kicad/pcbnew/router/pns_line.h

346 lines
9.1 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2017 CERN
* Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PNS_LINE_H
#define __PNS_LINE_H
#include <math/box2.h>
#include <math/vector2d.h>
#include <geometry/direction45.h>
#include <geometry/seg.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include "pns_item.h"
#include "pns_via.h"
namespace PNS {
class LINKED_ITEM;
class NODE;
class VIA;
/**
* LINE
*
* Represents a track on a PCB, connecting two non-trivial joints (that is,
* vias, pads, junctions between multiple traces or two traces different widths
* and combinations of these). PNS_LINEs are NOT stored in the model (NODE).
* Instead, they are assembled on-the-fly, based on a via/pad/segment that
* belongs to/starts/ends them.
*
* PNS_LINEs can be either loose (consisting of segments that do not belong to
* any NODE) or owned (with segments taken from a NODE) - these are
* returned by NODE::AssembleLine and friends.
*
* A LINE may have a VIA attached at its end (i.e. the last point) - this is used by via
* dragging/force propagation stuff.
*/
#define PNS_HULL_MARGIN 10
class LINE : public ITEM
{
public:
typedef std::vector<LINKED_ITEM*> SEGMENT_REFS;
/**
* Constructor
* Makes an empty line.
*/
LINE() : ITEM( LINE_T )
{
m_hasVia = false;
m_width = 1; // Dummy value
m_snapThreshhold = 0;
}
LINE( const LINE& aOther );
/**
* Constructor
* Copies properties (net, layers, etc.) from a base line and replaces the shape
* by another
**/
LINE( const LINE& aBase, const SHAPE_LINE_CHAIN& aLine )
: ITEM( aBase ),
m_line( aLine ),
m_width( aBase.m_width ),
m_snapThreshhold( aBase.m_snapThreshhold )
{
m_net = aBase.m_net;
m_layers = aBase.m_layers;
m_hasVia = false;
}
/**
* Constructor
* Constructs a LINE for a lone VIA (ie a stitching via).
* @param aVia
*/
LINE( const VIA& aVia ) :
ITEM( LINE_T )
{
m_hasVia = true;
m_via = aVia;
m_width = aVia.Diameter();
m_net = aVia.Net();
m_layers = aVia.Layers();
m_rank = aVia.Rank();
m_snapThreshhold = 0;
}
~LINE();
static inline bool ClassOf( const ITEM* aItem )
{
return aItem && LINE_T == aItem->Kind();
}
/// @copydoc ITEM::Clone()
virtual LINE* Clone() const override;
LINE& operator=( const LINE& aOther );
///> Assigns a shape to the line (a polyline/line chain)
void SetShape( const SHAPE_LINE_CHAIN& aLine )
{
m_line = aLine;
m_line.SetWidth( m_width );
}
///> Returns the shape of the line
const SHAPE* Shape() const override
{
return &m_line;
}
///> Modifiable accessor to the underlying shape
SHAPE_LINE_CHAIN& Line()
{
return m_line;
}
///> Const accessor to the underlying shape
const SHAPE_LINE_CHAIN& CLine() const
{
return m_line;
}
///> Returns the number of segments in the line
int SegmentCount() const
{
return m_line.SegmentCount();
}
///> Returns the number of points in the line
int PointCount() const
{
return m_line.PointCount();
}
///> Returns the number of arcs in the line
int ArcCount() const
{
return m_line.ArcCount();
}
///> Returns the aIdx-th point of the line
const VECTOR2I& CPoint( int aIdx ) const
{
return m_line.CPoint( aIdx );
}
///> Returns the aIdx-th segment of the line
const SEG CSegment( int aIdx ) const
{
return m_line.CSegment( aIdx );
}
///> Sets line width
void SetWidth( int aWidth )
{
m_width = aWidth;
m_line.SetWidth( aWidth );
}
///> Returns line width
int Width() const
{
return m_width;
}
///> Returns true if the line is geometrically identical as line aOther
bool CompareGeometry( const LINE& aOther );
///> Reverses the point/vertex order
void Reverse();
/* Linking functions */
///> Adds a reference to a segment registered in a NODE that is a part of this line.
