kicad/pcbnew/export_vrml.cpp

1305 lines
42 KiB
C++
Executable File

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2009-2013 Lorenzo Mercantonio
* Copyright (C) 2013 Jean-Pierre Charras jp.charras at wanadoo.fr
* Copyright (C) 2004-2013 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <fctsys.h>
#include <kicad_string.h>
#include <wxPcbStruct.h>
#include <drawtxt.h>
#include <trigo.h>
#include <appl_wxstruct.h>
#include <3d_struct.h>
#include <macros.h>
#include <pcbnew.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_edge_mod.h>
#include <class_pcb_text.h>
#include <convert_from_iu.h>
#include <vector>
#include <cmath>
// Number of segments to approximate a circle per segments:
#define SEGM_COUNT_PER_360 32
// basic angle to approximate a circle per segments
static const double INC_ANGLE = M_PI*2 / SEGM_COUNT_PER_360;
/* helper function:
* some characters cannot be used in names,
* this function change them to "_"
*/
static void ChangeIllegalCharacters( wxString & aFileName, bool aDirSepIsIllegal );
// I use this a lot...
static const double PI2 = M_PI / 2;
struct POINT_3D
{
double x, y, z;
};
struct POINT_2D
{
POINT_2D( double _x = 0, double _y = 0 ) : x( _x ), y( _y )
{ }
double x, y;
};
// Absolutely not optimized triangle bag :D
struct TRIANGLE
{
TRIANGLE( double x1, double y1, double z1,
double x2, double y2, double z2,
double x3, double y3, double z3 )
{
p1.x = x1; p1.y = y1; p1.z = z1;
p2.x = x2; p2.y = y2; p2.z = z2;
p3.x = x3; p3.y = y3; p3.z = z3;
}
TRIANGLE() { }
POINT_3D p1, p2, p3;
};
typedef std::vector<TRIANGLE> TRIANGLEBAG;
// A flat triangle fan
struct FLAT_FAN
{
POINT_2D c;
std::vector<POINT_2D> pts;
void add( double x, double y )
{
pts.push_back( POINT_2D( x, y ) );
}
void bag( int layer, bool close = true );
};
// A flat quad ring
struct FLAT_RING
{
std::vector<POINT_2D> inner;
std::vector<POINT_2D> outer;
void add_inner( double x, double y )
{
inner.push_back( POINT_2D( x, y ) );
}
void add_outer( double x, double y )
{
outer.push_back( POINT_2D( x, y ) );
}
void bag( int layer, bool close = true );
};
// A vertical quad loop
struct VLoop
{
std::vector<POINT_2D> pts;
double z_top, z_bottom;
void add( double x, double y )
{
pts.push_back( POINT_2D( x, y ) );
}
void bag( TRIANGLEBAG& triangles, bool close = true );
};
// The bags for all the layers
static TRIANGLEBAG layer_triangles[LAYER_COUNT];
static TRIANGLEBAG via_triangles[4];
static double layer_z[LAYER_COUNT];
static void bag_flat_triangle( int layer, //{{{
double x1, double y1,
double x2, double y2,
double x3, double y3 )
{
double z = layer_z[layer];
layer_triangles[layer].push_back( TRIANGLE( x1, y1, z, x2, y2, z, x3, y3, z ) );
}
void FLAT_FAN::bag( int layer, bool close ) //{{{
{
unsigned i;
for( i = 0; i < pts.size() - 1; i++ )
bag_flat_triangle( layer, c.x, c.y, pts[i].x, pts[i].y, pts[i + 1].x, pts[i + 1].y );
if( close )
bag_flat_triangle( layer, c.x, c.y, pts[i].x, pts[i].y, pts[0].x, pts[0].y );
}
static void bag_flat_quad( int layer, //{{{
double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4 )
{
bag_flat_triangle( layer, x1, y1, x3, y3, x2, y2 );
bag_flat_triangle( layer, x2, y2, x3, y3, x4, y4 );
}
void FLAT_RING::bag( int layer, bool close ) //{{{
{
unsigned i;
for( i = 0; i < inner.size() - 1; i++ )
bag_flat_quad( layer,
inner[i].x, inner[i].y,
outer[i].x, outer[i].y,
inner[i + 1].x, inner[i + 1].y,
outer[i + 1].x, outer[i + 1].y );
if( close )
bag_flat_quad( layer,
inner[i].x, inner[i].y,
