kicad/pcbnew/router/pns_meander.cpp

741 lines
18 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2022 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <base_units.h> // God forgive me doing this...
#include "pns_node.h"
#include "pns_itemset.h"
#include "pns_meander.h"
#include "pns_meander_placer_base.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
namespace PNS {
const MEANDER_SETTINGS& MEANDER_SHAPE::Settings() const
{
return m_placer->MeanderSettings();
}
const MEANDER_SETTINGS& MEANDERED_LINE::Settings() const
{
return m_placer->MeanderSettings();
}
void MEANDERED_LINE::MeanderSegment( const SEG& aBase, bool aSide, int aBaseIndex )
{
double base_len = aBase.Length();
SHAPE_LINE_CHAIN lc;
bool singleSided = Settings().m_singleSided;
bool side = aSide;
VECTOR2D dir( aBase.B - aBase.A );
if( !m_dual )
AddCorner( aBase.A );
bool turning = false;
bool started = false;
m_last = aBase.A;
do
{
MEANDER_SHAPE m( m_placer, m_width, m_dual );
m.SetBaselineOffset( m_baselineOffset );
m.SetBaseIndex( aBaseIndex );
double thr = (double) m.spacing();
bool fail = false;
double remaining = base_len - ( m_last - aBase.A ).EuclideanNorm();
auto addSingleIfFits = [&]()
{
fail = true;
if( m.Fit( MT_SINGLE, aBase, m_last, side ) )
{
AddMeander( new MEANDER_SHAPE( m ) );
fail = false;
started = false;
}
if( fail && !singleSided )
{
if( m.Fit( MT_SINGLE, aBase, m_last, !side ) )
{
AddMeander( new MEANDER_SHAPE( m ) );
fail = false;
started = false;
side = !side;
}
}
};
if( remaining < Settings( ).m_step )
break;
if( !singleSided && remaining > 3.0 * thr )
{
if( !turning )
{
for( int i = 0; i < 2; i++ )
{
bool checkSide = ( i == 0 ) ? side : !side;
if( m.Fit( MT_CHECK_START, aBase, m_last, checkSide ) )
{
turning = true;
AddMeander( new MEANDER_SHAPE( m ) );
side = !checkSide;
started = true;
break;
}
}
if( !turning )
addSingleIfFits();
}
else
{
bool rv = m.Fit( MT_CHECK_FINISH, aBase, m_last, side );
if( rv )
{
m.Fit( MT_TURN, aBase, m_last, side );
AddMeander( new MEANDER_SHAPE( m ) );
side = !side;
started = true;
}
else
{
m.Fit( MT_FINISH, aBase, m_last, side );
started = false;
AddMeander( new MEANDER_SHAPE( m ) );
turning = false;
}
}
}
else if( !singleSided && started )
{
bool rv = m.Fit( MT_FINISH, aBase, m_last, side );
if( rv )
AddMeander( new MEANDER_SHAPE( m ) );
break;
}
else if( !turning && remaining > thr * 2.0 )
{
addSingleIfFits();
}
else
{
fail = true;
}
remaining = base_len - ( m_last - aBase.A ).EuclideanNorm( );
if( remaining < Settings( ).m_step )
break;
if( fail )
{
MEANDER_SHAPE tmp( m_placer, m_width, m_dual );
tmp.SetBaselineOffset( m_baselineOffset );
tmp.SetBaseIndex( aBaseIndex );
int nextP = tmp.spacing() - 2 * tmp.cornerRadius() + Settings().m_step;
