEpsilon, true,
aErrorHandler ) )
{
int width = 0;
// Touching courtyards, or courtyards -at- the clearance distance are legal.
m_courtyard_cache_back.Inflate( -1, CORNER_STRATEGY::CHAMFER_ACUTE_CORNERS, maxError );
m_courtyard_cache_back.CacheTriangulation( false );
auto max = std::max_element( back_width_histogram.begin(), back_width_histogram.end(),
[]( const std::pair<int, int>& a, const std::pair<int, int>& b )
{
return a.second < b.second;
} );
if( max != back_width_histogram.end() )
width = max->first;
if( width == 0 )
width = pcbIUScale.mmToIU( DEFAULT_COURTYARD_WIDTH );
if( m_courtyard_cache_back.OutlineCount() > 0 )
m_courtyard_cache_back.Outline( 0 ).SetWidth( width );
}
else
{
SetFlags( MALFORMED_B_COURTYARD );
}
}
std::map<wxString, int> FOOTPRINT::MapPadNumbersToNetTieGroups() const
{
std::map<wxString, int> padNumberToGroupIdxMap;
for( const PAD* pad : m_pads )
padNumberToGroupIdxMap[ pad->GetNumber() ] = -1;
auto processPad =
[&]( wxString aPad, int aGroup )
{
aPad.Trim( true ).Trim( false );
if( !aPad.IsEmpty() )
padNumberToGroupIdxMap[ aPad ] = aGroup;
};
for( int ii = 0; ii < (int) m_netTiePadGroups.size(); ++ii )
{
wxString group( m_netTiePadGroups[ ii ] );
bool esc = false;
wxString pad;
for( wxUniCharRef ch : group )
{
if( esc )
{
esc = false;
pad.Append( ch );
continue;
}
switch( static_cast<unsigned char>( ch ) )
{
case '\\':
esc = true;
break;
case ',':
processPad( pad, ii );
pad.Clear();
break;
default:
pad.Append( ch );
break;
}
}
processPad( pad, ii );
}
return padNumberToGroupIdxMap;
}
std::vector<PAD*> FOOTPRINT::GetNetTiePads( PAD* aPad ) const
{
// First build a map from pad numbers to allowed-shorting-group indexes. This ends up being
// something like O(3n), but it still beats O(n^2) for large numbers of pads.
std::map<wxString, int> padToNetTieGroupMap = MapPadNumbersToNetTieGroups();
int groupIdx = padToNetTieGroupMap[ aPad->GetNumber() ];
std::vector<PAD*> otherPads;
if( groupIdx >= 0 )
{
for( PAD* pad : m_pads )
{
if( padToNetTieGroupMap[ pad->GetNumber() ] == groupIdx )
otherPads.push_back( pad );
}
}
return otherPads;
}
void FOOTPRINT::CheckFootprintAttributes( const std::function<void( const wxString& )>& aErrorHandler )
{
int likelyAttr = ( GetLikelyAttribute() & ( FP_SMD | FP_THROUGH_HOLE ) );
int setAttr = ( GetAttributes() & ( FP_SMD | FP_THROUGH_HOLE ) );
if( setAttr && likelyAttr && setAttr != likelyAttr )
{
wxString msg;
switch( likelyAttr )
{
case FP_THROUGH_HOLE:
msg.Printf( _( "(expected 'Through hole'; actual '%s')" ), GetTypeName() );
break;
case FP_SMD:
msg.Printf( _( "(expected 'SMD'; actual '%s')" ), GetTypeName() );
break;
}
if( aErrorHandler )
(aErrorHandler)( msg );
}
}
void FOOTPRINT::CheckPads( UNITS_PROVIDER* aUnitsProvider,
const std::function<void( const PAD*, int,
const wxString& )>& aErrorHandler )
{
if( aErrorHandler == nullptr )
return;
for( PAD* pad: Pads() )
{
pad->CheckPad( aUnitsProvider,
[&]( int errorCode, const wxString& msg )
{
aErrorHandler( pad, errorCode, msg );
} );
if( pad->GetAttribute() == PAD_ATTRIB::PTH || pad->GetAttribute() == PAD_ATTRIB::NPTH )
{
// Ensure the drill size can be handled in next calculations.