outer[i].x, outer[i].y,
inner[0].x, inner[0].y,
outer[0].x, outer[0].y );
}
static void bag_vquad( TRIANGLEBAG& triangles, //{{{
double x1, double y1, double x2, double y2,
double z1, double z2 )
{
triangles.push_back( TRIANGLE( x1, y1, z1,
x2, y2, z1,
x2, y2, z2 ) );
triangles.push_back( TRIANGLE( x1, y1, z1,
x2, y2, z2,
x1, y1, z2 ) );
}
void VLoop::bag( TRIANGLEBAG& triangles, bool close ) //{{{
{
unsigned i;
for( i = 0; i < pts.size() - 1; i++ )
bag_vquad( triangles, pts[i].x, pts[i].y,
pts[i + 1].x, pts[i + 1].y,
z_top, z_bottom );
if( close )
bag_vquad( triangles, pts[i].x, pts[i].y,
pts[0].x, pts[0].y,
z_top, z_bottom );
}
static void write_triangle_bag( FILE* output_file, int color_index, //{{{
const TRIANGLEBAG& triangles,
double boardIU2WRML )
{
/* A lot of nodes are not required, but blender sometimes chokes
* without them */
static const char* shape_boiler[] =
{
"Transform {\n",
" children [\n",
" Group {\n",
" children [\n",
" Shape {\n",
" appearance Appearance {\n",
" material Material {\n",
0, // Material marker
" ambientIntensity 0.8\n",
" transparency 0.2\n",
" shininess 0.2\n",
" }\n",
" }\n",
" geometry IndexedFaceSet {\n",
" solid TRUE\n",
" coord Coordinate {\n",
" point [\n",
0, // Coordinates marker
" ]\n",
" }\n",
" coordIndex [\n",
0, // Index marker
" ]\n",
" }\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
0 // End marker
};
int marker_found = 0, lineno = 0;
while( marker_found < 4 )
{
if( shape_boiler[lineno] )
fputs( shape_boiler[lineno], output_file );
else
{
marker_found++;
switch( marker_found )
{
case 1: // Material marker
fprintf( output_file,
" diffuseColor %g %g %g\n",
(double) ColorRefs[color_index].m_Red / 255.0,
(double) ColorRefs[color_index].m_Green / 255.0,
(double) ColorRefs[color_index].m_Blue / 255.0 );
fprintf( output_file,
" specularColor %g %g %g\n",
(double) ColorRefs[color_index].m_Red / 255.0,
(double) ColorRefs[color_index].m_Green / 255.0,
(double) ColorRefs[color_index].m_Blue / 255.0 );
fprintf( output_file,
" emissiveColor %g %g %g\n",
(double) ColorRefs[color_index].m_Red / 255.0,
(double) ColorRefs[color_index].m_Green / 255.0,
(double) ColorRefs[color_index].m_Blue / 255.0 );
break;
case 2:
{
// Coordinates marker
for( TRIANGLEBAG::const_iterator i = triangles.begin();
i != triangles.end();
i++ )
{
fprintf( output_file, "%.8g %.8g %.8g\n",
i->p1.x * boardIU2WRML, -i->p1.y * boardIU2WRML,
i->p1.z * boardIU2WRML );
fprintf( output_file, "%.8g %.8g %.8g\n",
i->p2.x * boardIU2WRML, -i->p2.y * boardIU2WRML,
i->p2.z * boardIU2WRML );
fprintf( output_file, "%.8g %.8g %.8g\n",
i->p3.x * boardIU2WRML, -i->p3.y * boardIU2WRML,
i->p3.z * boardIU2WRML );
}
}
break;
case 3:
{
// Index marker
// OK, that's sick ...
int j = 0;
for( TRIANGLEBAG::const_iterator i = triangles.begin();
i != triangles.end();
i++ )
{
fprintf( output_file, "%d %d %d -1\n", j, j + 1, j + 2 );
j += 3;
}
}
break;
default:
break;
}
}
lineno++;
}
}
static void compute_layer_Zs( BOARD* pcb ) //{{{
{
int copper_layers = pcb->GetCopperLayerCount( );
// We call it 'layer' thickness, but it's the whole board thickness!
double board_thickness = pcb->GetDesignSettings().GetBoardThickness();
double half_thickness = board_thickness / 2;
// Compute each layer's Z value, more or less like the 3d view
for( int i = 0; i <= LAYER_N_FRONT; i++ )
{
if( i < copper_layers )
layer_z[i] = board_thickness * i / (copper_layers - 1) - half_thickness;
else
layer_z[i] = half_thickness; // The component layer...
