kicad/gerbview/dcode.cpp

659 lines
18 KiB
C++
Raw Blame History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2009 Jean-Pierre Charras, jaen-pierre.charras@gipsa-lab.inpg.com
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
* Copyright (C) 1992-2011 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file dcode.cpp
* @brief D_CODE class implementation
*/
#include <fctsys.h>
#include <common.h>
#include <class_drawpanel.h>
#include <confirm.h>
#include <macros.h>
#include <trigo.h>
#include <gr_basic.h>
#include <gerbview.h>
#include <class_gerber_draw_item.h>
#include <class_GERBER.h>
#define DEFAULT_SIZE 100
/* Format Gerber: NOTES:
* Tools and D_CODES
* tool number (identification of shapes)
* 1 to 999
*
* D_CODES:
* D01 ... D9 = command codes:
* D01 = activating light (pen down) while moving
* D02 = light extinction (pen up) while moving
* D03 = Flash
* D04 to D09 = non used
* D10 ... D999 = Identification Tool (Shape id)
*
* For tools defining a shape):
* DCode min = D10
* DCode max = 999
*/
/***************/
/* Class DCODE */
/***************/
D_CODE::D_CODE( int num_dcode )
{
m_Num_Dcode = num_dcode;
Clear_D_CODE_Data();
}
D_CODE::~D_CODE()
{
}
void D_CODE::Clear_D_CODE_Data()
{
m_Size.x = DEFAULT_SIZE;
m_Size.y = DEFAULT_SIZE;
m_Shape = APT_CIRCLE;
m_Drill.x = m_Drill.y = 0;
m_DrillShape = APT_DEF_NO_HOLE;
m_InUse = false;
m_Defined = false;
m_Macro = NULL;
m_Rotation = 0.0;
m_EdgesCount = 0;
m_PolyCorners.clear();
}
const wxChar* D_CODE::ShowApertureType( APERTURE_T aType )
{
const wxChar* ret;
switch( aType )
{
case APT_CIRCLE:
ret = wxT( "Round" ); break;
case APT_RECT:
ret = wxT( "Rect" ); break;
case APT_OVAL:
ret = wxT( "Oval" ); break;
case APT_POLYGON:
ret = wxT( "Poly" ); break;
case APT_MACRO:
ret = wxT( "Macro" ); break;
default:
ret = wxT( "???" ); break;
}
return ret;
}
int D_CODE::GetShapeDim( GERBER_DRAW_ITEM* aParent )
{
int dim = -1;
switch( m_Shape )
{
case APT_CIRCLE:
dim = m_Size.x;
break;
case APT_RECT:
case APT_OVAL:
dim = MIN( m_Size.x, m_Size.y );
break;
case APT_POLYGON:
dim = MIN( m_Size.x, m_Size.y );
break;
case APT_MACRO:
if( m_Macro )
dim = m_Macro->GetShapeDim( aParent );
break;
default:
break;
}
return dim;
}
int GERBVIEW_FRAME::ReadDCodeDefinitionFile( const wxString& D_Code_FullFileName )
{
int current_Dcode, ii, dcode_scale;
char* ptcar;
int dimH, dimV, drill, dummy;
float fdimH, fdimV, fdrill;
char c_type_outil[256];
char line[GERBER_BUFZ];
wxString msg;
D_CODE* dcode;
FILE* dest;
int layer = getActiveLayer();
int type_outil;
if( g_GERBER_List[layer] == NULL )
g_GERBER_List[layer] = new GERBER_IMAGE( this, layer );
GERBER_IMAGE* gerber = g_GERBER_List[layer];
/* Updating gerber scale: */
dcode_scale = 10; /* By uniting dCode = mil, internal unit = 0.1 mil
* -> 1 unite dcode = 10 unit PCB */
current_Dcode = 0;
if( D_Code_FullFileName.IsEmpty() )
return 0;
dest = wxFopen( D_Code_FullFileName, wxT( "rt" ) );
if( dest == 0 )
{
msg = _( "File " ) + D_Code_FullFileName + _( " not found" );
DisplayError( this, msg, 10 );
return -1;
}
gerber->InitToolTable();
while( fgets( line, sizeof(line) - 1, dest ) != NULL )
{
if( *line == ';' )