VECTOR2I pn = m_last + dir.Resize( nextP );
if( aBase.Contains( pn ) && !m_dual )
{
AddCorner( pn );
} else
break;
}
} while( true );
if( !m_dual )
AddCorner( aBase.B );
}
int MEANDER_SHAPE::MinAmplitude() const
{
int minAmplitude = Settings().m_minAmplitude;
// DP meanders don't really support smaller amplitudes
minAmplitude = std::max( minAmplitude, std::abs( m_baselineOffset ) * 2 );
// The path length won't be correct with very small arcs
if( m_placer->MeanderSettings().m_cornerStyle == MEANDER_STYLE_ROUND )
minAmplitude = std::max( minAmplitude, m_width + std::abs( m_baselineOffset ) * 2 );
return minAmplitude;
}
int MEANDER_SHAPE::cornerRadius() const
{
// TODO: fix diff-pair meandering so we can use non-100% radii
int rPercent = m_dual ? 100 : Settings().m_cornerRadiusPercentage;
int optCr = (int64_t) spacing() * rPercent / 200;
int minCr = std::abs( m_baselineOffset );
int maxCr = std::min( m_amplitude / 2, spacing() / 2 );
if( maxCr > minCr )
return std::clamp( optCr, minCr, maxCr );
else
return maxCr;
}
int MEANDER_SHAPE::spacing( ) const
{
if( !m_dual )
{
return std::max( m_width + m_placer->Clearance(), Settings().m_spacing );
}
else
{
int sp = m_width + m_placer->Clearance() + ( 2 * std::abs( m_baselineOffset ) );
return std::max( sp, Settings().m_spacing );
}
}
SHAPE_LINE_CHAIN MEANDER_SHAPE::makeMiterShape( const VECTOR2D& aP, const VECTOR2D& aDir,
bool aSide )
{
SHAPE_LINE_CHAIN lc;
if( aDir.EuclideanNorm( ) == 0.0f )
{
lc.Append( aP );
return lc;
}
VECTOR2D dir_u( aDir );
VECTOR2D dir_v( aDir.Perpendicular( ) );
VECTOR2D p = aP;
lc.Append( ( int ) p.x, ( int ) p.y );
// fixme: refactor
switch( m_placer->MeanderSettings().m_cornerStyle )
{
case MEANDER_STYLE_ROUND:
{
VECTOR2D center = aP + dir_v * ( aSide ? -1.0 : 1.0 );
lc.Append( SHAPE_ARC( center, aP, ( aSide ? -ANGLE_90 : ANGLE_90 ) ) );
}
break;
case MEANDER_STYLE_CHAMFER:
{
double radius = (double) aDir.EuclideanNorm();
double correction = 0;
if( m_dual && radius > m_meanCornerRadius )
correction = (double)( -2 * abs(m_baselineOffset) ) * tan( 22.5 * M_PI / 180.0 );
VECTOR2D dir_cu = dir_u.Resize( correction );
VECTOR2D dir_cv = dir_v.Resize( correction );
p = aP - dir_cu;
lc.Append( ( int ) p.x, ( int ) p.y );
p = aP + dir_u + (dir_v + dir_cv) * ( aSide ? -1.0 : 1.0 );
lc.Append( ( int ) p.x, ( int ) p.y );
}
break;
}
p = aP + dir_u + dir_v * ( aSide ? -1.0 : 1.0 );
lc.Append( ( int ) p.x, ( int ) p.y );
return lc;
}
void MEANDER_SHAPE::start( SHAPE_LINE_CHAIN* aTarget, const VECTOR2D& aWhere, const VECTOR2D& aDir )
{
m_currentTarget = aTarget;
m_currentTarget->Clear();
m_currentTarget->Append( aWhere );
m_currentDir = aDir;
m_currentPos = aWhere;
}
void MEANDER_SHAPE::forward( int aLength )
{
// Very small segments cause problems.