}
/* To avoid rounding interference, we apply an epsilon to each
* successive layer */
const double epsilon_z = 0.02 * IU_PER_MM; // That's 1/50 mm
layer_z[SOLDERPASTE_N_BACK] = -half_thickness - epsilon_z * 4;
layer_z[ADHESIVE_N_BACK] = -half_thickness - epsilon_z * 3;
layer_z[SILKSCREEN_N_BACK] = -half_thickness - epsilon_z * 2;
layer_z[SOLDERMASK_N_BACK] = -half_thickness - epsilon_z;
layer_z[SOLDERMASK_N_FRONT] = half_thickness + epsilon_z;
layer_z[SILKSCREEN_N_FRONT] = half_thickness + epsilon_z * 2;
layer_z[ADHESIVE_N_FRONT] = half_thickness + epsilon_z * 3;
layer_z[SOLDERPASTE_N_FRONT] = half_thickness + epsilon_z * 4;
layer_z[DRAW_N] = half_thickness + epsilon_z * 5;
layer_z[COMMENT_N] = half_thickness + epsilon_z * 6;
layer_z[ECO1_N] = half_thickness + epsilon_z * 7;
layer_z[ECO2_N] = half_thickness + epsilon_z * 8;
layer_z[EDGE_N] = 0;
}
static void export_vrml_line( int layer, double startx, double starty, //{{{
double endx, double endy, double width, int divisions )
{
double r = width / 2;
double angle = atan2( endy - starty, endx - startx );
double alpha;
FLAT_FAN fan;
// Output the 'bone' as a triangle fan, this is the fan centre
fan.c.x = (startx + endx) / 2;
fan.c.y = (starty + endy) / 2;
// The 'end' side cap
for( alpha = angle - PI2; alpha < angle + PI2; alpha += PI2 / divisions )
fan.add( endx + r * cos( alpha ), endy + r * sin( alpha ) );
alpha = angle + PI2;
fan.add( endx + r * cos( alpha ), endy + r * sin( alpha ) );
// The 'start' side cap
for( alpha = angle + PI2; alpha < angle + 3 * PI2; alpha += PI2 / divisions )
fan.add( startx + r * cos( alpha ), starty + r * sin( alpha ) );
alpha = angle + 3 * PI2;
fan.add( startx + r * cos( alpha ), starty + r * sin( alpha ) );
// Export the fan
fan.bag( layer );
}
static void export_vrml_circle( int layer, double startx, double starty,
double endx, double endy, double width )
{
double hole, radius;
FLAT_RING ring;
radius = hypot( startx - endx, starty - endy ) + ( width / 2);
hole = radius - width;
for( double alpha = 0; alpha < M_PI * 2; alpha += INC_ANGLE )
{
ring.add_inner( startx + hole * cos( alpha ), starty + hole * sin( alpha ) );
ring.add_outer( startx + radius * cos( alpha ), starty + radius * sin( alpha ) );
}
ring.bag( layer );
}
static void export_vrml_slot( TRIANGLEBAG& triangles, //{{{
int top_layer, int bottom_layer, double xc, double yc,
double dx, double dy, int orient )
{
double capx, capy; // Cap center
VLoop loop;
int divisions = SEGM_COUNT_PER_360 / 2;
loop.z_top = layer_z[top_layer];
loop.z_bottom = layer_z[bottom_layer];
double angle = orient / 1800.0 * M_PI;
if( dy > dx )
{
EXCHG( dx, dy );
angle += PI2;
}
// The exchange above means that cutter radius is alvays dy/2
double r = dy / 2;
double alpha;
// The first side cap
capx = xc + cos( angle ) * dx / 2;
capy = yc + sin( angle ) * dx / 2;
for( alpha = angle - PI2; alpha < angle + PI2; alpha += PI2 / divisions )
loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
alpha = angle + PI2;
loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
// The other side cap
capx = xc - cos( angle ) * dx / 2;
capy = yc - sin( angle ) * dx / 2;
for( alpha = angle + PI2; alpha < angle + 3 * PI2; alpha += PI2 / divisions )
loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
alpha = angle + 3 * PI2;
loop.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
loop.bag( triangles );
}
static void export_vrml_hole( TRIANGLEBAG& triangles,
int top_layer, int bottom_layer,
double xc, double yc, double hole )
{
VLoop loop;
loop.z_top = layer_z[top_layer];
loop.z_bottom = layer_z[bottom_layer];
for( double alpha = 0; alpha < M_PI * 2; alpha += INC_ANGLE )
loop.add( xc + cos( alpha ) * hole, yc + sin( alpha ) * hole );
loop.bag( triangles );
}
static void export_vrml_oval_pad( int layer, double xc, double yc,
double dx, double dy, int orient )
{
double capx, capy; // Cap center
FLAT_FAN fan;
fan.c.x = xc;
fan.c.y = yc;
double angle = orient / 1800.0 * M_PI;
int divisions = SEGM_COUNT_PER_360 / 2;
if( dy > dx )
{
EXCHG( dx, dy );
angle += PI2;
}
// The exchange above means that cutter radius is alvays dy/2
