kicad/3d-viewer/3d_mesh_model.cpp

421 lines
12 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Mario Luzeiro <mrluzeiro@gmail.com>
* Copyright (C) 1992-2014 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file 3d_mesh_model.cpp
* @brief
*/
#include <3d_mesh_model.h>
#include <boost/geometry/algorithms/area.hpp>
#ifdef USE_OPENMP
#include <omp.h>
#endif /* USE_OPENMP */
S3D_MESH::S3D_MESH()
{
isPerFaceNormalsComputed = false;
isPointNormalizedComputed = false;
isPerPointNormalsComputed = false;
m_Materials = NULL;
childs.clear();
m_translation = glm::vec3( 0.0f, 0.0f, 0.0f );
m_rotation = glm::vec4( 0.0f, 0.0f, 0.0f, 0.0f );
m_scale = glm::vec3( 1.0f, 1.0f, 1.0f );
m_scaleOrientation = glm::vec4( 0.0f, 0.0f, 1.0f, 0.0f ); // not used
m_center = glm::vec3( 0.0f, 0.0f, 0.0f ); // not used
}
S3D_MESH::~S3D_MESH()
{
for( unsigned int idx = 0; idx < childs.size(); idx++ )
{
delete childs[idx];
}
}
void S3D_MESH::openGL_RenderAllChilds()
{
//DBG( printf( "openGL_RenderAllChilds") );
glPushMatrix();
glTranslatef( m_translation.x, m_translation.y, m_translation.z );
glRotatef( m_rotation[3], m_rotation[0], m_rotation[1], m_rotation[2] );
glScalef( m_scale.x, m_scale.y, m_scale.z );
SetOpenGlDefaultMaterial();
// Render your self
openGL_Render();
// Render childs
for( unsigned int idx = 0; idx < childs.size(); idx++ )
{
childs[idx]->openGL_Render();
}
SetOpenGlDefaultMaterial();
glPopMatrix();
}
void S3D_MESH::openGL_Render()
{
//DBG( printf( "openGL_Render" ) );
bool useMaterial = g_Parm_3D_Visu.GetFlag( FL_RENDER_MATERIAL );
bool smoothShapes = g_Parm_3D_Visu.IsRealisticMode()
&& g_Parm_3D_Visu.GetFlag( FL_RENDER_SMOOTH );
if( m_Materials )
{
m_Materials->SetOpenGLMaterial( 0, useMaterial );
}
if( m_CoordIndex.size() == 0)
{
return;
}
glPushMatrix();
glTranslatef( m_translation.x, m_translation.y, m_translation.z );
glRotatef( m_rotation[3], m_rotation[0], m_rotation[1], m_rotation[2] );
glScalef( m_scale.x, m_scale.y, m_scale.z );
std::vector< glm::vec3 > normals;
calcPointNormalized();
calcPerFaceNormals();
if( m_PerVertexNormalsNormalized.size() == 0 )
{
if( smoothShapes )
{
calcPerPointNormals();
}
}
for( unsigned int idx = 0; idx < m_CoordIndex.size(); idx++ )
{
if( m_MaterialIndex.size() > 1 )
{
if( m_Materials )
{
m_Materials->SetOpenGLMaterial( m_MaterialIndex[idx], useMaterial );
}
}
switch( m_CoordIndex[idx].size() )
{
case 3: glBegin( GL_TRIANGLES );break;
case 4: glBegin( GL_QUADS ); break;
default: glBegin( GL_POLYGON ); break;
}
if( m_PerVertexNormalsNormalized.size() > 0 )
{
for( unsigned int ii = 0; ii < m_CoordIndex[idx].size(); ii++ )
{
glm::vec3 normal = m_PerVertexNormalsNormalized[m_NormalIndex[idx][ii]];
glNormal3fv( &normal.x );
glm::vec3 point = m_Point[m_CoordIndex[idx][ii]];
glVertex3fv( &point.x );
}
}
else if( smoothShapes )
{
std::vector< glm::vec3 > normals_list;
normals_list = m_PerFaceVertexNormals[idx];