if( aLength < 5 )
return;
m_currentPos += m_currentDir.Resize( aLength );
m_currentTarget->Append( m_currentPos );
}
void MEANDER_SHAPE::turn( const EDA_ANGLE& aAngle )
{
RotatePoint( m_currentDir, aAngle );
}
void MEANDER_SHAPE::miter( int aRadius, bool aSide )
{
if( aRadius <= 0 )
{
turn( aSide ? ANGLE_90 : -ANGLE_90 );
return;
}
VECTOR2D dir = m_currentDir.Resize( (double) aRadius );
SHAPE_LINE_CHAIN lc = makeMiterShape( m_currentPos, dir, aSide );
m_currentPos = lc.CPoint( -1 );
turn( aSide ? ANGLE_90 : -ANGLE_90 );
m_currentTarget->Append( lc );
}
void MEANDER_SHAPE::uShape( int aSides, int aCorner, int aTop )
{
forward( aSides );
miter( aCorner, true );
forward( aTop );
miter( aCorner, true );
forward( aSides );
}
SHAPE_LINE_CHAIN MEANDER_SHAPE::genMeanderShape( const VECTOR2D& aP, const VECTOR2D& aDir,
bool aSide, MEANDER_TYPE aType,
int aBaselineOffset )
{
int cr = cornerRadius();
int offset = aBaselineOffset;
int spc = spacing();
int amplitude = m_amplitude;
int targetBaseLen = m_targetBaseLen;
if( aSide )
offset *= -1;
VECTOR2D dir_u_b( aDir.Resize( offset ) );
VECTOR2D dir_v_b( dir_u_b.Perpendicular() );
if( 2 * cr > amplitude )
{
cr = amplitude / 2;
}
if( 2 * cr > spc )
{
cr = spc / 2;
}
if( cr - offset < 0 )
{
cr = offset;
}
m_meanCornerRadius = cr;
int sCorner = cr - offset;
int uCorner = cr + offset;
int startSide = amplitude - 2 * cr + std::abs( offset );
int turnSide = amplitude - cr;
int top = spc - 2 * cr;
SHAPE_LINE_CHAIN lc;
start( &lc, aP + dir_v_b, aDir );
switch( aType )
{
case MT_EMPTY:
{
lc.Append( aP + dir_v_b + aDir );
break;
}
case MT_START:
{
if( targetBaseLen )
top = std::max( top, targetBaseLen - sCorner - uCorner * 2 + offset );
miter( sCorner, false );
uShape( startSide, uCorner, top );
forward( std::min( sCorner, uCorner ) );
forward( std::abs( offset ) );
break;
}
case MT_FINISH:
{
if( targetBaseLen )
top = std::max( top, targetBaseLen - cr - spc );
start( &lc, aP - dir_u_b, aDir );
turn( -ANGLE_90 );
forward( std::min( sCorner, uCorner ) );
forward( std::abs( offset ) );
uShape( startSide, uCorner, top );
miter( sCorner, false );
if( targetBaseLen >= spc + cr )
lc.Append( aP + dir_v_b + aDir.Resize( targetBaseLen ) );
else
lc.Append( aP + dir_v_b + aDir.Resize( 2 * spc - cr ) );
break;
}
case MT_TURN:
{
if( targetBaseLen )
top = std::max( top, targetBaseLen - uCorner * 2 + offset * 2 );
start( &lc, aP - dir_u_b, aDir );
turn( -ANGLE_90 );
forward( std::abs( offset ) );
uShape( turnSide, uCorner, top );
forward( std::abs( offset ) );
break;
}
case MT_SINGLE:
{
if( targetBaseLen )
top = std::max( top, ( targetBaseLen - sCorner * 2 - uCorner * 2 ) / 2 );
miter( sCorner, false );
uShape( startSide, uCorner, top );