double r = dy / 2;
double alpha;
// The first side cap
capx = xc + cos( angle ) * dx / 2;
capy = yc + sin( angle ) * dx / 2;
for( alpha = angle - PI2; alpha < angle + PI2; alpha += PI2 / divisions )
fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
alpha = angle + PI2;
fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
// The other side cap
capx = xc - cos( angle ) * dx / 2;
capy = yc - sin( angle ) * dx / 2;
for( alpha = angle + PI2; alpha < angle + 3 * PI2; alpha += PI2 / divisions )
fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
alpha = angle + 3 * PI2;
fan.add( capx + r * cos( alpha ), capy + r * sin( alpha ) );
fan.bag( layer );
}
static void export_vrml_arc( int layer, double centerx, double centery,
double arc_startx, double arc_starty,
double width, double arc_angle )
{
FLAT_RING ring;
double start_angle = atan2( arc_starty - centery, arc_startx - centerx );
int count = KiROUND( arc_angle / 360.0 * SEGM_COUNT_PER_360 );
if( count < 0 )
count = -count;
if( count == 0 )
count = 1;
double divisions = arc_angle*M_PI/180.0 / count;
double outer_radius = hypot( arc_starty - centery, arc_startx - centerx )
+ ( width / 2);
double inner_radius = outer_radius - width;
double alpha = 0;
for( int ii = 0; ii <= count; alpha += divisions, ii++ )
{
double angle_rot = start_angle + alpha;
ring.add_inner( centerx + cos( angle_rot ) * inner_radius,
centery + sin( angle_rot ) * inner_radius );
ring.add_outer( centerx + cos( angle_rot ) * outer_radius,
centery + sin( angle_rot ) * outer_radius );
}
ring.bag( layer, false );
}
static void export_vrml_varc( TRIANGLEBAG& triangles,
int top_layer, int bottom_layer,
double centerx, double centery,
double arc_startx, double arc_starty,
double arc_angle )
{
VLoop loop;
loop.z_top = layer_z[top_layer];
loop.z_bottom = layer_z[bottom_layer];
double start_angle = atan2( arc_starty - centery, arc_startx - centerx );
double radius = hypot( arc_starty - centery, arc_startx - centerx );
int count = KiROUND( arc_angle / 360.0 * SEGM_COUNT_PER_360 );
if( count < 0 )
count = -count;
if( count == 0 )
count = 1;
double divisions = arc_angle*M_PI/180.0 / count;
double alpha = 0;
for( int ii = 0; ii <= count; alpha += divisions, ii++ )
{
double angle_rot = start_angle + alpha;
loop.add( centerx + cos( angle_rot ) * radius, centery + sin( angle_rot ) * radius );
}
loop.bag( triangles );
}
static void export_vrml_drawsegment( DRAWSEGMENT* drawseg ) //{{{
{
int layer = drawseg->GetLayer();
double w = drawseg->GetWidth();
double x = drawseg->GetStart().x;
double y = drawseg->GetStart().y;
double xf = drawseg->GetEnd().x;
double yf = drawseg->GetEnd().y;
// Items on the edge layer are high, not thick
if( layer == EDGE_N )
{
switch( drawseg->GetShape() )
{
// There is a special 'varc' primitive for this
case S_ARC:
export_vrml_varc( layer_triangles[layer],
FIRST_COPPER_LAYER, LAST_COPPER_LAYER,
x, y, xf, yf, drawseg->GetAngle()/10 );
break;
// Circles on edge are usually important holes
case S_CIRCLE:
export_vrml_hole( layer_triangles[layer],
FIRST_COPPER_LAYER, LAST_COPPER_LAYER, x, y,
hypot( xf - x, yf - y ) / 2 );
break;
default:
{
// Simply a quad
double z_top = layer_z[FIRST_COPPER_LAYER];
double z_bottom = layer_z[LAST_COPPER_LAYER];
bag_vquad( layer_triangles[layer], x, y, xf, yf, z_top, z_bottom );
break;
}
}
}
else
{
switch( drawseg->GetShape() )
{
case S_ARC:
export_vrml_arc( layer,
(double) drawseg->GetCenter().x,
(double) drawseg->GetCenter().y,
(double) drawseg->GetArcStart().x,
(double) drawseg->GetArcStart().y,
w, drawseg->GetAngle()/10 );
break;
case S_CIRCLE:
export_vrml_circle( layer, x, y, xf, yf, w );
break;
default:
export_vrml_line( layer, x, y, xf, yf, w, 1 );
break;
}
}
}
/* C++ doesn't have closures and neither continuation forms... this is
* for coupling the vrml_text_callback with the common parameters */
static int s_text_layer;
static int s_text_width;
static void vrml_text_callback( int x0, int y0, int xf, int yf )
{
export_vrml_line( s_text_layer, x0, y0, xf, yf, s_text_width, 1 );
}
static void export_vrml_pcbtext( TEXTE_PCB* text )
{
// Coupling by globals! Ewwww...
