kicad/pcbnew/router/pns_dp_meander_placer.cpp

407 lines
10 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <boost/foreach.hpp>
#include <boost/optional.hpp>
#include <base_units.h> // God forgive me doing this...
#include <colors.h>
#include "trace.h"
#include "pns_node.h"
#include "pns_itemset.h"
#include "pns_topology.h"
#include "pns_dp_meander_placer.h"
#include "pns_diff_pair.h"
#include "pns_router.h"
#include "pns_utils.h"
using boost::optional;
PNS_DP_MEANDER_PLACER::PNS_DP_MEANDER_PLACER( PNS_ROUTER* aRouter ) :
PNS_MEANDER_PLACER_BASE( aRouter )
{
m_world = NULL;
m_currentNode = NULL;
// Init temporary variables (do not leave uninitialized members)
m_initialSegment = NULL;
m_lastLength = 0;
m_lastStatus = TOO_SHORT;
}
PNS_DP_MEANDER_PLACER::~PNS_DP_MEANDER_PLACER()
{
}
const PNS_LINE PNS_DP_MEANDER_PLACER::Trace() const
{
return m_currentTraceP;
}
PNS_NODE* PNS_DP_MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const
{
if( !m_currentNode )
return m_world;
return m_currentNode;
}
bool PNS_DP_MEANDER_PLACER::Start( const VECTOR2I& aP, PNS_ITEM* aStartItem )
{
VECTOR2I p;
if( !aStartItem || !aStartItem->OfKind( PNS_ITEM::SEGMENT ) )
{
Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) );
return false;
}
m_initialSegment = static_cast<PNS_SEGMENT*>( aStartItem );
p = m_initialSegment->Seg().NearestPoint( aP );
m_currentNode=NULL;
m_currentStart = p;
m_world = Router()->GetWorld()->Branch();
PNS_TOPOLOGY topo( m_world );
if( !topo.AssembleDiffPair( m_initialSegment, m_originPair ) )
{
Router()->SetFailureReason( _( "Unable to find complementary differential pair "
"net for length tuning. Make sure the names of the nets belonging "
"to a differential pair end with either _N/_P or +/-." ) );
return false;
}
if( m_originPair.Gap() < 0 )
m_originPair.SetGap( Router()->Sizes().DiffPairGap() );
if( !m_originPair.PLine().SegmentCount() ||
!m_originPair.NLine().SegmentCount() )
return false;
m_tunedPathP = topo.AssembleTrivialPath( m_originPair.PLine().GetLink( 0 ) );
m_tunedPathN = topo.AssembleTrivialPath( m_originPair.NLine().GetLink( 0 ) );
m_world->Remove( m_originPair.PLine() );
m_world->Remove( m_originPair.NLine() );
m_currentWidth = m_originPair.Width();
return true;
}
void PNS_DP_MEANDER_PLACER::release()
{
}
int PNS_DP_MEANDER_PLACER::origPathLength() const
{
int totalP = 0;
int totalN = 0;
BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathP.CItems() )
{
if( const PNS_LINE* l = dyn_cast<const PNS_LINE*>( item ) )
totalP += l->CLine().Length();
}
BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathN.CItems() )
{
if( const PNS_LINE* l = dyn_cast<const PNS_LINE*>( item ) )
totalN += l->CLine().Length();
}
return std::max( totalP, totalN );
}
const SEG PNS_DP_MEANDER_PLACER::baselineSegment( const PNS_DIFF_PAIR::COUPLED_SEGMENTS& aCoupledSegs )
{
const VECTOR2I a( ( aCoupledSegs.coupledP.A + aCoupledSegs.coupledN.A ) / 2 );
const VECTOR2I b( ( aCoupledSegs.coupledP.B + aCoupledSegs.coupledN.B ) / 2 );
return SEG( a, b );
}
static bool pairOrientation( const PNS_DIFF_PAIR::COUPLED_SEGMENTS& aPair )
{
VECTOR2I midp = ( aPair.coupledP.A + aPair.coupledN.A ) / 2;
//DrawDebugPoint (midp, 6);
return aPair.coupledP.Side( midp ) > 0;
}
bool PNS_DP_MEANDER_PLACER::Move( const VECTOR2I& aP, PNS_ITEM* aEndItem )
{
// return false;
PNS_DIFF_PAIR::COUPLED_SEGMENTS_VEC coupledSegments;
if( m_currentNode )
delete m_currentNode;
m_currentNode = m_world->Branch();
SHAPE_LINE_CHAIN preP, tunedP, postP;
SHAPE_LINE_CHAIN preN, tunedN, postN;
cutTunedLine( m_originPair.CP(), m_currentStart, aP, preP, tunedP, postP );
cutTunedLine( m_originPair.CN(), m_currentStart, aP, preN, tunedN, postN );
PNS_DIFF_PAIR tuned ( m_originPair );
tuned.SetShape( tunedP, tunedN );
tuned.CoupledSegmentPairs( coupledSegments );
if( coupledSegments.size() == 0 )
return false;
//Router()->DisplayDebugLine ( tuned.CP(), 5, 20000 );
//Router()->DisplayDebugLine ( tuned.CN(), 4, 20000 );
//Router()->DisplayDebugLine ( m_originPair.CP(), 5, 20000 );
//Router()->DisplayDebugLine ( m_originPair.CN(), 4, 20000 );
m_result = PNS_MEANDERED_LINE( this, true );
m_result.SetWidth( tuned.Width() );
int offset = ( tuned.Gap() + tuned.Width() ) / 2;
if( !pairOrientation( coupledSegments[0] ) )
