kicad/bitmap2component/bitmap2component.cpp

555 lines
17 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 1992-2019 jean-pierre.charras
* Copyright (C) 1992-2019 Kicad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm> // std::max
#include <cerrno>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <common.h>
#include <layers_id_colors_and_visibility.h>
#include <potracelib.h>
#include "bitmap2component.h"
// Unit conversion. Coord unit from potrace is mm
#define MM2MICRON 1e3 // For pl_editor
#define MM2NANOMETER 1e6 // For pcbew
/* free a potrace bitmap */
static void bm_free( potrace_bitmap_t* bm )
{
if( bm != NULL )
{
free( bm->map );
}
free( bm );
}
static void BezierToPolyline( std::vector <potrace_dpoint_t>& aCornersBuffer,
potrace_dpoint_t p1,
potrace_dpoint_t p2,
potrace_dpoint_t p3,
potrace_dpoint_t p4 );
BITMAPCONV_INFO::BITMAPCONV_INFO( std::string& aData ):
m_Data( aData )
{
m_Format = POSTSCRIPT_FMT;
m_PixmapWidth = 0;
m_PixmapHeight = 0;
m_ScaleX = 1.0;
m_ScaleY = 1.0;
m_Paths = NULL;
m_CmpName = "LOGO";
}
int BITMAPCONV_INFO::ConvertBitmap( potrace_bitmap_t* aPotrace_bitmap,
OUTPUT_FMT_ID aFormat, int aDpi_X, int aDpi_Y,
BMP2CMP_MOD_LAYER aModLayer )
{
potrace_param_t* param;
potrace_state_t* st;
// set tracing parameters, starting from defaults
param = potrace_param_default();
if( !param )
{
char msg[256];
sprintf( msg, "Error allocating parameters: %s\n", strerror( errno ) );
m_errors += msg;
return 1;
}
// For parameters: see http://potrace.sourceforge.net/potracelib.pdf
param->turdsize = 0; // area (in pixels) of largest path to be ignored.
// Potrace default is 2
param->opttolerance = 0.2; // curve optimization tolerance. Potrace default is 0.2
/* convert the bitmap to curves */
st = potrace_trace( param, aPotrace_bitmap );
if( !st || st->status != POTRACE_STATUS_OK )
{
if( st )
{
potrace_state_free( st );
}
potrace_param_free( param );
char msg[256];
sprintf( msg, "Error tracing bitmap: %s\n", strerror( errno ) );
m_errors += msg;
return 1;
}
m_PixmapWidth = aPotrace_bitmap->w;
m_PixmapHeight = aPotrace_bitmap->h; // the bitmap size in pixels
m_Paths = st->plist;
switch( aFormat )
{
case KICAD_LOGO:
m_Format = KICAD_LOGO;
m_ScaleX = MM2MICRON * 25.4 / aDpi_X; // the conversion scale from PPI to micron
m_ScaleY = MM2MICRON * 25.4 / aDpi_Y; // Y axis is top to bottom
createOutputData();
break;
case POSTSCRIPT_FMT:
m_Format = POSTSCRIPT_FMT;
m_ScaleX = 1.0; // the conversion scale
m_ScaleY = m_ScaleX;
// output vector data, e.g. as a rudimentary EPS file (mainly for tests)
createOutputData();
break;
case EESCHEMA_FMT:
m_Format = EESCHEMA_FMT;
m_ScaleX = 1000.0 / aDpi_X; // the conversion scale from PPI to UI (mil)
m_ScaleY = -1000.0 / aDpi_Y; // Y axis is bottom to Top for components in libs
createOutputData();
break;
case PCBNEW_KICAD_MOD:
m_Format = PCBNEW_KICAD_MOD;
