494 lines
14 KiB
C++
494 lines
14 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2015 Mario Luzeiro <mrluzeiro@ua.pt>
|
|
* Copyright (C) 1992-2015 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/**
|
|
* @file ccamera.cpp
|
|
* @brief
|
|
*/
|
|
|
|
#include "../common_ogl/openGL_includes.h"
|
|
#include "ccamera.h"
|
|
#include <wx/log.h>
|
|
|
|
|
|
/**
|
|
* Trace mask used to enable or disable the trace output of this class.
|
|
* The debug output can be turned on by setting the WXTRACE environment variable to
|
|
* "KI_TRACE_CCAMERA". See the wxWidgets documentation on wxLogTrace for
|
|
* more information.
|
|
*/
|
|
const wxChar *CCAMERA::m_logTrace = wxT( "KI_TRACE_CCAMERA" );
|
|
|
|
|
|
CCAMERA::CCAMERA( float aRangeScale )
|
|
{
|
|
wxLogTrace( m_logTrace, wxT( "CCAMERA::CCAMERA" ) );
|
|
|
|
m_parametersChanged = true;
|
|
m_projectionType = PROJECTION_PERSPECTIVE;
|
|
m_projectionMatrix = glm::mat4( 1.0f );
|
|
m_projectionMatrix_inv = glm::mat4( 1.0f );
|
|
m_rotationMatrix = glm::mat4( 1.0f );
|
|
m_lastPosition = wxPoint( 0, 0 );
|
|
m_windowSize = wxSize( 0, 0 );
|
|
m_zoom = 1.0f;
|
|
m_range_scale = aRangeScale;
|
|
m_camera_pos_init = SFVEC3F( 0.0f, 0.0f, -aRangeScale );
|
|
m_camera_pos = m_camera_pos_init;
|
|
m_boardLookAt_pos = SFVEC3F( 0.0, 0.0, 0.0 );
|
|
updateViewMatrix();
|
|
m_viewMatrix_inverse = glm::inverse( m_viewMatrix );
|
|
m_scr_nX.clear();
|
|
m_scr_nY.clear();
|
|
}
|
|
|
|
|
|
void CCAMERA::updateViewMatrix()
|
|
{
|
|
m_viewMatrix = glm::translate( glm::mat4( 1.0f ), m_camera_pos ) *
|
|
m_rotationMatrix * glm::translate( glm::mat4( 1.0f ), m_boardLookAt_pos );
|
|
}
|
|
|
|
|
|
const glm::mat4 &CCAMERA::GetRotationMatrix() const
|
|
{
|
|
return m_rotationMatrix;
|
|
}
|
|
|
|
|
|
void CCAMERA::rebuildProjection()
|
|
{
|
|
m_frustum.ratio = (float) m_windowSize.x / m_windowSize.y;
|
|
m_frustum.nearD = 0.01f;
|
|
m_frustum.farD = glm::length( m_camera_pos_init ) * 2.0f; // Consider that we can render double the lenght, review if that is OK...
|
|
|
|
switch( m_projectionType )
|
|
{
|
|
case PROJECTION_PERSPECTIVE:
|
|
// Ratio width / height of the window display
|
|
m_frustum.angle = 45.0f * m_zoom;
|
|
|
|
|
|
m_projectionMatrix = glm::perspective( m_frustum.angle * ( glm::pi<float>() / 180.0f ),
|
|
m_frustum.ratio,
|
|
m_frustum.nearD,
|
|
m_frustum.farD );
|
|
|
|
m_projectionMatrix_inv = glm::inverse( m_projectionMatrix );
|
|
|
|
m_frustum.tang = (float)tan( m_frustum.angle * ( glm::pi<float>() / 180.0f ) * 0.5f ) ;
|
|
|
|
m_focalLen.x = ( (float)m_windowSize.y / (float)m_windowSize.x ) / m_frustum.tang;