s_text_layer = text->GetLayer();
s_text_width = text->GetThickness();
wxSize size = text->GetSize();
if( text->IsMirrored() )
NEGATE( size.x );
if( text->IsMultilineAllowed() )
{
wxPoint pos = text->GetTextPosition();
wxArrayString* list = wxStringSplit( text->GetText(), '\n' );
wxPoint offset;
offset.y = text->GetInterline();
RotatePoint( &offset, text->GetOrientation() );
for( unsigned i = 0; i<list->Count(); i++ )
{
wxString txt = list->Item( i );
DrawGraphicText( NULL, NULL, pos, BLACK,
txt, text->GetOrientation(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
pos += offset;
}
delete (list);
}
else
{
DrawGraphicText( NULL, NULL, text->GetTextPosition(), BLACK,
text->GetText(), text->GetOrientation(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_drawings( BOARD* pcb ) //{{{
{
// draw graphic items
for( EDA_ITEM* drawing = pcb->m_Drawings; drawing != 0; drawing = drawing->Next() )
{
switch( drawing->Type() )
{
case PCB_LINE_T:
export_vrml_drawsegment( (DRAWSEGMENT*) drawing );
break;
case PCB_TEXT_T:
export_vrml_pcbtext( (TEXTE_PCB*) drawing );
break;
default:
break;
}
}
}
static void export_round_padstack( BOARD* pcb, double x, double y,
double r,
int bottom_layer, int top_layer )
{
int copper_layers = pcb->GetCopperLayerCount( );
for( int layer = bottom_layer; layer < copper_layers; layer++ )
{
// The last layer is always the component one, unless it's single face
if( (layer > FIRST_COPPER_LAYER) && (layer == copper_layers - 1) )
layer = LAST_COPPER_LAYER;
if( layer <= top_layer )
export_vrml_circle( layer, x, y, x + r / 2, y, r );
}
}
static void export_vrml_via( BOARD* pcb, SEGVIA* via ) //{{{
{
double x, y, r, hole;
int top_layer, bottom_layer;
r = via->GetWidth() / 2;
hole = via->GetDrillValue() / 2;
x = via->GetStart().x;
y = via->GetStart().y;
via->ReturnLayerPair( &top_layer, &bottom_layer );
// Export the via padstack
export_round_padstack( pcb, x, y, r, bottom_layer, top_layer );
// Drill a hole
export_vrml_hole( via_triangles[via->GetShape()], top_layer, bottom_layer, x, y, hole );
}
static void export_vrml_tracks( BOARD* pcb ) //{{{
{
for( TRACK* track = pcb->m_Track; track != NULL; track = track->Next() )
{
if( track->Type() == PCB_VIA_T )
export_vrml_via( pcb, (SEGVIA*) track );
else
export_vrml_line( track->GetLayer(), track->GetStart().x, track->GetStart().y,
track->GetEnd().x, track->GetEnd().y, track->GetWidth(), 4 );
}
}
/* not used? @todo complete
static void export_vrml_zones( BOARD* pcb )
{
// Export fill segments
for( SEGZONE* segzone = pcb->m_Zone;
segzone != 0;
segzone = segzone->Next() )
{
// Fill tracks are exported with low subdivisions
if( segzone->Type() == PCB_ZONE_T )
export_vrml_line( segzone->GetLayer(), segzone->m_Start.x, segzone->m_Start.y,
segzone->m_End.x, segzone->m_End.y, segzone->m_Width, 1 );
}
// Export zone outlines
for( int i = 0; i < pcb->GetAreaCount(); i++ )
{
ZONE_CONTAINER* zone = pcb->GetArea( i );
if( ( zone->m_FilledPolysList.size() == 0 )
||( zone->GetMinThickness() <= 1 ) )
continue;
int width = zone->GetMinThickness();
if( width > 0 )
{
int imax = zone->m_FilledPolysList.size() - 1;
int layer = zone->GetLayer();
CPolyPt* firstcorner = &zone->m_FilledPolysList[0];
CPolyPt* begincorner = firstcorner;
// I'm not really positive about what he's doing here...
for( int ic = 1; ic <= imax; ic++ )
{
CPolyPt* endcorner = &zone->m_FilledPolysList[ic];
if( begincorner->utility == 0 ) // Draw only basic outlines, not extra segments
export_vrml_line( layer, begincorner->x, begincorner->y,
endcorner->x, endcorner->y, width, 1 );
if( (endcorner->end_contour) || (ic == imax) ) // the last corner of a filled area is found: draw it
{
if( endcorner->utility == 0 ) // Draw only basic outlines, not extra segments
export_vrml_line( layer, endcorner->x, endcorner->y,
firstcorner->x, firstcorner->y, width, 1 );
ic++;
// A new contour?