m_ScaleX = MM2NANOMETER * 25.4 / aDpi_X; // the conversion scale from PPI to UI
m_ScaleY = MM2NANOMETER * 25.4 / aDpi_Y; // Y axis is top to bottom in modedit
createOutputData( aModLayer );
break;
default:
break;
}
bm_free( aPotrace_bitmap );
potrace_state_free( st );
potrace_param_free( param );
return 0;
}
const char* BITMAPCONV_INFO::getBoardLayerName( BMP2CMP_MOD_LAYER aChoice )
{
const char * layerName = "F.SilkS";
switch( aChoice )
{
case MOD_LYR_FSOLDERMASK:
layerName = "F.Mask";
break;
case MOD_LYR_ECO1:
layerName = "Eco1.User";
break;
case MOD_LYR_ECO2:
layerName = "Eco2.User";
break;
case MOD_LYR_FSILKS:
default: // case MOD_LYR_FSILKS only unless there is a bug
break;
}
return layerName;
}
void BITMAPCONV_INFO::outputDataHeader( const char * aBrdLayerName )
{
int Ypos = (int) ( m_PixmapHeight / 2 * m_ScaleY );
int fieldSize; // fields text size = 60 mils
char strbuf[1024];
switch( m_Format )
{
case POSTSCRIPT_FMT:
/* output vector data, e.g. as a rudimentary EPS file */
m_Data += "%%!PS-Adobe-3.0 EPSF-3.0\n";
sprintf( strbuf, "%%%%BoundingBox: 0 0 %d %d\n", m_PixmapWidth, m_PixmapHeight );
m_Data += strbuf;
m_Data += "gsave\n";
break;
case PCBNEW_KICAD_MOD:
// fields text size = 1.5 mm
// fields text thickness = 1.5 / 5 = 0.3mm
sprintf( strbuf, "(module %s (layer F.Cu)\n (at 0 0)\n", m_CmpName.c_str() );
m_Data += strbuf;
sprintf( strbuf, " (fp_text reference \"G***\" (at 0 0) (layer %s)\n"
" (effects (font (thickness 0.3)))\n )\n", aBrdLayerName );
m_Data += strbuf;
sprintf( strbuf, " (fp_text value \"%s\" (at 0.75 0) (layer %s) hide\n"
" (effects (font (thickness 0.3)))\n )\n", m_CmpName.c_str(), aBrdLayerName );
m_Data += strbuf;
break;
case KICAD_LOGO:
m_Data += "(polygon (pos 0 0 rbcorner) (rotate 0) (linewidth 0.01)\n";
break;
case EESCHEMA_FMT:
sprintf( strbuf, "EESchema-LIBRARY Version 2.3\n" );
m_Data += strbuf;
sprintf( strbuf, "#\n# %s\n", m_CmpName.c_str() );
m_Data += strbuf;
sprintf( strbuf, "# pixmap size w = %d, h = %d\n#\n",
m_PixmapWidth, m_PixmapHeight );
m_Data += strbuf;
// print reference and value
fieldSize = 50; // fields text size = 50 mils
Ypos += fieldSize / 2;
sprintf( strbuf, "DEF %s G 0 40 Y Y 1 F N\n", m_CmpName.c_str() );
m_Data += strbuf;
sprintf( strbuf, "F0 \"#G\" 0 %d %d H I C CNN\n", Ypos, fieldSize );
m_Data += strbuf;
sprintf( strbuf, "F1 \"%s\" 0 %d %d H I C CNN\n", m_CmpName.c_str(), -Ypos, fieldSize );
m_Data += strbuf;
m_Data += "DRAW\n";
break;
}
}
void BITMAPCONV_INFO::outputDataEnd()
{
switch( m_Format )
{
case POSTSCRIPT_FMT:
m_Data += "grestore\n";
m_Data += "%%EOF\n";
break;
case PCBNEW_KICAD_MOD:
m_Data += ")\n";
break;
case KICAD_LOGO:
m_Data += ")\n";
break;
case EESCHEMA_FMT:
m_Data += "ENDDRAW\n";
m_Data += "ENDDEF\n";
break;
}
}
void BITMAPCONV_INFO::outputOnePolygon( SHAPE_LINE_CHAIN & aPolygon, const char* aBrdLayerName )
{
// write one polygon to output file.