|
|
m_focalLen.y = 1.0f / m_frustum.tang;
|
|
|
|
m_frustum.nh = m_frustum.nearD * m_frustum.tang;
|
|
m_frustum.nw = m_frustum.nh * m_frustum.ratio;
|
|
m_frustum.fh = m_frustum.farD * m_frustum.tang;
|
|
m_frustum.fw = m_frustum.fh * m_frustum.ratio;
|
|
break;
|
|
|
|
case PROJECTION_ORTHO:
|
|
const float orthoReductionFactor = m_zoom / 400.0f;
|
|
|
|
// Initialize Projection Matrix for Ortographic View
|
|
m_projectionMatrix = glm::ortho( -m_windowSize.x * orthoReductionFactor,
|
|
m_windowSize.x * orthoReductionFactor,
|
|
-m_windowSize.y * orthoReductionFactor,
|
|
m_windowSize.y * orthoReductionFactor,
|
|
m_frustum.nearD,
|
|
m_frustum.farD );
|
|
|
|
m_projectionMatrix_inv = glm::inverse( m_projectionMatrix );
|
|
|
|
m_frustum.nw = m_windowSize.x * orthoReductionFactor * 2.0f;
|
|
m_frustum.nh = m_windowSize.y * orthoReductionFactor * 2.0f;
|
|
m_frustum.fw = m_frustum.nw;
|
|
m_frustum.fh = m_frustum.nh;
|
|
|
|
break;
|
|
}
|
|
|
|
m_scr_nX.resize( m_windowSize.x );
|
|
m_scr_nY.resize( m_windowSize.y );
|
|
|
|
// Precalc X values for camera -> ray generation
|
|
for( unsigned int x = 0; x < (unsigned int)m_windowSize.x; x++ )
|
|
{
|
|
// Converts 0.0 .. 1.0
|
|
float xNormalizedDeviceCoordinates = ( ( (float)x + 0.5f ) / (m_windowSize.x - 0.0f) );
|
|
|
|
// Converts -1.0 .. 1.0
|
|
m_scr_nX[x] = 2.0f * xNormalizedDeviceCoordinates - 1.0f;
|
|
}
|
|
|
|
// Precalc Y values for camera -> ray generation
|
|
for( unsigned int y = 0; y < (unsigned int)m_windowSize.y; y++ )
|
|
{
|
|
// Converts 0.0 .. 1.0
|
|
float yNormalizedDeviceCoordinates = ( ( (float)y + 0.5f ) / (m_windowSize.y - 0.0f) );
|
|
|
|
// Converts -1.0 .. 1.0
|
|
m_scr_nY[y] = 2.0f * yNormalizedDeviceCoordinates - 1.0f;
|
|
}
|
|
|
|
updateFrustum();
|
|
}
|
|
|
|
|
|
void CCAMERA::updateFrustum()
|
|
{
|
|
// Update matrix and vectors
|
|
m_viewMatrix_inverse = glm::inverse( m_viewMatrix );
|
|
|
|
m_right = glm::normalize( SFVEC3F( m_viewMatrix_inverse * glm::vec4( SFVEC3F( 1.0, 0.0, 0.0 ), 0.0 ) ) );
|
|
m_up = glm::normalize( SFVEC3F( m_viewMatrix_inverse * glm::vec4( SFVEC3F( 0.0, 1.0, 0.0 ), 0.0 ) ) );
|
|
m_dir = glm::normalize( SFVEC3F( m_viewMatrix_inverse * glm::vec4( SFVEC3F( 0.0, 0.0, 1.0 ), 0.0 ) ) );
|
|
m_pos = SFVEC3F( m_viewMatrix_inverse * glm::vec4( SFVEC3F( 0.0, 0.0, 0.0 ), 1.0 ) );
|
|
|
|
|
|
/*
|
|
* Frustum is a implementation based on a tutorial by
|
|
* http://www.lighthouse3d.com/tutorials/view-frustum-culling/
|
|
*/
|
|
|
|
// compute the centers of the near and far planes
|
|
m_frustum.nc = m_pos - m_dir * m_frustum.nearD;
