476 lines
13 KiB
C++
476 lines
13 KiB
C++
/*
|
|
* This program source code file is part of KICAD, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2013-2017 CERN
|
|
* @author Maciej Suminski <maciej.suminski@cern.ch>
|
|
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/**
|
|
* @file ratsnest_data.cpp
|
|
* @brief Class that computes missing connections on a PCB.
|
|
*/
|
|
|
|
#ifdef PROFILE
|
|
#include <profile.h>
|
|
#endif
|
|
|
|
#include <ratsnest_data.h>
|
|
#include <functional>
|
|
using namespace std::placeholders;
|
|
|
|
#include <cassert>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
|
|
static uint64_t getDistance( const CN_ANCHOR_PTR& aNode1, const CN_ANCHOR_PTR& aNode2 )
|
|
{
|
|
double dx = ( aNode1->Pos().x - aNode2->Pos().x );
|
|
double dy = ( aNode1->Pos().y - aNode2->Pos().y );
|
|
|
|
return sqrt( dx * dx + dy * dy );
|
|
}
|
|
|
|
|
|
static bool sortWeight( const CN_EDGE& aEdge1, const CN_EDGE& aEdge2 )
|
|
{
|
|
return aEdge1.GetWeight() < aEdge2.GetWeight();
|
|
}
|
|
|
|
|
|
static const std::vector<CN_EDGE> kruskalMST( std::list<CN_EDGE>& aEdges,
|
|
std::vector<CN_ANCHOR_PTR>& aNodes )
|
|
{
|
|
unsigned int nodeNumber = aNodes.size();
|
|
unsigned int mstExpectedSize = nodeNumber - 1;
|
|
unsigned int mstSize = 0;
|
|
bool ratsnestLines = false;
|
|
|
|
// The output
|
|
std::vector<CN_EDGE> mst;
|
|
|
|
// Set tags for marking cycles
|
|
std::unordered_map<CN_ANCHOR_PTR, int> tags;
|
|
unsigned int tag = 0;
|
|
|
|
for( auto& node : aNodes )
|
|
{
|
|
node->SetTag( tag );
|
|
tags[node] = tag++;
|
|
}
|
|
|
|
// Lists of nodes connected together (subtrees) to detect cycles in the graph
|
|
std::vector<std::list<int> > cycles( nodeNumber );
|
|
|
|
for( unsigned int i = 0; i < nodeNumber; ++i )
|
|
cycles[i].push_back( i );
|
|
|
|
// Kruskal algorithm requires edges to be sorted by their weight
|
|
aEdges.sort( sortWeight );
|
|
|
|
while( mstSize < mstExpectedSize && !aEdges.empty() )
|
|
{
|
|
//printf("mstSize %d %d\n", mstSize, mstExpectedSize);
|
|
auto& dt = aEdges.front();
|
|
|
|
int srcTag = tags[dt.GetSourceNode()];
|
|
int trgTag = tags[dt.GetTargetNode()];
|
|
|
|
// Check if by adding this edge we are going to join two different forests
|
|
if( srcTag != trgTag )
|
|
{
|
|
// Because edges are sorted by their weight, first we always process connected
|
|
// items (weight == 0). Once we stumble upon an edge with non-zero weight,
|
|
// it means that the rest of the lines are ratsnest.