// Use min size = 4 IU to be able to build a polygon from a hole shape
const int min_drill_size = 4;
if( pad->GetDrillSizeX() <= min_drill_size || pad->GetDrillSizeY() <= min_drill_size )
{
(aErrorHandler)( pad, DRCE_PAD_TH_WITH_NO_HOLE,
_( "(PTH pad's hole size is very small or null)" ) );
}
}
if( pad->GetAttribute() == PAD_ATTRIB::PTH )
{
if( !pad->IsOnCopperLayer() )
{
(aErrorHandler)( pad, DRCE_PADSTACK, _( "(PTH pad has no copper layers)" ) );
}
else
{
// Ensure the pad has a copper area.
// min drill size is already tested and converting shapes to polygon can be made
LSET lset = pad->GetLayerSet() & LSET::AllCuMask();
PCB_LAYER_ID layer = lset.Seq().at( 0 );
SHAPE_POLY_SET padOutline;
pad->TransformShapeToPolygon( padOutline, layer, 0, ARC_HIGH_DEF, ERROR_INSIDE );
std::shared_ptr<SHAPE_SEGMENT> hole = pad->GetEffectiveHoleShape();
SHAPE_POLY_SET holeOutline;
TransformOvalToPolygon( holeOutline, hole->GetSeg().A, hole->GetSeg().B,
hole->GetWidth(), ARC_HIGH_DEF, ERROR_OUTSIDE );
// Test if there is copper area outside hole
SHAPE_POLY_SET padOutlineCopy = padOutline;
padOutline.BooleanSubtract( holeOutline, SHAPE_POLY_SET::POLYGON_MODE::PM_FAST );
if( padOutline.IsEmpty() )
aErrorHandler( pad, DRCE_PADSTACK, _( "(PTH pad's hole leaves no copper)" ) );
else
{
// Test if the pad hole is fully inside the copper area
holeOutline.BooleanSubtract( padOutlineCopy, SHAPE_POLY_SET::POLYGON_MODE::PM_FAST );
if( !holeOutline.IsEmpty() )
aErrorHandler( pad, DRCE_PADSTACK,
_( "(PTH pad's hole non fully inside copper)" ) );
}
}
}
if( pad->GetAttribute() == PAD_ATTRIB::SMD )
{
if( pad->IsOnLayer( F_Cu ) && pad->IsOnLayer( B_Cu ) )
{
aErrorHandler( pad, DRCE_PADSTACK,
_( "(SMD pad appears on both front and back copper)" ) );
}
else if( pad->IsOnLayer( F_Cu ) )
{
if( pad->IsOnLayer( B_Mask ) )
{
aErrorHandler( pad, DRCE_PADSTACK,
_( "(SMD pad copper and mask layers don't match)" ) );
}
else if( pad->IsOnLayer( B_Paste ) )
{
aErrorHandler( pad, DRCE_PADSTACK,
_( "(SMD pad copper and paste layers don't match)" ) );
}
}
else if( pad->IsOnLayer( B_Cu ) )
{
if( pad->IsOnLayer( F_Mask ) )
{
aErrorHandler( pad, DRCE_PADSTACK,
_( "(SMD pad copper and mask layers don't match)" ) );
}
else if( pad->IsOnLayer( F_Paste ) )
{
aErrorHandler( pad, DRCE_PADSTACK,
_( "(SMD pad copper and paste layers don't match)" ) );
}
}
}
}
}
void FOOTPRINT::CheckShortingPads( const std::function<void( const PAD*, const PAD*,
const VECTOR2I& )>& aErrorHandler )
{
std::unordered_map<PTR_PTR_CACHE_KEY, int> checkedPairs;
for( PAD* pad : Pads() )
{
std::vector<PAD*> netTiePads = GetNetTiePads( pad );
for( PAD* other : Pads() )
{
if( other == pad || pad->SameLogicalPadAs( other ) )
continue;
if( alg::contains( netTiePads, other ) )
continue;
if( !( ( pad->GetLayerSet() & other->GetLayerSet() ) & LSET::AllCuMask() ).any() )
continue;
// store canonical order so we don't collide in both directions (a:b and b:a)
PAD* a = pad;
PAD* b = other;
if( static_cast<void*>( a ) > static_cast<void*>( b ) )
std::swap( a, b );
if( checkedPairs.find( { a, b } ) == checkedPairs.end() )
{
checkedPairs[ { a, b } ] = 1;
if( pad->GetBoundingBox().Intersects( other->GetBoundingBox() ) )
{
VECTOR2I pos;
SHAPE* padShape = pad->GetEffectiveShape().get();
SHAPE* otherShape = other->GetEffectiveShape().get();
if( padShape->Collide( otherShape, 0, nullptr, &pos ) )
aErrorHandler( pad, other, pos );
}
}
}
}
}
void FOOTPRINT::CheckNetTies( const std::function<void( const BOARD_ITEM* aItem,
const BOARD_ITEM* bItem,
const BOARD_ITEM* cItem,
const VECTOR2I& )>& aErrorHandler )
{
// First build a map from pad numbers to allowed-shorting-group indexes. This ends up being
// something like O(3n), but it still beats O(n^2) for large numbers of pads.