for( unsigned int ii = 0; ii < m_CoordIndex[idx].size(); ii++ )
{
glm::vec3 normal = normals_list[ii];
glNormal3fv( &normal.x );
glm::vec3 point = m_Point[m_CoordIndex[idx][ii]];
glVertex3fv( &point.x );
}
}
else
{
// Flat
glm::vec3 normal = m_PerFaceNormalsNormalized[idx];
for( unsigned int ii = 0; ii < m_CoordIndex[idx].size(); ii++ )
{
glNormal3fv( &normal.x );
glm::vec3 point = m_Point[m_CoordIndex[idx][ii]];
glVertex3fv( &point.x );
}
}
glEnd();
}
glPopMatrix();
}
void S3D_MESH::calcPointNormalized ()
{
//DBG( printf( "calcPointNormalized\n" ) );
if( isPointNormalizedComputed == true )
{
return;
}
isPointNormalizedComputed = true;
if( m_PerVertexNormalsNormalized.size() > 0 )
{
return;
}
m_PointNormalized.clear();
float biggerPoint = 0.0f;
for( unsigned int i = 0; i< m_Point.size(); i++ )
{
if( fabs( m_Point[i].x ) > biggerPoint) biggerPoint = fabs( m_Point[i].x );
if( fabs( m_Point[i].y ) > biggerPoint) biggerPoint = fabs( m_Point[i].y );
if( fabs( m_Point[i].z ) > biggerPoint) biggerPoint = fabs( m_Point[i].z );
}
biggerPoint = 1.0 / biggerPoint;
for( unsigned int i= 0; i< m_Point.size(); i++ )
{
glm::vec3 p;
p = m_Point[i] * biggerPoint;
m_PointNormalized.push_back( p );
}
//DBG( printf("m_Point.size %u\n", m_Point.size()) );
}
bool IsClockwise( glm::vec3 v0, glm::vec3 v1, glm::vec3 v2 )
{
double sum = 0.0;
sum += (v1.x - v0.x) * (v1.y + v0.y);
sum += (v2.x - v1.x) * (v2.y + v1.y);
sum += (v0.x - v2.x) * (v0.y + v2.y);
return sum > FLT_EPSILON;
}
void S3D_MESH::calcPerFaceNormals ()
{
//DBG( printf( "calcPerFaceNormals" ) );
if( isPerFaceNormalsComputed == true )
{
return;
}
isPerFaceNormalsComputed = true;
if( m_PerVertexNormalsNormalized.size() > 0 )
{
return;
}
bool haveAlreadyNormals_from_model_file = false;
if( m_PerFaceNormalsNormalized.size() > 0 )
{
haveAlreadyNormals_from_model_file = true;
}
m_PerFaceNormalsRaw.clear();
m_PerFaceSquaredArea.clear();
//DBG( printf("m_CoordIndex.size %u\n", m_CoordIndex.size()) );
//DBG( printf("m_PointNormalized.size %u\n", m_PointNormalized.size()) );
for( unsigned int idx = 0; idx < m_CoordIndex.size(); idx++ )
{
// User normalized and multiply to get better resolution
glm::vec3 v0 = m_PointNormalized[m_CoordIndex[idx][0]];
glm::vec3 v1 = m_PointNormalized[m_CoordIndex[idx][1]];
glm::vec3 v2 = m_PointNormalized[m_CoordIndex[idx][m_CoordIndex[idx].size() - 1]];
/*
// !TODO: improove and check what is best to calc the normal (check what have more resolution)
glm::vec3 v0 = m_Point[m_CoordIndex[idx][0]];
glm::vec3 v1 = m_Point[m_CoordIndex[idx][1]];
glm::vec3 v2 = m_Point[m_CoordIndex[idx][m_CoordIndex[idx].size() - 1]];
*/
glm::vec3 cross_prod;
/*
// This is not working as good as it is expected :/
if( IsClockwise( v0, v1, v2 ) )
{
// CW
cross_prod = glm::cross( v1 - v2, v0 - v2 );
} else
{*/
// CCW
cross_prod = glm::cross( v1 - v0, v2 - v0 );
//}
float area = glm::dot( cross_prod, cross_prod );
if( cross_prod[2] < 0.0 )
{
area = -area;