continue;
if( strlen( line ) < 10 )
continue; /* Skip blank line. */
dcode = NULL;
current_Dcode = 0;
/* Determine of the type of file from D_Code. */
ptcar = line;
ii = 0;
while( *ptcar )
if( *(ptcar++) == ',' )
ii++;
if( ii >= 6 ) /* value in mils */
{
sscanf( line, "%d,%d,%d,%d,%d,%d,%d", &ii,
&dimH, &dimV, &drill, &dummy, &dummy, &type_outil );
dimH = wxRound( dimH * dcode_scale );
dimV = wxRound( dimV * dcode_scale );
drill = wxRound( drill * dcode_scale );
if( ii < 1 )
ii = 1;
current_Dcode = ii - 1 + FIRST_DCODE;
}
else /* Values in inches are converted to mils. */
{
fdrill = 0;
current_Dcode = 0;
sscanf( line, "%f,%f,%1s", &fdimV, &fdimH, c_type_outil );
ptcar = line;
while( *ptcar )
{
if( *ptcar == 'D' )
{
sscanf( ptcar + 1, "%d,%f", &current_Dcode, &fdrill );
break;
}
else
{
ptcar++;
}
}
dimH = wxRound( fdimH * dcode_scale * 1000 );
dimV = wxRound( fdimV * dcode_scale * 1000 );
drill = wxRound( fdrill * dcode_scale * 1000 );
if( strchr( "CLROP", c_type_outil[0] ) )
{
type_outil = (APERTURE_T) c_type_outil[0];
}
else
{
fclose( dest );
return -2;
}
}
/* Update the list of d_codes if consistent. */
if( current_Dcode < FIRST_DCODE )
continue;
if( current_Dcode >= TOOLS_MAX_COUNT )
continue;
dcode = gerber->GetDCODE( current_Dcode );
dcode->m_Size.x = dimH;
dcode->m_Size.y = dimV;
dcode->m_Shape = (APERTURE_T) type_outil;
dcode->m_Drill.x = dcode->m_Drill.y = drill;
dcode->m_Defined = true;
}
fclose( dest );
return 1;
}
void GERBVIEW_FRAME::CopyDCodesSizeToItems()
{
static D_CODE dummy( 999 ); //Used if D_CODE not found in list
BOARD_ITEM* item = GetBoard()->m_Drawings;
for( ; item; item = item->Next() )
{
GERBER_DRAW_ITEM* gerb_item = (GERBER_DRAW_ITEM*) item;
D_CODE* dcode = gerb_item->GetDcodeDescr();
wxASSERT( dcode );
if( dcode == NULL )
dcode = &dummy;
dcode->m_InUse = true;
gerb_item->m_Size = dcode->m_Size;
if( // Line Item
(gerb_item->m_Shape == GBR_SEGMENT ) /* rectilinear segment */
|| (gerb_item->m_Shape == GBR_ARC ) /* segment arc (rounded tips) */
|| (gerb_item->m_Shape == GBR_CIRCLE ) /* segment in a circle (ring) */
)
{
}
else // Spots ( Flashed Items )
{
switch( dcode->m_Shape )
{
case APT_CIRCLE: /* spot round */
gerb_item->m_Shape = GBR_SPOT_CIRCLE;
break;
case APT_OVAL: /* spot oval*/
gerb_item->m_Shape = GBR_SPOT_OVAL;
break;
case APT_RECT: /* spot rect*/
gerb_item->m_Shape = GBR_SPOT_RECT;
break;
case APT_POLYGON: /* spot regular polyg 3 to 1<> edges */
gerb_item->m_Shape = GBR_SPOT_POLY;
break;
case APT_MACRO: /* spot defined by a macro */
gerb_item->m_Shape = GBR_SPOT_MACRO;
break;
default:
wxMessageBox( wxT( "GERBVIEW_FRAME::CopyDCodesSizeToItems() error" ) );
break;
}
}
}
}
void D_CODE::DrawFlashedShape( GERBER_DRAW_ITEM* aParent,
EDA_RECT* aClipBox, wxDC* aDC, int aColor, int aAltColor,
wxPoint aShapePos, bool aFilledShape )
{
int radius;
switch( m_Shape )
{
case APT_MACRO:
GetMacro()->DrawApertureMacroShape( aParent, aClipBox, aDC, aColor, aAltColor,
aShapePos, aFilledShape);
break;
case APT_CIRCLE:
radius = m_Size.x >> 1;
if( !aFilledShape )
GRCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos), radius, 0, aColor );
else