std::map<wxString, int> padNumberToGroupIdxMap = MapPadNumbersToNetTieGroups();
// Now collect all the footprint items which are on copper layers
std::vector<BOARD_ITEM*> copperItems;
for( BOARD_ITEM* item : m_drawings )
{
if( item->IsOnCopperLayer() )
copperItems.push_back( item );
item->RunOnDescendants(
[&]( BOARD_ITEM* descendent )
{
if( descendent->IsOnCopperLayer() )
copperItems.push_back( descendent );
} );
}
for( ZONE* zone : m_zones )
{
if( !zone->GetIsRuleArea() && zone->IsOnCopperLayer() )
copperItems.push_back( zone );
}
for( PCB_FIELD* field : m_fields )
{
if( field->IsOnCopperLayer() )
copperItems.push_back( field );
}
for( PCB_LAYER_ID layer : { F_Cu, In1_Cu, B_Cu } )
{
// Next, build a polygon-set for the copper on this layer. We don't really care about
// nets here, we just want to end up with a set of outlines describing the distinct
// copper polygons of the footprint.
SHAPE_POLY_SET copperOutlines;
std::map<int, std::vector<const PAD*>> outlineIdxToPadsMap;
for( BOARD_ITEM* item : copperItems )
{
if( item->IsOnLayer( layer ) )
{
item->TransformShapeToPolygon( copperOutlines, layer, 0, ARC_HIGH_DEF,
ERROR_OUTSIDE );
}
}
copperOutlines.Simplify( SHAPE_POLY_SET::PM_FAST );
// Index each pad to the outline in the set that it is part of.
for( const PAD* pad : m_pads )
{
for( int ii = 0; ii < copperOutlines.OutlineCount(); ++ii )
{
if( pad->GetEffectiveShape( layer )->Collide( &copperOutlines.Outline( ii ), 0 ) )
outlineIdxToPadsMap[ ii ].emplace_back( pad );
}
}
// Finally, ensure that each outline which contains multiple pads has all its pads
// listed in an allowed-shorting group.
for( const auto& [ outlineIdx, pads ] : outlineIdxToPadsMap )
{
if( pads.size() > 1 )
{
const PAD* firstPad = pads[0];
int firstGroupIdx = padNumberToGroupIdxMap[ firstPad->GetNumber() ];
for( size_t ii = 1; ii < pads.size(); ++ii )
{
const PAD* thisPad = pads[ii];
int thisGroupIdx = padNumberToGroupIdxMap[ thisPad->GetNumber() ];
if( thisGroupIdx < 0 || thisGroupIdx != firstGroupIdx )
{
BOARD_ITEM* shortingItem = nullptr;
VECTOR2I pos = ( firstPad->GetPosition() + thisPad->GetPosition() ) / 2;
pos = copperOutlines.Outline( outlineIdx ).NearestPoint( pos );
for( BOARD_ITEM* item : copperItems )
{
if( item->HitTest( pos, 1 ) )
{
shortingItem = item;
break;
}
}
if( shortingItem )
aErrorHandler( shortingItem, firstPad, thisPad, pos );
else
aErrorHandler( firstPad, thisPad, nullptr, pos );
}
}
}
}
}
}
void FOOTPRINT::CheckNetTiePadGroups( const std::function<void( const wxString& )>& aErrorHandler )
{
std::set<wxString> padNumbers;
wxString msg;
auto ret = MapPadNumbersToNetTieGroups();
for( auto [ padNumber, _ ] : ret )
{
const PAD* pad = FindPadByNumber( padNumber );
