kicad/pcbnew/router/pns_joint.h

233 lines
6.1 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PNS_JOINT_H
#define __PNS_JOINT_H
#include <vector>
#include <boost/functional/hash.hpp>
#include <math/vector2d.h>
#include "pns_item.h"
#include "pns_segment.h"
/**
* Class PNS_JOINT
*
* Represents a 2D point on a given set of layers and belonging to a certain
* net, that links together a number of board items.
* A hash table of joints is used by the router to follow connectivity between
* the items.
**/
class PNS_JOINT : public PNS_ITEM
{
public:
typedef std::vector<PNS_ITEM*> LINKED_ITEMS;
///> Joints are hashed by their position, layers and net.
/// Linked items are, obviously, not hashed
struct HASH_TAG
{
VECTOR2I pos;
int net;
};
PNS_JOINT() :
PNS_ITEM( JOINT ) {}
PNS_JOINT( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet = -1 ) :
PNS_ITEM( JOINT )
{
m_tag.pos = aPos;
m_tag.net = aNet;
m_layers = aLayers;
}
PNS_JOINT( const PNS_JOINT& aB ) :
PNS_ITEM( JOINT )
{
m_layers = aB.m_layers;
m_tag.pos = aB.m_tag.pos;
m_tag.net = aB.m_tag.net;
m_linkedItems = aB.m_linkedItems;
m_layers = aB.m_layers;
}
PNS_ITEM* Clone ( ) const
{
assert( false );
return NULL;
}
///> Returns true if the joint is a trivial line corner, connecting two
/// segments of the same net, on the same layer.
bool IsLineCorner() const
{
if( m_linkedItems.size() != 2 )
return false;
if( m_linkedItems[0]->Kind() != SEGMENT || m_linkedItems[1]->Kind() != SEGMENT )
return false;
PNS_SEGMENT* seg1 = static_cast<PNS_SEGMENT*>( m_linkedItems[0] );
PNS_SEGMENT* seg2 = static_cast<PNS_SEGMENT*>( m_linkedItems[1] );
// joints between segments of different widths are not considered trivial.
return seg1->Width() == seg2->Width();
}
///> Links the joint to a given board item (when it's added to the PNS_NODE)
void Link( PNS_ITEM* aItem )
{
LINKED_ITEMS::iterator f = std::find( m_linkedItems.begin(), m_linkedItems.end(), aItem );
if( f != m_linkedItems.end() )
return;
m_linkedItems.push_back( aItem );
}
///> Unlinks a given board item from the joint (upon its removal from a PNS_NODE)
///> Returns true if the joint became dangling after unlinking.
bool Unlink( PNS_ITEM* aItem )
{
LINKED_ITEMS::iterator f = std::find( m_linkedItems.begin(), m_linkedItems.end(), aItem );
if( f != m_linkedItems.end() )
m_linkedItems.erase( f );
return m_linkedItems.size() == 0;
}
///> For trivial joints, returns the segment adjacent to (aCurrent). For non-trival ones, returns
///> NULL, indicating the end of line.
PNS_SEGMENT* NextSegment( PNS_SEGMENT* aCurrent ) const
{
if( !IsLineCorner() )
return NULL;
return static_cast<PNS_SEGMENT*>( m_linkedItems[m_linkedItems[0] == aCurrent ? 1 : 0] );
}
PNS_VIA* Via()
{
for( LINKED_ITEMS::iterator i = m_linkedItems.begin(); i != m_linkedItems.end(); ++i )
{
if( (*i)->Kind() == PNS_ITEM::VIA )
return (PNS_VIA*)( *i );
}
return NULL;
}
/// trivial accessors
const HASH_TAG& Tag() const
{
return m_tag;
}
const VECTOR2I& Pos() const
{
return m_tag.pos;
}
int Net() const
{
return m_tag.net;
}
LINKED_ITEMS& LinkList()
{
return m_linkedItems;
}
///> Returns the number of linked items of types listed in aMask.
int LinkCount( int aMask = -1 ) const
{
int n = 0;
for( LINKED_ITEMS::const_iterator i = m_linkedItems.begin();
i != m_linkedItems.end(); ++i )
{
if( (*i)->Kind() & aMask )
n++;
}
return n;
}
void Dump() const;
bool operator==( const PNS_JOINT& rhs ) const
{
return m_tag.pos == rhs.m_tag.pos && m_tag.net == rhs.m_tag.net;
}
void Merge( const PNS_JOINT& aJoint )
{
if( !Overlaps( aJoint ) )
return;
m_layers.Merge( aJoint.m_layers );
// fixme: duplicate links (?)
for( LINKED_ITEMS::const_iterator i = aJoint.m_linkedItems.begin();
i != aJoint.m_linkedItems.end(); ++i )
{
m_linkedItems.push_back( *i );
}
}
bool Overlaps( const PNS_JOINT& rhs ) const
{
return m_tag.pos == rhs.m_tag.pos &&
m_tag.net == rhs.m_tag.net && m_layers.Overlaps( rhs.m_layers );
}
private:
///> hash tag for unordered_multimap
HASH_TAG m_tag;
///> list of items linked to this joint
LINKED_ITEMS m_linkedItems;
};
// hash function & comparison operator for boost::unordered_map<>
inline bool operator==( PNS_JOINT::HASH_TAG const& aP1,
PNS_JOINT::HASH_TAG const& aP2 )
{
return aP1.pos == aP2.pos && aP1.net == aP2.net;
}
inline std::size_t hash_value( PNS_JOINT::HASH_TAG const& aP )
{
std::size_t seed = 0;
boost::hash_combine( seed, aP.pos.x );
boost::hash_combine( seed, aP.pos.y );
boost::hash_combine( seed, aP.net );
return seed;
}
#endif // __PNS_JOINT_H