if( m_DrillShape == APT_DEF_NO_HOLE )
{
GRFilledCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos),
radius, aColor );
}
else if( APT_DEF_ROUND_HOLE == 1 ) // round hole in shape
{
int width = (m_Size.x - m_Drill.x ) / 2;
GRCircle( aClipBox, aDC, aParent->GetABPosition(aShapePos),
radius - (width / 2), width, aColor );
}
else // rectangular hole
{
if( m_PolyCorners.size() == 0 )
ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
}
break;
case APT_RECT:
{
wxPoint start;
start.x = aShapePos.x - m_Size.x / 2;
start.y = aShapePos.y - m_Size.y / 2;
wxPoint end = start + m_Size;
start = aParent->GetABPosition( start );
end = aParent->GetABPosition( end );
if( !aFilledShape )
{
GRRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor );
}
else if( m_DrillShape == APT_DEF_NO_HOLE )
{
GRFilledRect( aClipBox, aDC, start.x, start.y, end.x, end.y, 0, aColor, aColor );
}
else
{
if( m_PolyCorners.size() == 0 )
ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
}
}
break;
case APT_OVAL:
{
wxPoint start = aShapePos;
wxPoint end = aShapePos;
if( m_Size.x > m_Size.y ) // horizontal oval
{
int delta = (m_Size.x - m_Size.y) / 2;
start.x -= delta;
end.x += delta;
radius = m_Size.y;
}
else // horizontal oval
{
int delta = (m_Size.y - m_Size.x) / 2;
start.y -= delta;
end.y += delta;
radius = m_Size.x;
}
start = aParent->GetABPosition( start );
end = aParent->GetABPosition( end );
if( !aFilledShape )
{
GRCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor );
}
else if( m_DrillShape == APT_DEF_NO_HOLE )
{
GRFillCSegm( aClipBox, aDC, start.x, start.y, end.x, end.y, radius, aColor );
}
else
{
if( m_PolyCorners.size() == 0 )
ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
}
}
break;
case APT_POLYGON:
if( m_PolyCorners.size() == 0 )
ConvertShapeToPolygon();
DrawFlashedPolygon( aParent, aClipBox, aDC, aColor, aFilledShape, aShapePos );
break;
}
}
void D_CODE::DrawFlashedPolygon( GERBER_DRAW_ITEM* aParent,
EDA_RECT* aClipBox, wxDC* aDC,
int aColor, bool aFilled,
const wxPoint& aPosition )
{
if( m_PolyCorners.size() == 0 )
return;
std::vector<wxPoint> points;
points = m_PolyCorners;
for( unsigned ii = 0; ii < points.size(); ii++ )
{
points[ii] += aPosition;
points[ii] = aParent->GetABPosition( points[ii] );
}
GRClosedPoly( aClipBox, aDC, points.size(), &points[0], aFilled, aColor, aColor );
}
#define SEGS_CNT 32 // number of segments to approximate a circle
// A helper function for D_CODE::ConvertShapeToPolygon(). Add a hole to a polygon
static void addHoleToPolygon( std::vector<wxPoint>& aBuffer,
APERTURE_DEF_HOLETYPE aHoleShape,
wxSize aSize,
wxPoint aAnchorPos );
void D_CODE::ConvertShapeToPolygon()
{
wxPoint initialpos;
wxPoint currpos;
m_PolyCorners.clear();
switch( m_Shape )
{
case APT_CIRCLE: // creates only a circle with rectangular hole
currpos.x = m_Size.x >> 1;
initialpos = currpos;
for( unsigned ii = 0; ii <= SEGS_CNT; ii++ )
{
currpos = initialpos;
RotatePoint( &currpos, ii * 3600 / SEGS_CNT );
m_PolyCorners.push_back( currpos );
}
addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );
break;
case APT_RECT:
currpos.x = m_Size.x / 2;
currpos.y = m_Size.y / 2;
initialpos = currpos;