if( !pad )
{
msg.Printf( _( "(net-tie pad group contains unknown pad number %s)" ), padNumber );
aErrorHandler( msg );
}
else if( !padNumbers.insert( pad->GetNumber() ).second )
{
msg.Printf( _( "(pad %s appears in more than one net-tie pad group)" ), padNumber );
aErrorHandler( msg );
}
}
}
void FOOTPRINT::swapData( BOARD_ITEM* aImage )
{
wxASSERT( aImage->Type() == PCB_FOOTPRINT_T );
FOOTPRINT* image = static_cast<FOOTPRINT*>( aImage );
std::swap( *this, *image );
RunOnChildren(
[&]( BOARD_ITEM* child )
{
child->SetParent( this );
} );
image->RunOnChildren(
[&]( BOARD_ITEM* child )
{
child->SetParent( image );
} );
}
bool FOOTPRINT::HasThroughHolePads() const
{
for( PAD* pad : Pads() )
{
if( pad->GetAttribute() != PAD_ATTRIB::SMD )
return true;
}
return false;
}
bool FOOTPRINT::operator==( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != PCB_FOOTPRINT_T )
return false;
const FOOTPRINT& other = static_cast<const FOOTPRINT&>( aOther );
if( m_pads.size() != other.m_pads.size() )
return false;
for( size_t ii = 0; ii < m_pads.size(); ++ii )
{
if( !( *m_pads[ii] == *other.m_pads[ii] ) )
return false;
}
if( m_drawings.size() != other.m_drawings.size() )
return false;
for( size_t ii = 0; ii < m_drawings.size(); ++ii )
{
if( !( *m_drawings[ii] == *other.m_drawings[ii] ) )
return false;
}
if( m_zones.size() != other.m_zones.size() )
return false;
for( size_t ii = 0; ii < m_zones.size(); ++ii )
{
if( !( *m_zones[ii] == *other.m_zones[ii] ) )
return false;
}
if( m_fields.size() != other.m_fields.size() )
return false;
for( size_t ii = 0; ii < m_fields.size(); ++ii )
{
if( !( *m_fields[ii] == *other.m_fields[ii] ) )
return false;
}
return true;
}
double FOOTPRINT::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != PCB_FOOTPRINT_T )
return 0.0;
const FOOTPRINT& other = static_cast<const FOOTPRINT&>( aOther );
double similarity = 1.0;
for( size_t ii = 0; ii < m_pads.size(); ++ii )
{
const PAD* pad = m_pads[ii];
const PAD* otherPad = other.FindPadByNumber( pad->GetNumber() );
if( !otherPad )
continue;
similarity *= pad->Similarity( *otherPad );
}
return similarity;
}
bool FOOTPRINT::cmp_drawings::operator()( const BOARD_ITEM* itemA, const BOARD_ITEM* itemB ) const
{
if( itemA->Type() != itemB->Type() )
return itemA->Type() < itemB->Type();
if( itemA->GetLayer() != itemB->GetLayer() )
return itemA->GetLayer() < itemB->GetLayer();
if( itemA->Type() == PCB_SHAPE_T )
{
const PCB_SHAPE* dwgA = static_cast<const PCB_SHAPE*>( itemA );
const PCB_SHAPE* dwgB = static_cast<const PCB_SHAPE*>( itemB );
if( dwgA->GetShape() != dwgB->GetShape() )
return dwgA->GetShape() < dwgB->GetShape();
// GetStart() and GetEnd() have no meaning with polygons.