if( ic < imax - 1 )
begincorner = firstcorner = &zone->m_FilledPolysList[ic];
}
else
begincorner = endcorner;
}
}
}
}
*/
static void export_vrml_text_module( TEXTE_MODULE* module ) //{{{
{
if( module->IsVisible() )
{
wxSize size = module->GetSize();
if( module->IsMirrored() )
NEGATE( size.x ); // Text is mirrored
s_text_layer = module->GetLayer();
s_text_width = module->GetThickness();
DrawGraphicText( NULL, NULL, module->GetTextPosition(), BLACK,
module->GetText(), module->GetDrawRotation(), size,
module->GetHorizJustify(), module->GetVertJustify(),
module->GetThickness(), module->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_edge_module( EDGE_MODULE* aOutline ) //{{{
{
int layer = aOutline->GetLayer();
double x = aOutline->GetStart().x;
double y = aOutline->GetStart().y;
double xf = aOutline->GetEnd().x;
double yf = aOutline->GetEnd().y;
double w = aOutline->GetWidth();
switch( aOutline->GetShape() )
{
case S_ARC:
export_vrml_arc( layer, x, y, xf, yf, w, aOutline->GetAngle()/10 );
break;
case S_CIRCLE:
export_vrml_circle( layer, x, y, xf, yf, w );
break;
default:
export_vrml_line( layer, x, y, xf, yf, w, 1 );
break;
}
}
static void export_vrml_pad( BOARD* pcb, D_PAD* aPad ) //{{{
{
double hole_drill_w = (double) aPad->GetDrillSize().x / 2;
double hole_drill_h = (double) aPad->GetDrillSize().y / 2;
double hole_drill = std::min( hole_drill_w, hole_drill_h );
double hole_x = aPad->GetPosition().x;
double hole_y = aPad->GetPosition().y;
// Export the hole on the edge layer
if( hole_drill > 0 )
{
if( aPad->GetDrillShape() == PAD_OVAL )
{
// Oblong hole (slot)
export_vrml_slot( layer_triangles[EDGE_N],
FIRST_COPPER_LAYER, LAST_COPPER_LAYER,
hole_x, hole_y, hole_drill_w, hole_drill_h, aPad->GetOrientation() );
}
else
{
// Drill a round hole
export_vrml_hole( layer_triangles[EDGE_N],
FIRST_COPPER_LAYER, LAST_COPPER_LAYER,
hole_x, hole_y, hole_drill );
}
}
// The pad proper, on the selected layers
int layer_mask = aPad->GetLayerMask();
int copper_layers = pcb->GetCopperLayerCount( );
// The (maybe offseted) pad position
wxPoint pad_pos = aPad->ReturnShapePos();
double pad_x = pad_pos.x;
double pad_y = pad_pos.y;
wxSize pad_delta = aPad->GetDelta();
double pad_dx = pad_delta.x / 2;
double pad_dy = pad_delta.y / 2;
double pad_w = aPad->GetSize().x / 2;
double pad_h = aPad->GetSize().y / 2;
for( int layer = FIRST_COPPER_LAYER; layer < copper_layers; layer++ )
{
// The last layer is always the component one, unless it's single face
if( (layer > FIRST_COPPER_LAYER) && (layer == copper_layers - 1) )
layer = LAST_COPPER_LAYER;
if( layer_mask & (1 << layer) )
{
// OK, the pad is on this layer, export it
switch( aPad->GetShape() )
{
case PAD_CIRCLE:
export_vrml_circle( layer, pad_x, pad_y,
pad_x + pad_w / 2, pad_y, pad_w );
break;
case PAD_OVAL:
export_vrml_oval_pad( layer, pad_x, pad_y,
pad_w * 2, pad_h * 2, aPad->GetOrientation() );
break;
case PAD_RECT:
// Just to be sure :D
pad_dx = 0;
pad_dy = 0;
case PAD_TRAPEZOID:
{
int coord[8] =
{
KiROUND(-pad_w - pad_dy), KiROUND(+pad_h + pad_dx),
KiROUND(-pad_w + pad_dy), KiROUND(-pad_h - pad_dx),
KiROUND(+pad_w - pad_dy), KiROUND(+pad_h - pad_dx),
KiROUND(+pad_w + pad_dy), KiROUND(-pad_h + pad_dx),
};
for( int i = 0; i < 4; i++ )
{
RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() );
coord[i * 2] += KiROUND( pad_x );
coord[i * 2 + 1] += KiROUND( pad_y );
}
bag_flat_quad( layer, coord[0], coord[1],
coord[2], coord[3],
coord[4], coord[5],
coord[6], coord[7] );
}
break;
default:
;
}
}
}
}
// From axis/rot to quaternion
static void build_quat( double x, double y, double z, double a, double q[4] )
{
double sina = sin( a / 2 );
q[0] = x * sina;
q[1] = y * sina;
q[2] = z * sina;
q[3] = cos( a / 2 );
}
// From quaternion to axis/rot
static void from_quat( double q[4], double rot[4] )
{
rot[3] = acos( q[3] ) * 2;
for( int i = 0; i < 3; i++ )
{
rot[i] = q[i] / sin( rot[3] / 2 );
}
}
// Quaternion composition
static void compose_quat( double q1[4], double q2[4], double qr[4] )
{
double tmp[4];
tmp[0] = q2[3] *q1[0] + q2[0] *q1[3] + q2[1] *q1[2] - q2[2] *q1[1];
tmp[1] = q2[3] *q1[1] + q2[1] *q1[3] + q2[2] *q1[0] - q2[0] *q1[2];