|
|
if( !ratsnestLines && dt.GetWeight() != 0 )
|
|
ratsnestLines = true;
|
|
|
|
// Update tags
|
|
if( ratsnestLines )
|
|
{
|
|
for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it )
|
|
{
|
|
tags[aNodes[*it]] = srcTag;
|
|
}
|
|
|
|
// Do a copy of edge, but make it RN_EDGE_MST. In contrary to RN_EDGE,
|
|
// RN_EDGE_MST saves both source and target node and does not require any other
|
|
// edges to exist for getting source/target nodes
|
|
CN_EDGE newEdge ( dt.GetSourceNode(), dt.GetTargetNode(), dt.GetWeight() );
|
|
|
|
assert( newEdge.GetSourceNode()->GetTag() != newEdge.GetTargetNode()->GetTag() );
|
|
assert( newEdge.GetWeight() > 0 );
|
|
|
|
mst.push_back( newEdge );
|
|
++mstSize;
|
|
}
|
|
else
|
|
{
|
|
// for( it = cycles[trgTag].begin(), itEnd = cycles[trgTag].end(); it != itEnd; ++it )
|
|
// for( auto it : cycles[trgTag] )
|
|
for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it )
|
|
{
|
|
tags[aNodes[*it]] = srcTag;
|
|
aNodes[*it]->SetTag( srcTag );
|
|
}
|
|
|
|
// Processing a connection, decrease the expected size of the ratsnest MST
|
|
--mstExpectedSize;
|
|
}
|
|
|
|
// Move nodes that were marked with old tag to the list marked with the new tag
|
|
cycles[srcTag].splice( cycles[srcTag].end(), cycles[trgTag] );
|
|
}
|
|
|
|
// Remove the edge that was just processed
|
|
aEdges.erase( aEdges.begin() );
|
|
}
|
|
|
|
// Probably we have discarded some of edges, so reduce the size
|
|
mst.resize( mstSize );
|
|
|
|
return mst;
|
|
}
|
|
|
|
|
|
class RN_NET::TRIANGULATOR_STATE
|
|
{
|
|
private:
|
|
std::vector<CN_ANCHOR_PTR> m_allNodes;
|
|
|
|
std::list<hed::EDGE_PTR> hedTriangulation( std::vector<hed::NODE_PTR>& aNodes )
|
|
{
|
|
hed::TRIANGULATION triangulator;
|
|
triangulator.CreateDelaunay( aNodes.begin(), aNodes.end() );
|
|
std::list<hed::EDGE_PTR> edges;
|
|
triangulator.GetEdges( edges );
|
|
|
|
return edges;
|
|
}
|
|
|
|
|
|
// Checks if all nodes in aNodes lie on a single line. Requires the nodes to
|
|
// have unique coordinates!
|
|
bool areNodesColinear( const std::vector<hed::NODE_PTR>& aNodes ) const
|
|
{
|
|
if ( aNodes.size() <= 2 )
|
|
return true;
|
|
|
|
const auto p0 = aNodes[0]->Pos();
|
|
const auto v0 = aNodes[1]->Pos() - p0;
|
|
|
|
for( unsigned i = 2; i < aNodes.size(); i++ )
|
|
{
|
|
const auto v1 = aNodes[i]->Pos() - p0;
|
|
|
|
if( v0.Cross( v1 ) != 0 )
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
|
|
void Clear()
|
|
{
|
|
m_allNodes.clear();
|
|
}
|
|
|
|
void AddNode( CN_ANCHOR_PTR aNode )
|
|
{
|
|
m_allNodes.push_back( aNode );
|
|
}
|
|
|
|
const std::list<CN_EDGE> Triangulate()
|
|
{
|
|
std::list<CN_EDGE> mstEdges;
|
|
std::list<hed::EDGE_PTR> triangEdges;
|
|
std::vector<hed::NODE_PTR> triNodes;
|
|
|
|
using ANCHOR_LIST = std::vector<CN_ANCHOR_PTR>;
|
|
std::vector<ANCHOR_LIST> anchorChains;
|
|
|
|
triNodes.reserve( m_allNodes.size() );
|
|
anchorChains.reserve( m_allNodes.size() );