// We cannot use them for sorting polygons
if( dwgA->GetShape() != SHAPE_T::POLY )
{
if( dwgA->GetStart().x != dwgB->GetStart().x )
return dwgA->GetStart().x < dwgB->GetStart().x;
if( dwgA->GetStart().y != dwgB->GetStart().y )
return dwgA->GetStart().y < dwgB->GetStart().y;
if( dwgA->GetEnd().x != dwgB->GetEnd().x )
return dwgA->GetEnd().x < dwgB->GetEnd().x;
if( dwgA->GetEnd().y != dwgB->GetEnd().y )
return dwgA->GetEnd().y < dwgB->GetEnd().y;
}
if( dwgA->GetShape() == SHAPE_T::ARC )
{
if( dwgA->GetCenter().x != dwgB->GetCenter().x )
return dwgA->GetCenter().x < dwgB->GetCenter().x;
if( dwgA->GetCenter().y != dwgB->GetCenter().y )
return dwgA->GetCenter().y < dwgB->GetCenter().y;
}
else if( dwgA->GetShape() == SHAPE_T::BEZIER )
{
if( dwgA->GetBezierC1().x != dwgB->GetBezierC1().x )
return dwgA->GetBezierC1().x < dwgB->GetBezierC1().x;
if( dwgA->GetBezierC1().y != dwgB->GetBezierC1().y )
return dwgA->GetBezierC1().y < dwgB->GetBezierC1().y;
if( dwgA->GetBezierC2().x != dwgB->GetBezierC2().x )
return dwgA->GetBezierC2().x < dwgB->GetBezierC2().x;
if( dwgA->GetBezierC2().y != dwgB->GetBezierC2().y )
return dwgA->GetBezierC2().y < dwgB->GetBezierC2().y;
}
else if( dwgA->GetShape() == SHAPE_T::POLY )
{
if( dwgA->GetPolyShape().TotalVertices() != dwgB->GetPolyShape().TotalVertices() )
return dwgA->GetPolyShape().TotalVertices() < dwgB->GetPolyShape().TotalVertices();
for( int ii = 0; ii < dwgA->GetPolyShape().TotalVertices(); ++ii )
{
if( dwgA->GetPolyShape().CVertex( ii ).x != dwgB->GetPolyShape().CVertex( ii ).x )
return dwgA->GetPolyShape().CVertex( ii ).x
< dwgB->GetPolyShape().CVertex( ii ).x;
if( dwgA->GetPolyShape().CVertex( ii ).y != dwgB->GetPolyShape().CVertex( ii ).y )
return dwgA->GetPolyShape().CVertex( ii ).y
< dwgB->GetPolyShape().CVertex( ii ).y;
}
}
if( dwgA->GetWidth() != dwgB->GetWidth() )
return dwgA->GetWidth() < dwgB->GetWidth();
}
if( itemA->m_Uuid != itemB->m_Uuid )
return itemA->m_Uuid < itemB->m_Uuid;
return itemA < itemB;
}
bool FOOTPRINT::cmp_pads::operator()( const PAD* aFirst, const PAD* aSecond ) const
{
if( aFirst->GetNumber() != aSecond->GetNumber() )
return StrNumCmp( aFirst->GetNumber(), aSecond->GetNumber() ) < 0;
if( aFirst->GetFPRelativePosition().x != aSecond->GetFPRelativePosition().x )
return aFirst->GetFPRelativePosition().x < aSecond->GetFPRelativePosition().x;
if( aFirst->GetFPRelativePosition().y != aSecond->GetFPRelativePosition().y )
return aFirst->GetFPRelativePosition().y < aSecond->GetFPRelativePosition().y;
if( aFirst->GetSize().x != aSecond->GetSize().x )
return aFirst->GetSize().x < aSecond->GetSize().x;
if( aFirst->GetSize().y != aSecond->GetSize().y )
return aFirst->GetSize().y < aSecond->GetSize().y;
if( aFirst->GetShape() != aSecond->GetShape() )
return aFirst->GetShape() < aSecond->GetShape();
if( aFirst->GetLayerSet().Seq() != aSecond->GetLayerSet().Seq() )
return aFirst->GetLayerSet().Seq() < aSecond->GetLayerSet().Seq();
if( aFirst->m_Uuid != aSecond->m_Uuid )
return aFirst->m_Uuid < aSecond->m_Uuid;
return aFirst < aSecond;
}
bool FOOTPRINT::cmp_padstack::operator()( const PAD* aFirst, const PAD* aSecond ) const
{
if( aFirst->GetSize().x != aSecond->GetSize().x )
return aFirst->GetSize().x < aSecond->GetSize().x;
if( aFirst->GetSize().y != aSecond->GetSize().y )
return aFirst->GetSize().y < aSecond->GetSize().y;
if( aFirst->GetShape() != aSecond->GetShape() )
return aFirst->GetShape() < aSecond->GetShape();
if( aFirst->GetLayerSet().Seq() != aSecond->GetLayerSet().Seq() )
return aFirst->GetLayerSet().Seq() < aSecond->GetLayerSet().Seq();
if( aFirst->GetDrillSizeX() != aSecond->GetDrillSizeX() )
return aFirst->GetDrillSizeX() < aSecond->GetDrillSizeX();