}
if( area < FLT_EPSILON )
{
area = FLT_EPSILON * 2.0f;
}
m_PerFaceSquaredArea.push_back( area );
m_PerFaceNormalsRaw.push_back( cross_prod );
if( haveAlreadyNormals_from_model_file == false )
{
// normalize vertex normal
float l = glm::length( cross_prod );
if( l > FLT_EPSILON ) // avoid division by zero
{
cross_prod = cross_prod / l;
}
else
{
// Cannot calc normal
if( ( cross_prod.x > cross_prod.y ) && ( cross_prod.x > cross_prod.z ) )
{
cross_prod.x = 1.0; cross_prod.y = 0.0; cross_prod.z = 0.0;
} else if( ( cross_prod.y > cross_prod.x ) && ( cross_prod.y > cross_prod.z ))
{
cross_prod.x = 0.0; cross_prod.y = 1.0; cross_prod.z = 0.0;
} else
{
cross_prod.x = 0.0; cross_prod.y = 1.0; cross_prod.z = 0.0;
}
}
m_PerFaceNormalsNormalized.push_back( cross_prod );
}
}
}
// http://www.bytehazard.com/code/vertnorm.html
// http://www.emeyex.com/site/tuts/VertexNormals.pdf
void S3D_MESH::calcPerPointNormals ()
{
//DBG( printf( "calcPerPointNormals" ) );
if( isPerPointNormalsComputed == true )
{
return;
}
isPerPointNormalsComputed = true;
if( m_PerVertexNormalsNormalized.size() > 0 )
{
return;
}
m_PerFaceVertexNormals.clear();
// Pre-allocate space for the entire vector of vertex normals so we can do parallel writes
m_PerFaceVertexNormals.resize( m_CoordIndex.size() );
// for each face A in mesh
#ifdef USE_OPENMP
#pragma omp parallel for
#endif /* USE_OPENMP */
for( unsigned int each_face_A_idx = 0; each_face_A_idx < m_CoordIndex.size(); each_face_A_idx++ )
{
// n = face A facet normal
std::vector< glm::vec3 >& face_A_normals = m_PerFaceVertexNormals[each_face_A_idx];
face_A_normals.resize( m_CoordIndex[each_face_A_idx].size() );
// loop through all 3 vertices
// for each vert in face A
for( unsigned int each_vert_A_idx = 0; each_vert_A_idx < m_CoordIndex[each_face_A_idx].size(); each_vert_A_idx++ )
{
face_A_normals[each_vert_A_idx] = m_PerFaceNormalsRaw[each_face_A_idx] * (m_PerFaceSquaredArea[each_face_A_idx]);
int vertexIndex = (int)(m_CoordIndex[each_face_A_idx][each_vert_A_idx]);
glm::vec3 vector_face_A = m_PerFaceNormalsNormalized[each_face_A_idx];
// for each face B in mesh
for( unsigned int each_face_B_idx = 0; each_face_B_idx < m_CoordIndex.size(); each_face_B_idx++ )
{
//if A != B { // ignore self
if ( each_face_A_idx != each_face_B_idx)
{
if( (m_CoordIndex[each_face_B_idx][0] == vertexIndex) ||
(m_CoordIndex[each_face_B_idx][1] == vertexIndex) ||
(m_CoordIndex[each_face_B_idx][2] == vertexIndex) )
{
glm::vec3 vector_face_B = m_PerFaceNormalsNormalized[each_face_B_idx];
float dot_prod = glm::dot(vector_face_A, vector_face_B);
if( dot_prod > 0.05f )
{
face_A_normals[each_vert_A_idx] += m_PerFaceNormalsRaw[each_face_B_idx] * (m_PerFaceSquaredArea[each_face_B_idx] * dot_prod);
}
}
}
}
// normalize vertex normal
float l = glm::length( face_A_normals[each_vert_A_idx] );
if( l > FLT_EPSILON ) // avoid division by zero
{
face_A_normals[each_vert_A_idx] /= l;
}
}
}
}