|
|
|
|
std::sort( m_allNodes.begin(), m_allNodes.end(),
|
|
[] ( const CN_ANCHOR_PTR& aNode1, const CN_ANCHOR_PTR& aNode2 )
|
|
{
|
|
if( aNode1->Pos().y < aNode2->Pos().y )
|
|
return true;
|
|
else if( aNode1->Pos().y == aNode2->Pos().y )
|
|
{
|
|
return aNode1->Pos().x < aNode2->Pos().x;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
);
|
|
|
|
CN_ANCHOR_PTR prev, last;
|
|
int id = 0;
|
|
|
|
for( auto n : m_allNodes )
|
|
{
|
|
anchorChains.push_back( ANCHOR_LIST() );
|
|
}
|
|
|
|
for( auto n : m_allNodes )
|
|
{
|
|
if( !prev || prev->Pos() != n->Pos() )
|
|
{
|
|
auto tn = std::make_shared<hed::NODE> ( n->Pos().x, n->Pos().y );
|
|
|
|
tn->SetId( id );
|
|
triNodes.push_back( tn );
|
|
}
|
|
|
|
id++;
|
|
prev = n;
|
|
}
|
|
|
|
int prevId = 0;
|
|
|
|
for( auto n : triNodes )
|
|
{
|
|
for( int i = prevId; i < n->Id(); i++ )
|
|
anchorChains[prevId].push_back( m_allNodes[ i ] );
|
|
|
|
prevId = n->Id();
|
|
}
|
|
|
|
for( int i = prevId; i < id; i++ )
|
|
anchorChains[prevId].push_back( m_allNodes[ i ] );
|
|
|
|
if( triNodes.size() == 1 )
|
|
{
|
|
return mstEdges;
|
|
}
|
|
else if( areNodesColinear( triNodes ) )
|
|
{
|
|
// special case: all nodes are on the same line - there's no
|
|
// triangulation for such set. In this case, we sort along any coordinate
|
|
// and chain the nodes together.
|
|
for(int i = 0; i < (int)triNodes.size() - 1; i++ )
|
|
{
|
|
auto src = m_allNodes[ triNodes[i]->Id() ];
|
|
auto dst = m_allNodes[ triNodes[i + 1]->Id() ];
|
|
mstEdges.emplace_back( src, dst, getDistance( src, dst ) );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hed::TRIANGULATION triangulator;
|
|
triangulator.CreateDelaunay( triNodes.begin(), triNodes.end() );
|
|
triangulator.GetEdges( triangEdges );
|
|
|
|
for( auto e : triangEdges )
|
|
{
|
|
auto src = m_allNodes[ e->GetSourceNode()->Id() ];
|
|
auto dst = m_allNodes[ e->GetTargetNode()->Id() ];
|
|
|
|
mstEdges.emplace_back( src, dst, getDistance( src, dst ) );
|
|
}
|
|
}
|
|
|
|
for( unsigned int i = 0; i < anchorChains.size(); i++ )
|
|
{
|
|
auto& chain = anchorChains[i];
|
|
|
|
if( chain.size() < 2 )
|
|
continue;
|
|
|
|
std::sort( chain.begin(), chain.end(),
|
|
[] ( const CN_ANCHOR_PTR& a, const CN_ANCHOR_PTR& b ) {
|
|
return a->GetCluster().get() < b->GetCluster().get();
|
|
} );
|
|
|
|
for( unsigned int j = 1; j < chain.size(); j++ )
|
|
{
|
|
const auto& prevNode = chain[j - 1];
|
|
const auto& curNode = chain[j];
|
|
int weight = prevNode->GetCluster() != curNode->GetCluster() ? 1 : 0;
|
|
mstEdges.push_back( CN_EDGE ( prevNode, curNode, weight ) );
|
|
}
|
|
}
|
|
|
|
return mstEdges;
|
|
}
|
|
};
|
|
|
|
|
|
RN_NET::RN_NET() : m_dirty( true )
|
|
{
|
|
m_triangulator.reset( new TRIANGULATOR_STATE );
|
|
}
|
|
|
|
|
|
void RN_NET::compute()
|
|
{
|
|
// Special cases do not need complicated algorithms (actually, it does not work well with
|
|