if( aFirst->GetDrillSizeY() != aSecond->GetDrillSizeY() )
return aFirst->GetDrillSizeY() < aSecond->GetDrillSizeY();
if( aFirst->GetDrillShape() != aSecond->GetDrillShape() )
return aFirst->GetDrillShape() < aSecond->GetDrillShape();
if( aFirst->GetAttribute() != aSecond->GetAttribute() )
return aFirst->GetAttribute() < aSecond->GetAttribute();
if( aFirst->GetOrientation() != aSecond->GetOrientation() )
return aFirst->GetOrientation() < aSecond->GetOrientation();
if( aFirst->GetSolderMaskExpansion() != aSecond->GetSolderMaskExpansion() )
return aFirst->GetSolderMaskExpansion() < aSecond->GetSolderMaskExpansion();
if( aFirst->GetSolderPasteMargin() != aSecond->GetSolderPasteMargin() )
return aFirst->GetSolderPasteMargin() < aSecond->GetSolderPasteMargin();
if( aFirst->GetLocalSolderMaskMargin() != aSecond->GetLocalSolderMaskMargin() )
return aFirst->GetLocalSolderMaskMargin() < aSecond->GetLocalSolderMaskMargin();
std::shared_ptr<SHAPE_POLY_SET> firstShape = aFirst->GetEffectivePolygon( ERROR_INSIDE );
std::shared_ptr<SHAPE_POLY_SET> secondShape = aSecond->GetEffectivePolygon( ERROR_INSIDE );
if( firstShape->VertexCount() != secondShape->VertexCount() )
return firstShape->VertexCount() < secondShape->VertexCount();
for( int ii = 0; ii < firstShape->VertexCount(); ++ii )
{
if( firstShape->CVertex( ii ).x != secondShape->CVertex( ii ).x )
return firstShape->CVertex( ii ).x < secondShape->CVertex( ii ).x;
if( firstShape->CVertex( ii ).y != secondShape->CVertex( ii ).y )
return firstShape->CVertex( ii ).y < secondShape->CVertex( ii ).y;
}
return false;
}
bool FOOTPRINT::cmp_zones::operator()( const ZONE* aFirst, const ZONE* aSecond ) const
{
if( aFirst->GetAssignedPriority() != aSecond->GetAssignedPriority() )
return aFirst->GetAssignedPriority() < aSecond->GetAssignedPriority();
if( aFirst->GetLayerSet().Seq() != aSecond->GetLayerSet().Seq() )
return aFirst->GetLayerSet().Seq() < aSecond->GetLayerSet().Seq();
if( aFirst->Outline()->TotalVertices() != aSecond->Outline()->TotalVertices() )
return aFirst->Outline()->TotalVertices() < aSecond->Outline()->TotalVertices();
for( int ii = 0; ii < aFirst->Outline()->TotalVertices(); ++ii )
{
if( aFirst->Outline()->CVertex( ii ).x != aSecond->Outline()->CVertex( ii ).x )
return aFirst->Outline()->CVertex( ii ).x < aSecond->Outline()->CVertex( ii ).x;
if( aFirst->Outline()->CVertex( ii ).y != aSecond->Outline()->CVertex( ii ).y )
return aFirst->Outline()->CVertex( ii ).y < aSecond->Outline()->CVertex( ii ).y;
}
if( aFirst->m_Uuid != aSecond->m_Uuid )
return aFirst->m_Uuid < aSecond->m_Uuid;
return aFirst < aSecond;
}
void FOOTPRINT::TransformPadsToPolySet( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer,
int aClearance, int aMaxError, ERROR_LOC aErrorLoc,
bool aSkipNPTHPadsWihNoCopper, bool aSkipPlatedPads,
bool aSkipNonPlatedPads ) const
{
for( const PAD* pad : m_pads )
{
if( !pad->FlashLayer( aLayer ) )
continue;
VECTOR2I clearance( aClearance, aClearance );
switch( aLayer )
{
case F_Cu:
if( aSkipPlatedPads && pad->FlashLayer( F_Mask ) )
continue;
if( aSkipNonPlatedPads && !pad->FlashLayer( F_Mask ) )
continue;
break;
case B_Cu:
if( aSkipPlatedPads && pad->FlashLayer( B_Mask ) )
continue;
if( aSkipNonPlatedPads && !pad->FlashLayer( B_Mask ) )
continue;
break;
case F_Mask:
case B_Mask:
clearance.x += pad->GetSolderMaskExpansion();
clearance.y += pad->GetSolderMaskExpansion();
break;
case F_Paste:
case B_Paste:
clearance += pad->GetSolderPasteMargin();
break;
default:
break;
}
// Our standard TransformShapeToPolygon() routines can't handle differing x:y clearance
// values (which get generated when a relative paste margin is used with an oblong pad).