|
|
m_frustum.fc = m_pos - m_dir * m_frustum.farD;
|
|
|
|
// compute the 4 corners of the frustum on the near plane
|
|
m_frustum.ntl = m_frustum.nc + m_up * m_frustum.nh - m_right * m_frustum.nw;
|
|
m_frustum.ntr = m_frustum.nc + m_up * m_frustum.nh + m_right * m_frustum.nw;
|
|
m_frustum.nbl = m_frustum.nc - m_up * m_frustum.nh - m_right * m_frustum.nw;
|
|
m_frustum.nbr = m_frustum.nc - m_up * m_frustum.nh + m_right * m_frustum.nw;
|
|
|
|
// compute the 4 corners of the frustum on the far plane
|
|
m_frustum.ftl = m_frustum.fc + m_up * m_frustum.fh - m_right * m_frustum.fw;
|
|
m_frustum.ftr = m_frustum.fc + m_up * m_frustum.fh + m_right * m_frustum.fw;
|
|
m_frustum.fbl = m_frustum.fc - m_up * m_frustum.fh - m_right * m_frustum.fw;
|
|
m_frustum.fbr = m_frustum.fc - m_up * m_frustum.fh + m_right * m_frustum.fw;
|
|
|
|
// Reserve size for precalc values
|
|
m_right_nX.resize( m_windowSize.x );
|
|
m_up_nY.resize( m_windowSize.y );
|
|
|
|
// Precalc X values for camera -> ray generation
|
|
SFVEC3F right_nw = m_right * m_frustum.nw;
|
|
|
|
for( unsigned int x = 0; x < (unsigned int)m_windowSize.x; x++ )
|
|
m_right_nX[x] = right_nw * m_scr_nX[x];
|
|
|
|
// Precalc Y values for camera -> ray generation
|
|
SFVEC3F up_nh = m_up * m_frustum.nh;
|
|
|
|
for( unsigned int y = 0; y < (unsigned int)m_windowSize.y; y++ )
|
|
m_up_nY[y] = m_frustum.nc + (up_nh * m_scr_nY[y]);
|
|
}
|
|
|
|
|
|
void CCAMERA::MakeRay( const SFVEC2I &aWindowPos, SFVEC3F &aOutOrigin, SFVEC3F &aOutDirection ) const
|
|
{
|
|
aOutOrigin = m_up_nY[aWindowPos.y] +
|
|
m_right_nX[aWindowPos.x];
|
|
|
|
aOutDirection = glm::normalize( aOutOrigin - m_pos );
|
|
}
|
|
|
|
|
|
void CCAMERA::GLdebug_Lines()
|
|
{
|
|
SFVEC3F ntl = m_frustum.ntl;
|
|
SFVEC3F ntr = m_frustum.ntr;
|
|
SFVEC3F nbl = m_frustum.nbl;
|
|
SFVEC3F nbr = m_frustum.nbr;
|
|
|
|
SFVEC3F ftl = m_frustum.ftl;
|
|
SFVEC3F ftr = m_frustum.ftr;
|
|
SFVEC3F fbl = m_frustum.fbl;
|
|
SFVEC3F fbr = m_frustum.fbr;
|
|
|
|
glColor4f( 1.0, 1.0, 1.0, 0.7 );
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
//near plane
|
|
glVertex3f(ntl.x,ntl.y,ntl.z);
|
|
glVertex3f(ntr.x,ntr.y,ntr.z);
|
|
glVertex3f(nbr.x,nbr.y,nbr.z);
|
|
glVertex3f(nbl.x,nbl.y,nbl.z);
|
|
glEnd();
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
//far plane
|
|
glVertex3f(ftr.x,ftr.y,ftr.z);
|
|
glVertex3f(ftl.x,ftl.y,ftl.z);
|
|
glVertex3f(fbl.x,fbl.y,fbl.z);
|
|
glVertex3f(fbr.x,fbr.y,fbr.z);
|
|
glEnd();
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
//bottom plane
|
|
glVertex3f(nbl.x,nbl.y,nbl.z);
|
|
glVertex3f(nbr.x,nbr.y,nbr.z);