// the Delaunay triangulator)
|
|
if( m_nodes.size() <= 2 )
|
|
{
|
|
m_rnEdges.clear();
|
|
|
|
// Check if the only possible connection exists
|
|
if( m_boardEdges.size() == 0 && m_nodes.size() == 2 )
|
|
{
|
|
auto last = ++m_nodes.begin();
|
|
|
|
// There can be only one possible connection, but it is missing
|
|
CN_EDGE edge (*m_nodes.begin(), *last );
|
|
edge.GetSourceNode()->SetTag( 0 );
|
|
edge.GetTargetNode()->SetTag( 1 );
|
|
|
|
m_rnEdges.push_back( edge );
|
|
}
|
|
else
|
|
{
|
|
// Set tags to m_nodes as connected
|
|
for( auto node : m_nodes )
|
|
node->SetTag( 0 );
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
m_triangulator->Clear();
|
|
|
|
for( auto n : m_nodes )
|
|
{
|
|
m_triangulator->AddNode( n );
|
|
}
|
|
|
|
#ifdef PROFILE
|
|
PROF_COUNTER cnt("triangulate");
|
|
#endif
|
|
auto triangEdges = m_triangulator->Triangulate();
|
|
#ifdef PROFILE
|
|
cnt.Show();
|
|
#endif
|
|
|
|
for( const auto& e : m_boardEdges )
|
|
triangEdges.push_back( e );
|
|
|
|
// Get the minimal spanning tree
|
|
#ifdef PROFILE
|
|
PROF_COUNTER cnt2("mst");
|
|
#endif
|
|
m_rnEdges = kruskalMST( triangEdges, m_nodes );
|
|
#ifdef PROFILE
|
|
cnt2.Show();
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
void RN_NET::Update()
|
|
{
|
|
compute();
|
|
|
|
m_dirty = false;
|
|
}
|
|
|
|
|
|
void RN_NET::Clear()
|
|
{
|
|
m_rnEdges.clear();
|
|
m_boardEdges.clear();
|
|
m_nodes.clear();
|
|
|
|
m_dirty = true;
|
|
}
|
|
|
|
|
|
void RN_NET::AddCluster( CN_CLUSTER_PTR aCluster )
|
|
{
|
|
CN_ANCHOR_PTR firstAnchor;
|
|
|
|
for( auto item : *aCluster )
|
|
{
|
|
bool isZone = dynamic_cast<CN_ZONE*>(item) != nullptr;
|
|
auto& anchors = item->Anchors();
|
|
unsigned int nAnchors = isZone ? 1 : anchors.size();
|
|
|
|
if( nAnchors > anchors.size() )
|
|
nAnchors = anchors.size();
|
|
|
|
for( unsigned int i = 0; i < nAnchors; i++ )
|
|
{
|
|
anchors[i]->SetCluster( aCluster );
|
|
m_nodes.push_back(anchors[i]);
|
|
|
|
if( firstAnchor )
|
|
{
|
|
if( firstAnchor != anchors[i] )
|
|
{
|
|
m_boardEdges.emplace_back( firstAnchor, anchors[i], 0 );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
firstAnchor = anchors[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool RN_NET::NearestBicoloredPair( const RN_NET& aOtherNet, CN_ANCHOR_PTR& aNode1,
|
|
CN_ANCHOR_PTR& aNode2 ) const
|
|
{
|
|
bool rv = false;
|
|
|
|
VECTOR2I::extended_type distMax = VECTOR2I::ECOORD_MAX;
|
|
|
|
for( auto nodeA : m_nodes )
|
|
{
|
|
for( auto nodeB : aOtherNet.m_nodes )
|
|
{
|
|
if( !nodeA->GetNoLine() )
|
|
{
|
|
auto squaredDist = (nodeA->Pos() - nodeB->Pos() ).SquaredEuclideanNorm();
|
|
|
|
if( squaredDist < distMax )
|
|
{
|
|
rv = true;
|
|
distMax = squaredDist;
|
|
aNode1 = nodeA;
|
|
aNode2 = nodeB;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
|
|
void RN_NET::SetVisible( bool aEnabled )
|
|
{
|
|
for( auto& edge : m_rnEdges )
|
|
edge.SetVisible( aEnabled );
|
|
}
|