// So we apply this huge hack and fake a larger pad to run the transform on.
// Of course being a hack it falls down when dealing with custom shape pads (where the
// size is only the size of the anchor), so for those we punt and just use clearance.x.
if( ( clearance.x < 0 || clearance.x != clearance.y )
&& pad->GetShape() != PAD_SHAPE::CUSTOM )
{
VECTOR2I dummySize = pad->GetSize() + clearance + clearance;
if( dummySize.x <= 0 || dummySize.y <= 0 )
continue;
PAD dummy( *pad );
dummy.SetSize( dummySize );
dummy.TransformShapeToPolygon( aBuffer, aLayer, 0, aMaxError, aErrorLoc );
}
else
{
pad->TransformShapeToPolygon( aBuffer, aLayer, clearance.x, aMaxError, aErrorLoc );
}
}
}
void FOOTPRINT::TransformFPShapesToPolySet( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer,
int aClearance, int aError, ERROR_LOC aErrorLoc,
bool aIncludeText, bool aIncludeShapes,
bool aIncludePrivateItems ) const
{
std::vector<const PCB_TEXT*> texts; // List of PCB_TEXTs to convert
for( BOARD_ITEM* item : GraphicalItems() )
{
if( GetPrivateLayers().test( item->GetLayer() ) && !aIncludePrivateItems )
continue;
if( item->Type() == PCB_TEXT_T && aIncludeText )
{
PCB_TEXT* text = static_cast<PCB_TEXT*>( item );
if( aLayer != UNDEFINED_LAYER && text->GetLayer() == aLayer && text->IsVisible() )
texts.push_back( text );
}
if( item->Type() == PCB_TEXTBOX_T && aIncludeText )
{
PCB_TEXTBOX* textbox = static_cast<PCB_TEXTBOX*>( item );
if( aLayer != UNDEFINED_LAYER && textbox->GetLayer() == aLayer && textbox->IsVisible() )
{
// border
if( textbox->IsBorderEnabled() )
textbox->PCB_SHAPE::TransformShapeToPolygon( aBuffer, aLayer, 0, aError, aErrorLoc );
// text
textbox->TransformTextToPolySet( aBuffer, 0, aError, aErrorLoc );
}
}
if( item->Type() == PCB_SHAPE_T && aIncludeShapes )
{
const PCB_SHAPE* outline = static_cast<PCB_SHAPE*>( item );
if( aLayer != UNDEFINED_LAYER && outline->GetLayer() == aLayer )
outline->TransformShapeToPolygon( aBuffer, aLayer, 0, aError, aErrorLoc );
}
}
if( aIncludeText )
{
for( const PCB_FIELD* field : m_fields )
{
if( field->GetLayer() == aLayer && field->IsVisible() )
texts.push_back( field );
}
}
for( const PCB_TEXT* text : texts )
text->TransformTextToPolySet( aBuffer, aClearance, aError, aErrorLoc );
}
static struct FOOTPRINT_DESC
{
FOOTPRINT_DESC()
{
ENUM_MAP<ZONE_CONNECTION>& zcMap = ENUM_MAP<ZONE_CONNECTION>::Instance();
if( zcMap.Choices().GetCount() == 0 )
{
zcMap.Undefined( ZONE_CONNECTION::INHERITED );
zcMap.Map( ZONE_CONNECTION::INHERITED, _HKI( "Inherited" ) )
.Map( ZONE_CONNECTION::NONE, _HKI( "None" ) )
.Map( ZONE_CONNECTION::THERMAL, _HKI( "Thermal reliefs" ) )
.Map( ZONE_CONNECTION::FULL, _HKI( "Solid" ) )
.Map( ZONE_CONNECTION::THT_THERMAL, _HKI( "Thermal reliefs for PTH" ) );
}
ENUM_MAP<PCB_LAYER_ID>& layerEnum = ENUM_MAP<PCB_LAYER_ID>::Instance();
if( layerEnum.Choices().GetCount() == 0 )
{
layerEnum.Undefined( UNDEFINED_LAYER );
for( LSEQ seq = LSET::AllLayersMask().Seq(); seq; ++seq )
layerEnum.Map( *seq, LSET::Name( *seq ) );
}
wxPGChoices fpLayers; // footprints might be placed only on F.Cu & B.Cu
fpLayers.Add( LSET::Name( F_Cu ), F_Cu );
fpLayers.Add( LSET::Name( B_Cu ), B_Cu );
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( FOOTPRINT );