// coordinates are expected in target unit.
int ii, jj;
VECTOR2I currpoint;
char strbuf[1024];
int offsetX = (int)( m_PixmapWidth / 2 * m_ScaleX );
int offsetY = (int)( m_PixmapHeight / 2 * m_ScaleY );
const VECTOR2I startpoint = aPolygon.CPoint( 0 );
switch( m_Format )
{
case POSTSCRIPT_FMT:
offsetY = (int)( m_PixmapHeight * m_ScaleY );
sprintf( strbuf, "newpath\n%d %d moveto\n",
startpoint.x, offsetY - startpoint.y );
m_Data += strbuf;
jj = 0;
for( ii = 1; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
sprintf( strbuf, " %d %d lineto",
currpoint.x, offsetY - currpoint.y );
m_Data += strbuf;
if( jj++ > 6 )
{
jj = 0;
m_Data += "\n";
}
}
m_Data += "\nclosepath fill\n";
break;
case PCBNEW_KICAD_MOD:
{
double width = 0.0; // outline thickness in mm: no thickness
m_Data += " (fp_poly (pts";
jj = 0;
for( ii = 0; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
sprintf( strbuf, " (xy %f %f)",
( currpoint.x - offsetX ) / MM2NANOMETER,
( currpoint.y - offsetY ) / MM2NANOMETER );
m_Data += strbuf;
if( jj++ > 6 )
{
jj = 0;
m_Data += "\n ";
}
}
// No need to close polygon
m_Data += " )";
sprintf( strbuf, "(layer %s) (width %f)\n )\n", aBrdLayerName, width );
m_Data += strbuf;
}
break;
case KICAD_LOGO:
m_Data += " (pts";
// Internal units = micron, file unit = mm
jj = 0;
for( ii = 0; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
sprintf( strbuf, " (xy %.3f %.3f)",
( currpoint.x - offsetX ) / MM2MICRON,
( currpoint.y - offsetY ) / MM2MICRON );
m_Data += strbuf;
if( jj++ > 4 )
{
jj = 0;
m_Data += "\n ";
}
}
// Close polygon
sprintf( strbuf, " (xy %.3f %.3f) )\n",
( startpoint.x - offsetX ) / MM2MICRON,
( startpoint.y - offsetY ) / MM2MICRON );
m_Data += strbuf;
break;
case EESCHEMA_FMT:
// The polygon outline thickness is fixed here to 1 mil, the minimal
// value in Eeschema (0 means use default thickness for graphics)
#define EE_LINE_THICKNESS 1
sprintf( strbuf, "P %d 0 0 %d",
(int) aPolygon.PointCount() + 1, EE_LINE_THICKNESS );
m_Data += strbuf;
for( ii = 0; ii < aPolygon.PointCount(); ii++ )
{
currpoint = aPolygon.CPoint( ii );
sprintf( strbuf, " %d %d",
currpoint.x - offsetX, currpoint.y - offsetY );
m_Data += strbuf;
}
// Close polygon
sprintf( strbuf, " %d %d",
startpoint.x - offsetX, startpoint.y - offsetY );
m_Data += strbuf;
m_Data += " F\n";
break;
}
}
void BITMAPCONV_INFO::createOutputData( BMP2CMP_MOD_LAYER aModLayer )
{
std::vector <potrace_dpoint_t> cornersBuffer;
// polyset_areas is a set of polygon to draw
SHAPE_POLY_SET polyset_areas;
// polyset_holes is the set of holes inside polyset_areas outlines
SHAPE_POLY_SET polyset_holes;
potrace_dpoint_t( *c )[3];
LOCALE_IO toggle; // Temporary switch the locale to standard C to r/w floats
// The layer name has meaning only for .kicad_mod files.
// For these files the header creates 2 invisible texts: value and ref
// (needed but not usefull) on silk screen layer
outputDataHeader( getBoardLayerName( MOD_LYR_FSILKS ) );
bool main_outline = true;
/* draw each as a polygon with no hole.