|
|
glVertex3f(fbr.x,fbr.y,fbr.z);
|
|
glVertex3f(fbl.x,fbl.y,fbl.z);
|
|
glEnd();
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
//top plane
|
|
glVertex3f(ntr.x,ntr.y,ntr.z);
|
|
glVertex3f(ntl.x,ntl.y,ntl.z);
|
|
glVertex3f(ftl.x,ftl.y,ftl.z);
|
|
glVertex3f(ftr.x,ftr.y,ftr.z);
|
|
glEnd();
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
//left plane
|
|
glVertex3f(ntl.x,ntl.y,ntl.z);
|
|
glVertex3f(nbl.x,nbl.y,nbl.z);
|
|
glVertex3f(fbl.x,fbl.y,fbl.z);
|
|
glVertex3f(ftl.x,ftl.y,ftl.z);
|
|
glEnd();
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
// right plane
|
|
glVertex3f(nbr.x,nbr.y,nbr.z);
|
|
glVertex3f(ntr.x,ntr.y,ntr.z);
|
|
glVertex3f(ftr.x,ftr.y,ftr.z);
|
|
glVertex3f(fbr.x,fbr.y,fbr.z);
|
|
glEnd();
|
|
}
|
|
|
|
|
|
void CCAMERA::GLdebug_Vectors()
|
|
{
|
|
SFVEC3F right = m_pos + m_right * m_frustum.nearD;
|
|
SFVEC3F up = m_pos + m_up * m_frustum.nearD;
|
|
SFVEC3F dir = m_pos - m_dir * m_frustum.nearD;
|
|
|
|
glColor4f( 1.0, 0.0, 0.0, 1.0 );
|
|
glBegin( GL_LINES );
|
|
glVertex3fv( &m_pos.x );
|
|
glVertex3fv( &right.x );
|
|
glEnd();
|
|
|
|
glColor4f( 0.0, 1.0, 0.0, 1.0 );
|
|
glBegin( GL_LINES );
|
|
glVertex3fv( &m_pos.x );
|
|
glVertex3fv( &up.x );
|
|
glEnd();
|
|
|
|
glColor4f( 0.0, 0.0, 1.0, 1.0 );
|
|
glBegin( GL_LINES );
|
|
glVertex3fv( &m_pos.x );
|
|
glVertex3fv( &dir.x );
|
|
glEnd();
|
|
}
|
|
|
|
|
|
void CCAMERA::GLdebug_Planes()
|
|
{
|
|
SFVEC3F ntl = m_frustum.ntl;
|
|
SFVEC3F ntr = m_frustum.ntr;
|
|
SFVEC3F nbl = m_frustum.nbl;
|
|
SFVEC3F nbr = m_frustum.nbr;
|
|
|
|
SFVEC3F ftl = m_frustum.ftl;
|
|
SFVEC3F ftr = m_frustum.ftr;
|
|
SFVEC3F fbl = m_frustum.fbl;
|
|
SFVEC3F fbr = m_frustum.fbr;
|
|
|
|
// Initialize alpha blending function.
|
|
glEnable( GL_BLEND );
|
|
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
|
|
|
|
glBegin(GL_QUADS);
|
|
|
|
//near plane
|
|
glColor4f( 0.0, 0.0, 0.5, 0.6 );
|
|
glVertex3f(ntl.x,ntl.y,ntl.z);
|
|
glVertex3f(ntr.x,ntr.y,ntr.z);
|
|
glVertex3f(nbr.x,nbr.y,nbr.z);
|
|
glVertex3f(nbl.x,nbl.y,nbl.z);
|
|
|
|
//far plane
|
|
glColor4f( 0.0, 0.0, 0.5, 0.6 );
|
|
glVertex3f(ftr.x,ftr.y,ftr.z);
|
|
glVertex3f(ftl.x,ftl.y,ftl.z);
|
|
glVertex3f(fbl.x,fbl.y,fbl.z);
|
|
glVertex3f(fbr.x,fbr.y,fbr.z);
|
|
|
|
//bottom plane
|
|
glColor4f( 0.0, 0.5, 0.0, 0.6 );
|
|
glVertex3f(nbl.x,nbl.y,nbl.z);
|
|
glVertex3f(nbr.x,nbr.y,nbr.z);
|
|
glVertex3f(fbr.x,fbr.y,fbr.z);
|
|
glVertex3f(fbl.x,fbl.y,fbl.z);
|
|
|
|
//top plane
|
|
glColor4f( 0.0, 0.5, 0.0, 0.6 );
|
|
glVertex3f(ntr.x,ntr.y,ntr.z);
|
|
glVertex3f(ntl.x,ntl.y,ntl.z);
|
|
glVertex3f(ftl.x,ftl.y,ftl.z);