tmp[2] = q2[3] *q1[2] + q2[2] *q1[3] + q2[0] *q1[1] - q2[1] *q1[0];
tmp[3] = q2[3] *q1[3] - q2[0] *q1[0] - q2[1] *q1[1] - q2[2] *q1[2];
qr[0] = tmp[0]; qr[1] = tmp[1];
qr[2] = tmp[2]; qr[3] = tmp[3];
}
static void export_vrml_module( BOARD* aPcb, MODULE* aModule,
FILE* aOutputFile,
double aVRMLModelsToBiu,
bool aExport3DFiles, const wxString & a3D_Subdir,
double boardIU2WRML )
{
// Reference and value
export_vrml_text_module( &aModule->Reference() );
export_vrml_text_module( &aModule->Value() );
// Export module edges
for( EDA_ITEM* item = aModule->GraphicalItems(); item != NULL; item = item->Next() )
{
switch( item->Type() )
{
case PCB_MODULE_TEXT_T:
export_vrml_text_module( dynamic_cast<TEXTE_MODULE*>(item) );
break;
case PCB_MODULE_EDGE_T:
export_vrml_edge_module( dynamic_cast<EDGE_MODULE*>(item) );
break;
default:
break;
}
}
// Export pads
for( D_PAD* pad = aModule->Pads(); pad; pad = pad->Next() )
export_vrml_pad( aPcb, pad );
bool isFlipped = aModule->GetLayer() == LAYER_N_BACK;
// Export the object VRML model(s)
for( S3D_MASTER* vrmlm = aModule->Models(); vrmlm != 0; vrmlm = vrmlm->Next() )
{
wxString fname = vrmlm->m_Shape3DName;
if( fname.IsEmpty() )
continue;
if( ! wxFileName::FileExists( fname ) )
{
wxFileName fn = fname;
fname = wxGetApp().FindLibraryPath( fn );
if( fname.IsEmpty() ) // keep "short" name if full filemane not found
fname = vrmlm->m_Shape3DName;
}
fname.Replace(wxT("\\"), wxT("/" ) );
wxString source_fname = fname;
if( aExport3DFiles ) // Change illegal characters in short filename
{
ChangeIllegalCharacters( fname, true );
fname = a3D_Subdir + wxT("/") + fname;
if( !wxFileExists( fname ) )
wxCopyFile( source_fname, fname );
}
/* Calculate 3D shape rotation:
* this is the rotation parameters, with an additional 180 deg rotation
* for footprints that are flipped
* When flipped, axis rotation is the horizontal axis (X axis)
*/
double rotx = - vrmlm->m_MatRotation.x;
double roty = - vrmlm->m_MatRotation.y;
double rotz = - vrmlm->m_MatRotation.z;
if( isFlipped )
{
rotx += 180.0;
NEGATE( roty );
NEGATE( rotz );
}
// Do some quaternion munching
double q1[4], q2[4], rot[4];
build_quat( 1, 0, 0, rotx / 180.0 * M_PI, q1 );
build_quat( 0, 1, 0, roty / 180.0 * M_PI, q2 );
compose_quat( q1, q2, q1 );
build_quat( 0, 0, 1, rotz / 180.0 * M_PI, q2 );
compose_quat( q1, q2, q1 );
// Note here aModule->GetOrientation() is in 0.1 degrees,
// so module rotation is aModule->GetOrientation() / 1800.0
build_quat( 0, 0, 1, aModule->GetOrientation() / 1800.0 * M_PI, q2 );
compose_quat( q1, q2, q1 );
from_quat( q1, rot );
fprintf( aOutputFile, "Transform {\n" );
// A null rotation would fail the acos!
if( rot[3] != 0.0 )
{
fprintf( aOutputFile, " rotation %g %g %g %g\n", rot[0], rot[1], rot[2], rot[3] );
}
// adjust 3D shape local offset position
// they are given in inch, so they are converted in board IU.
double offsetx = vrmlm->m_MatPosition.x * IU_PER_MILS * 1000.0;
double offsety = vrmlm->m_MatPosition.y * IU_PER_MILS * 1000.0;
double offsetz = vrmlm->m_MatPosition.z * IU_PER_MILS * 1000.0;
if( isFlipped )
NEGATE(offsetz);
else // In normal mode, Y axis is reversed in Pcbnew.
NEGATE(offsety);
RotatePoint(&offsetx, &offsety, aModule->GetOrientation());
fprintf( aOutputFile, " translation %g %g %g\n",
(offsetx + aModule->GetPosition().x) * boardIU2WRML,
- (offsety + aModule->GetPosition().y) * boardIU2WRML, // Y axis is reversed in Pcbnew
(offsetz + layer_z[aModule->GetLayer()]) * boardIU2WRML);
fprintf( aOutputFile, " scale %g %g %g\n",
vrmlm->m_MatScale.x * aVRMLModelsToBiu,
vrmlm->m_MatScale.y * aVRMLModelsToBiu,
vrmlm->m_MatScale.z * aVRMLModelsToBiu );
fprintf( aOutputFile,
// " children [\n Inline {\n url \"file://%s\"\n } ]\n",
" children [\n Inline {\n url \"%s\"\n } ]\n",
TO_UTF8( fname ) );
fprintf( aOutputFile, " }\n" );
}
}
static void write_and_empty_triangle_bag( FILE* output_file, TRIANGLEBAG& triangles,
int color, double boardIU2WRML )
{
if( !triangles.empty() )
{
write_triangle_bag( output_file, color, triangles, boardIU2WRML );
triangles.clear( );
}
}
/* ExportVRML_File
* Creates the file(s) exporting current BOARD to a VRML file.