m_PolyCorners.push_back( currpos );
currpos.x -= m_Size.x;
m_PolyCorners.push_back( currpos );
currpos.y -= m_Size.y;
m_PolyCorners.push_back( currpos );
currpos.x += m_Size.x;
m_PolyCorners.push_back( currpos );
currpos.y += m_Size.y;
m_PolyCorners.push_back( currpos ); // close polygon
addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );
break;
case APT_OVAL:
{
int delta, radius;
// we create an horizontal oval shape. then rotate if needed
if( m_Size.x > m_Size.y ) // horizontal oval
{
delta = (m_Size.x - m_Size.y) / 2;
radius = m_Size.y / 2;
}
else // vertical oval
{
delta = (m_Size.y - m_Size.x) / 2;
radius = m_Size.x / 2;
}
currpos.y = radius;
initialpos = currpos;
m_PolyCorners.push_back( currpos );
// build the right arc of the shape
unsigned ii = 0;
for( ; ii <= SEGS_CNT / 2; ii++ )
{
currpos = initialpos;
RotatePoint( &currpos, ii * 3600 / SEGS_CNT );
currpos.x += delta;
m_PolyCorners.push_back( currpos );
}
// build the left arc of the shape
for( ii = SEGS_CNT / 2; ii <= SEGS_CNT; ii++ )
{
currpos = initialpos;
RotatePoint( &currpos, ii * 3600 / SEGS_CNT );
currpos.x -= delta;
m_PolyCorners.push_back( currpos );
}
m_PolyCorners.push_back( initialpos ); // close outline
if( m_Size.y > m_Size.x ) // vertical oval, rotate polygon.
{
for( unsigned jj = 0; jj < m_PolyCorners.size(); jj++ )
RotatePoint( &m_PolyCorners[jj], 900 );
}
addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );
}
break;
case APT_POLYGON:
currpos.x = m_Size.x >> 1; // first point is on X axis
initialpos = currpos;
// rs274x said: m_EdgesCount = 3 ... 12
if( m_EdgesCount < 3 )
m_EdgesCount = 3;
if( m_EdgesCount > 12 )
m_EdgesCount = 12;
for( int ii = 0; ii <= m_EdgesCount; ii++ )
{
currpos = initialpos;
RotatePoint( &currpos, ii * 3600 / m_EdgesCount );
m_PolyCorners.push_back( currpos );
}
addHoleToPolygon( m_PolyCorners, m_DrillShape, m_Drill, initialpos );
if( m_Rotation ) // vertical oval, rotate polygon.
{
int angle = wxRound( m_Rotation * 10 );
for( unsigned jj = 0; jj < m_PolyCorners.size(); jj++ )
{
RotatePoint( &m_PolyCorners[jj], -angle );
}
}
break;
case APT_MACRO:
// TODO
break;
}
}
// The helper function for D_CODE::ConvertShapeToPolygon().
// Add a hole to a polygon
static void addHoleToPolygon( std::vector<wxPoint>& aBuffer,
APERTURE_DEF_HOLETYPE aHoleShape,
wxSize aSize,
wxPoint aAnchorPos )
{
wxPoint currpos;
if( aHoleShape == APT_DEF_ROUND_HOLE ) // build a round hole
{
for( int ii = 0; ii <= SEGS_CNT; ii++ )
{
currpos.x = 0;
currpos.y = aSize.x / 2; // aSize.x / 2 is the radius of the hole
RotatePoint( &currpos, ii * 3600 / SEGS_CNT );
aBuffer.push_back( currpos );
}
aBuffer.push_back( aAnchorPos ); // link to outline
}
if( aHoleShape == APT_DEF_RECT_HOLE ) // Create rectangular hole
{
currpos.x = aSize.x / 2;
currpos.y = aSize.y / 2;
aBuffer.push_back( currpos ); // link to hole and begin hole
currpos.x -= aSize.x;
aBuffer.push_back( currpos );
currpos.y -= aSize.y;
aBuffer.push_back( currpos );
currpos.x += aSize.x;
aBuffer.push_back( currpos );
currpos.y += aSize.y;
aBuffer.push_back( currpos ); // close hole
aBuffer.push_back( aAnchorPos ); // link to outline
}
}