offset *= -1;
m_result.SetBaselineOffset( offset );
BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathP.CItems() )
{
if( const PNS_LINE* l = dyn_cast<const PNS_LINE*>( item ) )
Router()->DisplayDebugLine( l->CLine(), 5, 10000 );
}
BOOST_FOREACH( const PNS_ITEM* item, m_tunedPathN.CItems() )
{
if( const PNS_LINE* l = dyn_cast<const PNS_LINE*>( item ) )
Router()->DisplayDebugLine( l->CLine(), 5, 10000 );
}
int curIndexP = 0, curIndexN = 0;
BOOST_FOREACH( const PNS_DIFF_PAIR::COUPLED_SEGMENTS& sp, coupledSegments )
{
SEG base = baselineSegment( sp );
DrawDebugSeg( base, 3 );
while( sp.indexP >= curIndexP )
{
m_result.AddCorner( tunedP.CPoint( curIndexP ), tunedN.CPoint( curIndexN ) );
curIndexP++;
}
while( sp.indexN >= curIndexN )
{
m_result.AddCorner( tunedP.CPoint( sp.indexP ), tunedN.CPoint( curIndexN ) );
curIndexN++;
}
m_result.MeanderSegment( base );
}
while( curIndexP < tunedP.PointCount() )
m_result.AddCorner( tunedP.CPoint( curIndexP++ ), tunedN.CPoint( curIndexN ) );
while( curIndexN < tunedN.PointCount() )
m_result.AddCorner( tunedP.CPoint( -1 ), tunedN.CPoint( curIndexN++ ) );
int dpLen = origPathLength();
m_lastStatus = TUNED;
if( dpLen - m_settings.m_targetLength > m_settings.m_lengthTolerance )
{
m_lastStatus = TOO_LONG;
m_lastLength = dpLen;
}
else
{
m_lastLength = dpLen - std::max( tunedP.Length(), tunedN.Length() );
tuneLineLength( m_result, m_settings.m_targetLength - dpLen );
}
if( m_lastStatus != TOO_LONG )
{
tunedP.Clear();
tunedN.Clear();
BOOST_FOREACH( PNS_MEANDER_SHAPE* m, m_result.Meanders() )
{
if( m->Type() != MT_EMPTY )
{
tunedP.Append ( m->CLine( 0 ) );
tunedN.Append ( m->CLine( 1 ) );
}
}
m_lastLength += std::max( tunedP.Length(), tunedN.Length() );
int comp = compareWithTolerance( m_lastLength - m_settings.m_targetLength, 0, m_settings.m_lengthTolerance );
if( comp > 0 )
m_lastStatus = TOO_LONG;
else if( comp < 0 )
m_lastStatus = TOO_SHORT;
else
m_lastStatus = TUNED;
}
m_finalShapeP.Clear();
m_finalShapeP.Append( preP );
m_finalShapeP.Append( tunedP );
m_finalShapeP.Append( postP );
m_finalShapeP.Simplify();
m_finalShapeN.Clear();
m_finalShapeN.Append( preN );
m_finalShapeN.Append( tunedN );
m_finalShapeN.Append( postN );
m_finalShapeN.Simplify();
return true;
}
bool PNS_DP_MEANDER_PLACER::FixRoute( const VECTOR2I& aP, PNS_ITEM* aEndItem )
{
PNS_LINE lP( m_originPair.PLine(), m_finalShapeP );
PNS_LINE lN( m_originPair.NLine(), m_finalShapeN );
m_currentNode->Add( &lP );
m_currentNode->Add( &lN );
Router()->CommitRouting( m_currentNode );
return true;
}
bool PNS_DP_MEANDER_PLACER::CheckFit( PNS_MEANDER_SHAPE* aShape )
{
PNS_LINE l1( m_originPair.PLine(), aShape->CLine( 0 ) );
PNS_LINE l2( m_originPair.NLine(), aShape->CLine( 1 ) );
if( m_currentNode->CheckColliding( &l1 ) )
return false;
if( m_currentNode->CheckColliding( &l2 ) )
return false;
int w = aShape->Width();
int clearance = w + m_settings.m_spacing;
return m_result.CheckSelfIntersections( aShape, clearance );
}
const PNS_ITEMSET PNS_DP_MEANDER_PLACER::Traces()
{
m_currentTraceP = PNS_LINE( m_originPair.PLine(), m_finalShapeP );
m_currentTraceN = PNS_LINE( m_originPair.NLine(), m_finalShapeN );
PNS_ITEMSET traces;
traces.Add( &m_currentTraceP );
traces.Add( &m_currentTraceN );
return traces;
}
const VECTOR2I& PNS_DP_MEANDER_PLACER::CurrentEnd() const
{
return m_currentEnd;
}
int PNS_DP_MEANDER_PLACER::CurrentLayer() const
{
return m_initialSegment->Layers().Start();
}
const wxString PNS_DP_MEANDER_PLACER::TuningInfo() const
{
wxString status;
switch( m_lastStatus )
{
case TOO_LONG:
status = _( "Too long: " );
break;
case TOO_SHORT:
status = _("Too short: " );
break;
case TUNED:
status = _( "Tuned: " );
break;
default:
return _( "?" );
}
status += LengthDoubleToString( (double) m_lastLength, false );
status += "/";
status += LengthDoubleToString( (double) m_settings.m_targetLength, false );
status += " (gap: ";
status += LengthDoubleToString( (double) m_originPair.Gap(), false );
status += ")";
return status;
}
PNS_DP_MEANDER_PLACER::TUNING_STATUS PNS_DP_MEANDER_PLACER::TuningStatus() const
{
return m_lastStatus;
}
const std::vector<int> PNS_DP_MEANDER_PLACER::CurrentNets() const
{
std::vector<int> rv;
rv.push_back( m_originPair.NetP() );
rv.push_back( m_originPair.NetN() );
return rv;
}