* Bezier curves are approximated by a polyline
*/
potrace_path_t* paths = m_Paths; // the list of paths
if(!m_Paths)
{
m_errors += "No path in black and white image: no outline created\n";
}
while( paths != NULL )
{
int cnt = paths->curve.n;
int* tag = paths->curve.tag;
c = paths->curve.c;
potrace_dpoint_t startpoint = c[cnt - 1][2];
for( int i = 0; i < cnt; i++ )
{
switch( tag[i] )
{
case POTRACE_CORNER:
cornersBuffer.push_back( c[i][1] );
cornersBuffer.push_back( c[i][2] );
startpoint = c[i][2];
break;
case POTRACE_CURVETO:
BezierToPolyline( cornersBuffer, startpoint, c[i][0], c[i][1], c[i][2] );
startpoint = c[i][2];
break;
}
}
// Store current path
if( main_outline )
{
main_outline = false;
// build the current main polygon
polyset_areas.NewOutline();
for( unsigned int i = 0; i < cornersBuffer.size(); i++ )
{
polyset_areas.Append( int( cornersBuffer[i].x * m_ScaleX ),
int( cornersBuffer[i].y * m_ScaleY ) );
}
}
else
{
// Add current hole in polyset_holes
polyset_holes.NewOutline();
for( unsigned int i = 0; i < cornersBuffer.size(); i++ )
{
polyset_holes.Append( int( cornersBuffer[i].x * m_ScaleX ),
int( cornersBuffer[i].y * m_ScaleY ) );
}
}
cornersBuffer.clear();
/* at the end of a group of a positive path and its negative children, fill.
*/
if( paths->next == NULL || paths->next->sign == '+' )
{
polyset_areas.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
polyset_holes.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
polyset_areas.BooleanSubtract( polyset_holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
// Ensure there are no self intersecting polygons
polyset_areas.NormalizeAreaOutlines();
// Convert polygon with holes to a unique polygon
polyset_areas.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
// Output current resulting polygon(s)
for( int ii = 0; ii < polyset_areas.OutlineCount(); ii++ )
{
SHAPE_LINE_CHAIN& poly = polyset_areas.Outline( ii );
outputOnePolygon( poly, getBoardLayerName( aModLayer ));
}
polyset_areas.RemoveAllContours();
polyset_holes.RemoveAllContours();
main_outline = true;
}
paths = paths->next;
}
outputDataEnd();
}
// a helper function to calculate a square value
inline double square( double x )
{
return x*x;
}
// a helper function to calculate a cube value
inline double cube( double x )
{
return x*x*x;
}
/* render a Bezier curve. */
void BezierToPolyline( std::vector <potrace_dpoint_t>& aCornersBuffer,
potrace_dpoint_t p1,
potrace_dpoint_t p2,
potrace_dpoint_t p3,
potrace_dpoint_t p4 )
{
double dd0, dd1, dd, delta, e2, epsilon, t;
// p1 = starting point
/* we approximate the curve by small line segments. The interval
* size, epsilon, is determined on the fly so that the distance
* between the true curve and its approximation does not exceed the
* desired accuracy delta. */
delta = 0.25; /* desired accuracy, in pixels */
/* let dd = maximal value of 2nd derivative over curve - this must
* occur at an endpoint. */
dd0 = square( p1.x - 2 * p2.x + p3.x ) + square( p1.y - 2 * p2.y + p3.y );
dd1 = square( p2.x - 2 * p3.x + p4.x ) + square( p2.y - 2 * p3.y + p4.y );
dd = 6 * sqrt( std::max( dd0, dd1 ) );
e2 = 8 * delta <= dd ? 8 * delta / dd : 1;
epsilon = sqrt( e2 ); /* necessary interval size */
for( t = epsilon; t<1; t += epsilon )
{
potrace_dpoint_t intermediate_point;
intermediate_point.x = p1.x * cube( 1 - t ) +
3* p2.x* square( 1 - t ) * t +
3 * p3.x * (1 - t) * square( t ) +
p4.x* cube( t );
intermediate_point.y = p1.y * cube( 1 - t ) +
3* p2.y* square( 1 - t ) * t +
3 * p3.y * (1 - t) * square( t ) + p4.y* cube( t );
aCornersBuffer.push_back( intermediate_point );
}
aCornersBuffer.push_back( p4 );
}