miter( sCorner, false );
lc.Append( aP + dir_v_b + aDir.Resize( 2 * spc ) );
break;
}
default: break;
}
if( aSide )
{
SEG axis( aP, aP + aDir );
lc.Mirror( axis );
}
return lc;
}
bool MEANDERED_LINE::CheckSelfIntersections( MEANDER_SHAPE* aShape, int aClearance )
{
for( int i = m_meanders.size() - 1; i >= 0; i-- )
{
MEANDER_SHAPE* m = m_meanders[i];
if( m->Type() == MT_EMPTY || m->Type() == MT_CORNER )
continue;
const SEG& b1 = aShape->BaseSegment();
const SEG& b2 = m->BaseSegment();
if( b1.ApproxParallel( b2 ) )
continue;
int n = m->CLine( 0 ).SegmentCount();
for( int j = n - 1; j >= 0; j-- )
{
if( aShape->CLine( 0 ).Collide( m->CLine( 0 ) .CSegment( j ), aClearance ) )
return false;
}
}
return true;
}
bool MEANDER_SHAPE::Fit( MEANDER_TYPE aType, const SEG& aSeg, const VECTOR2I& aP, bool aSide )
{
const MEANDER_SETTINGS& st = Settings();
bool checkMode = false;
MEANDER_TYPE prim1, prim2;
if( aType == MT_CHECK_START )
{
prim1 = MT_START;
prim2 = MT_TURN;
checkMode = true;
}
else if( aType == MT_CHECK_FINISH )
{
prim1 = MT_TURN;
prim2 = MT_FINISH;
checkMode = true;
}
if( checkMode )
{
MEANDER_SHAPE m1( m_placer, m_width, m_dual );
MEANDER_SHAPE m2( m_placer, m_width, m_dual );
m1.SetBaselineOffset( m_baselineOffset );
m2.SetBaselineOffset( m_baselineOffset );
bool c1 = m1.Fit( prim1, aSeg, aP, aSide );
bool c2 = false;
if( c1 )
c2 = m2.Fit( prim2, aSeg, m1.End(), !aSide );
if( c1 && c2 )
{
m_type = prim1;
m_shapes[0] = m1.m_shapes[0];
m_shapes[1] = m1.m_shapes[1];
m_baseSeg =aSeg;
m_p0 = aP;
m_side = aSide;
m_amplitude = m1.Amplitude();
m_dual = m1.m_dual;
m_baseSeg = m1.m_baseSeg;
m_baseIndex = m1.m_baseIndex;
updateBaseSegment();
m_baselineOffset = m1.m_baselineOffset;
return true;
}
else
{
return false;
}
}
int minAmpl = MinAmplitude();
int maxAmpl = std::max( st.m_maxAmplitude, minAmpl );
for( int ampl = maxAmpl; ampl >= minAmpl; ampl -= st.m_step )
{
m_amplitude = ampl;
if( m_dual )
{
m_shapes[0] = genMeanderShape( aP, aSeg.B - aSeg.A, aSide, aType, m_baselineOffset );
m_shapes[1] = genMeanderShape( aP, aSeg.B - aSeg.A, aSide, aType, -m_baselineOffset );
}
else
{
m_shapes[0] = genMeanderShape( aP, aSeg.B - aSeg.A, aSide, aType, 0 );
}
m_type = aType;
m_baseSeg = aSeg;
m_p0 = aP;
m_side = aSide;
updateBaseSegment();
if( m_placer->CheckFit( this ) )
return true;
}
return false;
}
void MEANDER_SHAPE::Recalculate()
{
m_shapes[0] = genMeanderShape( m_p0, m_baseSeg.B - m_baseSeg.A, m_side, m_type,
m_dual ? m_baselineOffset : 0 );
if( m_dual )
m_shapes[1] = genMeanderShape( m_p0, m_baseSeg.B - m_baseSeg.A, m_side, m_type,
-m_baselineOffset );
updateBaseSegment();
}
void MEANDER_SHAPE::Resize( int aAmpl )
{
if( aAmpl < 0 )
return;