void LinkSegment( LINKED_ITEM* aSeg )
{
m_segmentRefs.push_back( aSeg );
}
///> Returns the list of segments from the owning node that constitute this
///> line (or NULL if the line is not linked)
SEGMENT_REFS& LinkedSegments()
{
return m_segmentRefs;
}
bool IsLinked() const
{
return m_segmentRefs.size() != 0;
}
bool IsLinkedChecked() const
{
return IsLinked() && LinkCount() == SegmentCount();
}
///> Checks if the segment aSeg is a part of the line.
bool ContainsSegment( LINKED_ITEM* aSeg ) const
{
return std::find( m_segmentRefs.begin(), m_segmentRefs.end(),
aSeg ) != m_segmentRefs.end();
}
LINKED_ITEM* GetLink( int aIndex ) const
{
return m_segmentRefs[aIndex];
}
///> Erases the linking information. Used to detach the line from the owning node.
void ClearSegmentLinks();
///> Returns the number of segments that were assembled together to form this line.
int LinkCount() const
{
return m_segmentRefs.size();
}
///> Clips the line to the nearest obstacle, traversing from the line's start vertex (0).
///> Returns the clipped line.
const LINE ClipToNearestObstacle( NODE* aNode ) const;
///> Clips the line to a given range of vertices.
void ClipVertexRange ( int aStart, int aEnd );
///> Returns the number of corners of angles specified by mask aAngles.
int CountCorners( int aAngles ) const;
///> Calculates a line thightly wrapping a convex hull
///> of an obstacle object (aObstacle).
///> aPrePath = path from origin to the obstacle
///> aWalkaroundPath = path around the obstacle
///> aPostPath = past from obstacle till the end
///> aCW = whether to walk around in clockwise or counter-clockwise direction.
bool Walkaround( SHAPE_LINE_CHAIN aObstacle,
SHAPE_LINE_CHAIN& aPre,
SHAPE_LINE_CHAIN& aWalk,
SHAPE_LINE_CHAIN& aPost,
bool aCw ) const;
bool Walkaround( const SHAPE_LINE_CHAIN& aObstacle,
SHAPE_LINE_CHAIN& aPath,
bool aCw ) const;
bool Is45Degree() const;
///> Prints out all linked segments
void ShowLinks() const;
bool EndsWithVia() const { return m_hasVia; }
void AppendVia( const VIA& aVia );
void RemoveVia() { m_hasVia = false; }
const VIA& Via() const { return m_via; }
virtual void Mark( int aMarker ) override;
virtual void Unmark( int aMarker = -1 ) override;
virtual int Marker() const override;
void DragSegment( const VECTOR2I& aP, int aIndex, bool aFreeAngle = false );
void DragCorner( const VECTOR2I& aP, int aIndex, bool aFreeAngle = false );
void SetRank( int aRank ) override;
int Rank() const override;
bool HasLoops() const;
bool HasLockedSegments() const;
OPT_BOX2I ChangedArea( const LINE* aOther ) const;
void SetSnapThreshhold( int aThreshhold )
{
m_snapThreshhold = aThreshhold;
}
int GetSnapThreshhold() const
{
return m_snapThreshhold;
}
private:
void dragSegment45( const VECTOR2I& aP, int aIndex );
void dragCorner45( const VECTOR2I& aP, int aIndex );
void dragSegmentFree( const VECTOR2I& aP, int aIndex );
void dragCornerFree( const VECTOR2I& aP, int aIndex );
VECTOR2I snapToNeighbourSegments(
const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const;
VECTOR2I snapDraggedCorner(
const SHAPE_LINE_CHAIN& aPath, const VECTOR2I& aP, int aIndex ) const;
///> Copies m_segmentRefs from the line aParent.
void copyLinks( const LINE* aParent ) ;
///> List of segments in the owning NODE (ITEM::m_owner) that constitute this line, or NULL
///> if the line is not a part of any node.
SEGMENT_REFS m_segmentRefs;
///> The actual shape of the line
SHAPE_LINE_CHAIN m_line;
///> our width
int m_width;
///> If true, the line ends with a via
bool m_hasVia;
///> Width to smooth out jagged segments
int m_snapThreshhold;
///> Via at the end point, if m_hasVia == true
VIA m_via;
};
}
#endif // __PNS_LINE_H