|
|
glVertex3f(ftr.x,ftr.y,ftr.z);
|
|
|
|
//left plane
|
|
glColor4f( 0.5, 0.0, 0.0, 0.6 );
|
|
glVertex3f(ntl.x,ntl.y,ntl.z);
|
|
glVertex3f(nbl.x,nbl.y,nbl.z);
|
|
glVertex3f(fbl.x,fbl.y,fbl.z);
|
|
glVertex3f(ftl.x,ftl.y,ftl.z);
|
|
|
|
// right plane
|
|
glColor4f( 0.5, 0.0, 0.0, 0.6 );
|
|
glVertex3f(nbr.x,nbr.y,nbr.z);
|
|
glVertex3f(ntr.x,ntr.y,ntr.z);
|
|
glVertex3f(ftr.x,ftr.y,ftr.z);
|
|
glVertex3f(fbr.x,fbr.y,fbr.z);
|
|
|
|
glEnd();
|
|
|
|
glDisable( GL_BLEND );
|
|
/*
|
|
glColor3f( 0.0, 0.0, 1.0 );
|
|
OGL_draw_arrow( m_pos,
|
|
m_frustum.nc,
|
|
0.1);*/
|
|
|
|
|
|
}
|
|
|
|
|
|
const glm::mat4 &CCAMERA::GetProjectionMatrix() const
|
|
{
|
|
return m_projectionMatrix;
|
|
}
|
|
|
|
|
|
const glm::mat4 &CCAMERA::GetProjectionMatrixInv() const
|
|
{
|
|
return m_projectionMatrix_inv;
|
|
}
|
|
|
|
|
|
const glm::mat4 &CCAMERA::GetViewMatrix() const
|
|
{
|
|
return m_viewMatrix;
|
|
}
|
|
|
|
|
|
const glm::mat4 &CCAMERA::GetViewMatrix_Inv() const
|
|
{
|
|
return m_viewMatrix_inverse;
|
|
}
|
|
|
|
|
|
void CCAMERA::SetCurMousePosition( const wxPoint &aNewMousePosition )
|
|
{
|
|
m_lastPosition = aNewMousePosition;
|
|
}
|
|
|
|
|
|
void CCAMERA::SetProjection( PROJECTION_TYPE aProjectionType )
|
|
{
|
|
if( m_projectionType != aProjectionType )
|
|
{
|
|
m_projectionType = aProjectionType;
|
|
rebuildProjection();
|
|
}
|
|
}
|
|
|
|
|
|
void CCAMERA::SetCurWindowSize( const wxSize &aSize )
|
|
{
|
|
if( m_windowSize != aSize )
|
|
{
|
|
m_windowSize = aSize;
|
|
rebuildProjection();
|
|
}
|
|
}
|
|
|
|
|
|
void CCAMERA::ZoomReset()
|
|
{
|
|
m_zoom = 1.0f;
|
|
|
|
m_camera_pos.z = m_camera_pos_init.z;
|
|
|
|
updateViewMatrix();
|
|
rebuildProjection();
|
|
}
|
|
|
|
|
|
void CCAMERA::ZoomIn( float aFactor )
|
|
{
|
|
float old_zoom = m_zoom;
|
|
|
|
m_zoom /= aFactor;
|
|
|
|
if( m_zoom <= 0.05f )
|
|
m_zoom = 0.05f;
|
|
|
|
m_camera_pos.z = m_zoom * m_camera_pos_init.z;
|
|
|
|
if( old_zoom != m_zoom )
|
|
{
|
|
updateViewMatrix();
|
|
rebuildProjection();
|
|
}
|
|
}
|
|
|
|
|
|
void CCAMERA::ZoomOut( float aFactor )
|
|
{
|
|
float old_zoom = m_zoom;
|
|
|
|
m_zoom *= aFactor;
|
|
|
|
if( m_zoom >= 1.5f )
|
|
m_zoom = 1.5f;
|
|
|
|
m_camera_pos.z = m_zoom * m_camera_pos_init.z;
|
|
|
|
if( old_zoom != m_zoom )
|
|
{
|
|
updateViewMatrix();
|
|
rebuildProjection();
|
|
}
|
|
}
|
|
|
|
|
|
float CCAMERA::ZoomGet() const
|
|
{
|
|
return m_zoom;
|
|
}
|
|
|
|
|
|
bool CCAMERA::ParametersChanged()
|
|
{
|
|
bool parametersChanged = m_parametersChanged;
|
|
|
|
m_parametersChanged = false;
|
|
|
|
return parametersChanged;
|
|
}
|