propMgr.AddTypeCast( new TYPE_CAST<FOOTPRINT, BOARD_ITEM> );
propMgr.AddTypeCast( new TYPE_CAST<FOOTPRINT, BOARD_ITEM_CONTAINER> );
propMgr.InheritsAfter( TYPE_HASH( FOOTPRINT ), TYPE_HASH( BOARD_ITEM ) );
propMgr.InheritsAfter( TYPE_HASH( FOOTPRINT ), TYPE_HASH( BOARD_ITEM_CONTAINER ) );
auto layer = new PROPERTY_ENUM<FOOTPRINT, PCB_LAYER_ID>( _HKI( "Layer" ),
&FOOTPRINT::SetLayerAndFlip, &FOOTPRINT::GetLayer );
layer->SetChoices( fpLayers );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Layer" ), layer );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, double>( _HKI( "Orientation" ),
&FOOTPRINT::SetOrientationDegrees, &FOOTPRINT::GetOrientationDegrees,
PROPERTY_DISPLAY::PT_DEGREE ) );
const wxString groupFields = _HKI( "Fields" );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Reference" ),
&FOOTPRINT::SetReference, &FOOTPRINT::GetReferenceAsString ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Value" ),
&FOOTPRINT::SetValue, &FOOTPRINT::GetValueAsString ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Library Link" ),
NO_SETTER( FOOTPRINT, wxString ), &FOOTPRINT::GetFPIDAsString ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Library Description" ),
NO_SETTER( FOOTPRINT, wxString ), &FOOTPRINT::GetLibDescription ),
groupFields );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, wxString>( _HKI( "Keywords" ),
NO_SETTER( FOOTPRINT, wxString ), &FOOTPRINT::GetKeywords ),
groupFields );
const wxString groupAttributes = _HKI( "Attributes" );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Not in Schematic" ),
&FOOTPRINT::SetBoardOnly, &FOOTPRINT::IsBoardOnly ), groupAttributes );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Exclude From Position Files" ),
&FOOTPRINT::SetExcludedFromPosFiles, &FOOTPRINT::IsExcludedFromPosFiles ),
groupAttributes );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Exclude From Bill of Materials" ),
&FOOTPRINT::SetExcludedFromBOM, &FOOTPRINT::IsExcludedFromBOM ),
groupAttributes );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>( _HKI( "Do not Populate" ),
&FOOTPRINT::SetDNP, &FOOTPRINT::IsDNP ),
groupAttributes );
const wxString groupOverrides = _HKI( "Overrides" );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, bool>(
_HKI( "Exempt From Courtyard Requirement" ),
&FOOTPRINT::SetAllowMissingCourtyard, &FOOTPRINT::AllowMissingCourtyard ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, int>( _HKI( "Clearance Override" ),
&FOOTPRINT::SetLocalClearance, &FOOTPRINT::GetLocalClearance,
PROPERTY_DISPLAY::PT_SIZE ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, int>( _HKI( "Solderpaste Margin Override" ),
&FOOTPRINT::SetLocalSolderPasteMargin, &FOOTPRINT::GetLocalSolderPasteMargin,
PROPERTY_DISPLAY::PT_SIZE ),
groupOverrides );
propMgr.AddProperty( new PROPERTY<FOOTPRINT, double>(
_HKI( "Solderpaste Margin Ratio Override" ),
&FOOTPRINT::SetLocalSolderPasteMarginRatio,
&FOOTPRINT::GetLocalSolderPasteMarginRatio ),
groupOverrides );
propMgr.AddProperty( new PROPERTY_ENUM<FOOTPRINT, ZONE_CONNECTION>(
_HKI( "Zone Connection Style" ),
&FOOTPRINT::SetZoneConnection, &FOOTPRINT::GetZoneConnection ),
groupOverrides );
}
} _FOOTPRINT_DESC;