m_amplitude = aAmpl;
Recalculate();
}
void MEANDER_SHAPE::MakeEmpty()
{
updateBaseSegment();
VECTOR2I dir = m_clippedBaseSeg.B - m_clippedBaseSeg.A;
m_type = MT_EMPTY;
m_amplitude = 0;
m_shapes[0] = genMeanderShape( m_p0, dir, m_side, m_type, m_dual ? m_baselineOffset : 0 );
if( m_dual )
m_shapes[1] = genMeanderShape( m_p0, dir, m_side, m_type, -m_baselineOffset );
}
void MEANDERED_LINE::AddCorner( const VECTOR2I& aA, const VECTOR2I& aB )
{
MEANDER_SHAPE* m = new MEANDER_SHAPE( m_placer, m_width, m_dual );
m->MakeCorner( aA, aB );
m_last = aA;
m_meanders.push_back( m );
}
void MEANDERED_LINE::AddArc( const SHAPE_ARC& aArc1, const SHAPE_ARC& aArc2 )
{
MEANDER_SHAPE* m = new MEANDER_SHAPE( m_placer, m_width, m_dual );
m->MakeArc( aArc1, aArc2 );
m_last = aArc1.GetP1();
m_meanders.push_back( m );
}
void MEANDERED_LINE::AddArcAndPt( const SHAPE_ARC& aArc1, const VECTOR2I& aPt2 )
{
SHAPE_ARC arc2( aPt2, aPt2, aPt2, 0 );
AddArc( aArc1, arc2 );
}
void MEANDERED_LINE::AddPtAndArc( const VECTOR2I& aPt1, const SHAPE_ARC& aArc2 )
{
SHAPE_ARC arc1( aPt1, aPt1, aPt1, 0 );
AddArc( arc1, aArc2 );
}
void MEANDER_SHAPE::MakeCorner( const VECTOR2I& aP1, const VECTOR2I& aP2 )
{
SetType( MT_CORNER );
m_shapes[0].Clear();
m_shapes[1].Clear();
m_shapes[0].Append( aP1 );
m_shapes[1].Append( aP2 );
m_clippedBaseSeg.A = aP1;
m_clippedBaseSeg.B = aP1;
}
void MEANDER_SHAPE::MakeArc( const SHAPE_ARC& aArc1, const SHAPE_ARC& aArc2 )
{
SetType( MT_CORNER );
m_shapes[0].Clear();
m_shapes[1].Clear();
m_shapes[0].Append( aArc1 );
m_shapes[1].Append( aArc2 );
m_clippedBaseSeg.A = aArc1.GetP1();
m_clippedBaseSeg.B = aArc1.GetP1();
}
void MEANDERED_LINE::AddMeander( MEANDER_SHAPE* aShape )
{
m_last = aShape->BaseSegment().B;
m_meanders.push_back( aShape );
}
void MEANDERED_LINE::Clear()
{
for( MEANDER_SHAPE* m : m_meanders )
{
delete m;
}
m_meanders.clear( );
}
int MEANDER_SHAPE::BaselineLength() const
{
return m_clippedBaseSeg.Length();
}
long long int MEANDER_SHAPE::CurrentLength() const
{
return CLine( 0 ).Length();
}
long long int MEANDER_SHAPE::MinTunableLength() const
{
MEANDER_SHAPE copy = *this;
copy.SetTargetBaselineLength( BaselineLength() );
copy.Resize( copy.MinAmplitude() );
return copy.CurrentLength();
}
void MEANDER_SHAPE::updateBaseSegment( )
{
if( m_dual )
{
VECTOR2I midpA = ( CLine( 0 ).CPoint( 0 ) + CLine( 1 ).CPoint( 0 ) ) / 2;
VECTOR2I midpB = ( CLine( 0 ).CPoint( -1 ) + CLine( 1 ).CPoint( -1 ) ) / 2;
m_clippedBaseSeg.A = m_baseSeg.LineProject( midpA );
m_clippedBaseSeg.B = m_baseSeg.LineProject( midpB );
}
else
{
m_clippedBaseSeg.A = m_baseSeg.LineProject( CLine( 0 ).CPoint( 0 ) );
m_clippedBaseSeg.B = m_baseSeg.LineProject( CLine( 0 ).CPoint( -1 ) );
}
}
}