* aFullFileName = the full filename of the file to create
* aMMtoWRMLunit = the general WRML scaling factor. 1.0 to export in mm
* @param aExport3DFiles = true to copy 3D shapes in the subdir a3D_Subdir
* a3D_Subdir = sub directory where 3D shapes files are copied
* used only when aExport3DFiles == true
*/
/* Note1:
* When copying 3D shapes files, the new filename is build from
* the full path name, changing the separators by underscore.
* this is needed because files with the same shortname can exist in different directories
* Note 2:
* ExportVRML_File generates coordinates in board units (BIU) inside the file.
* (TODO: use mm inside the file)
* A general scale transform is applied to the whole file
* (1.0 to have the actual WRML unit im mm, 0.001 to have the actual WRML unit im meter
* Note 3:
* For 3D models built by a 3D modeler, the unit is 0,1 inch
* A specfic scale is applied to 3D models to convert them to BIU
*
*/
bool PCB_EDIT_FRAME::ExportVRML_File( const wxString & aFullFileName,
double aMMtoWRMLunit, bool aExport3DFiles,
const wxString & a3D_Subdir )
{
wxString msg;
FILE* output_file;
BOARD* pcb = GetBoard();
output_file = wxFopen( aFullFileName, wxT( "wt" ) );
if( output_file == NULL )
return false;
// Switch the locale to standard C (needed to print floating point numbers like 1.3)
SetLocaleTo_C_standard();
// Begin with the usual VRML boilerplate
wxString name = aFullFileName;
name.Replace(wxT("\\"), wxT("/" ) );
ChangeIllegalCharacters( name, false );
fprintf( output_file, "#VRML V2.0 utf8\n"
"WorldInfo {\n"
" title \"%s - Generated by Pcbnew\"\n"
"}\n", TO_UTF8( name ) );
/* The would be in BIU and not in meters, as the standard wants.
* It is trivial to embed everything in a transform node to
* fix it. For example here we build the world in inches...
*/
// Global VRML scale to export to a different scale.
// (aMMtoWRMLScale = 1.0 to export in mm)
double boardIU2WRML = aMMtoWRMLunit / MM_PER_IU;
fprintf( output_file, "Transform {\n" );
/* Define the translation to have the board centre to the 2D axis origin
* more easy for rotations...
*/
EDA_RECT bbbox = pcb->ComputeBoundingBox();
double dx = boardIU2WRML * bbbox.Centre().x;
double dy = boardIU2WRML * bbbox.Centre().y;
fprintf( output_file, " translation %g %g 0.0\n", -dx, dy );
fprintf( output_file, " children [\n" );
// Preliminary computation: the z value for each layer
compute_layer_Zs( pcb );
// Drawing and text on the board, and edges which are special
export_vrml_drawings( pcb );
// Export vias and trackage
export_vrml_tracks( pcb );
// Export zone fills
/* TODO export_vrml_zones(pcb);
*/
/* scaling factor to convert 3D models to board units (decimils)
* Usually we use Wings3D to create thems.
* One can consider the 3D units is 0.1 inch (2.54 mm)
* So the scaling factor from 0.1 inch to board units
* is 2.54 * aMMtoWRMLunit
*/
double wrml_3D_models_scaling_factor = 2.54 * aMMtoWRMLunit;
// Export footprints
for( MODULE* module = pcb->m_Modules; module != 0; module = module->Next() )
export_vrml_module( pcb, module, output_file,
wrml_3D_models_scaling_factor,
aExport3DFiles, a3D_Subdir,
boardIU2WRML );
/* Output the bagged triangles for each layer
* Each layer will be a separate shape */
for( int layer = 0; layer < LAYER_COUNT; layer++ )
write_and_empty_triangle_bag( output_file,
layer_triangles[layer],
pcb->GetLayerColor(layer),
boardIU2WRML );
// Same thing for the via layers
for( int i = 0; i < 4; i++ )
write_and_empty_triangle_bag( output_file,
via_triangles[i],
pcb->GetVisibleElementColor( VIAS_VISIBLE + i ),
boardIU2WRML );
// Close the outer 'transform' node
fputs( "]\n}\n", output_file );
// End of work
fclose( output_file );
SetLocaleTo_Default(); // revert to the current locale
return true;
}
/*
* some characters cannot be used in filenames,
* this function change them to "_"
*/
static void ChangeIllegalCharacters( wxString & aFileName, bool aDirSepIsIllegal )
{
if( aDirSepIsIllegal )
aFileName.Replace(wxT("/"), wxT("_" ) );
aFileName.Replace(wxT(" "), wxT("_" ) );
aFileName.Replace(wxT(":"), wxT("_" ) );
}