1327 lines
35 KiB
C++
1327 lines
35 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
|
|
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
|
|
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
|
|
*
|
|
* Copyright (C) 1992-2015 KiCad Developers, see change_log.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include "ar_matrix.h"
|
|
#include "ar_cell.h"
|
|
|
|
#include <common.h>
|
|
#include <math/util.h> // for KiROUND
|
|
#include <math_for_graphics.h>
|
|
#include <trigo.h>
|
|
|
|
#include <class_drawsegment.h>
|
|
#include <class_pad.h>
|
|
#include <class_track.h>
|
|
|
|
AR_MATRIX::AR_MATRIX()
|
|
{
|
|
m_BoardSide[0] = nullptr;
|
|
m_BoardSide[1] = nullptr;
|
|
m_DistSide[0] = nullptr;
|
|
m_DistSide[1] = nullptr;
|
|
m_DirSide[0] = nullptr;
|
|
m_DirSide[1] = nullptr;
|
|
m_opWriteCell = nullptr;
|
|
m_InitMatrixDone = false;
|
|
m_Nrows = 0;
|
|
m_Ncols = 0;
|
|
m_MemSize = 0;
|
|
m_RoutingLayersCount = 1;
|
|
m_GridRouting = 0;
|
|
m_RouteCount = 0;
|
|
m_routeLayerBottom = B_Cu;
|
|
m_routeLayerTop = F_Cu;
|
|
}
|
|
|
|
|
|
AR_MATRIX::~AR_MATRIX()
|
|
{
|
|
}
|
|
|
|
// was: bool AR_MATRIX::ComputeMatrixSize( BOARD* aPcb, bool aUseBoardEdgesOnly )
|
|
// aUseBoardEdgesOnly ? aPcb->GetBoardEdgesBoundingBox() : aPcb->GetBoundingBox();
|
|
|
|
bool AR_MATRIX::ComputeMatrixSize( const EDA_RECT& aBoundingBox )
|
|
{
|
|
// The boundary box must have its start point on routing grid:
|
|
m_BrdBox = aBoundingBox;
|
|
|
|
m_BrdBox.SetX( m_BrdBox.GetX() - ( m_BrdBox.GetX() % m_GridRouting ) );
|
|
m_BrdBox.SetY( m_BrdBox.GetY() - ( m_BrdBox.GetY() % m_GridRouting ) );
|
|
|
|
// The boundary box must have its end point on routing grid:
|
|
wxPoint end = m_BrdBox.GetEnd();
|
|
|
|
end.x -= end.x % m_GridRouting;
|
|
end.x += m_GridRouting;
|
|
|
|
end.y -= end.y % m_GridRouting;
|
|
end.y += m_GridRouting;
|
|
|
|
m_BrdBox.SetEnd( end );
|
|
|
|
m_Nrows = m_BrdBox.GetHeight() / m_GridRouting;
|
|
m_Ncols = m_BrdBox.GetWidth() / m_GridRouting;
|
|
|
|
// gives a small margin
|
|
m_Ncols += 1;
|
|
m_Nrows += 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
int AR_MATRIX::InitRoutingMatrix()
|
|
{
|
|
if( m_Nrows <= 0 || m_Ncols <= 0 )
|
|
return 0;
|
|
|
|
m_InitMatrixDone = true; // we have been called
|
|
|
|
// give a small margin for memory allocation:
|
|
int ii = ( m_Nrows + 1 ) * ( m_Ncols + 1 );
|
|
|
|
int side = AR_SIDE_BOTTOM;
|
|
for( int jj = 0; jj < m_RoutingLayersCount; jj++ ) // m_RoutingLayersCount = 1 or 2
|
|
{
|
|
m_BoardSide[side] = nullptr;
|
|
m_DistSide[side] = nullptr;
|
|
m_DirSide[side] = nullptr;
|
|
|
|
// allocate matrix & initialize everything to empty
|
|
m_BoardSide[side] = (MATRIX_CELL*) operator new( ii * sizeof( MATRIX_CELL ) );
|
|
memset( m_BoardSide[side], 0, ii * sizeof( MATRIX_CELL ) );
|
|
|
|
if( m_BoardSide[side] == nullptr )
|
|
return -1;
|
|
|
|
// allocate Distances
|
|
m_DistSide[side] = (DIST_CELL*) operator new( ii * sizeof( DIST_CELL ) );
|
|
memset( m_DistSide[side], 0, ii * sizeof( DIST_CELL ) );
|
|
|
|
if( m_DistSide[side] == nullptr )
|
|
return -1;
|
|
|
|
// allocate Dir (chars)
|
|
m_DirSide[side] = (char*) operator new( ii );
|
|
memset( m_DirSide[side], 0, ii );
|
|
|
|
if( m_DirSide[side] == nullptr )
|
|
return -1;
|
|
|
|
side = AR_SIDE_TOP;
|
|
}
|
|
|
|
m_MemSize =
|
|
m_RouteCount * ii * ( sizeof( MATRIX_CELL ) + sizeof( DIST_CELL ) + sizeof( char ) );
|
|
|
|
return m_MemSize;
|
|
}
|
|
|
|
|
|
void AR_MATRIX::UnInitRoutingMatrix()
|
|
{
|
|
int ii;
|
|
|
|
m_InitMatrixDone = false;
|
|
|
|
for( ii = 0; ii < AR_MAX_ROUTING_LAYERS_COUNT; ii++ )
|
|
{
|
|
// de-allocate Dir matrix
|
|
if( m_DirSide[ii] )
|
|
{
|
|
delete m_DirSide[ii];
|
|
m_DirSide[ii] = nullptr;
|
|
}
|
|
|
|
// de-allocate Distances matrix
|
|
if( m_DistSide[ii] )
|
|
{
|
|
delete m_DistSide[ii];
|
|
m_DistSide[ii] = nullptr;
|
|
}
|
|
|
|
// de-allocate cells matrix
|
|
if( m_BoardSide[ii] )
|
|
{
|
|
delete m_BoardSide[ii];
|
|
m_BoardSide[ii] = nullptr;
|
|
}
|
|
}
|
|
|
|
m_Nrows = m_Ncols = 0;
|
|
}
|
|
|
|
// Initialize m_opWriteCell member to make the aLogicOp
|
|
void AR_MATRIX::SetCellOperation( AR_MATRIX::CELL_OP aLogicOp )
|
|
{
|
|
switch( aLogicOp )
|
|
{
|
|
default:
|
|
case WRITE_CELL: m_opWriteCell = &AR_MATRIX::SetCell; break;
|
|
|
|
case WRITE_OR_CELL: m_opWriteCell = &AR_MATRIX::OrCell; break;
|
|
|
|
case WRITE_XOR_CELL: m_opWriteCell = &AR_MATRIX::XorCell; break;
|
|
|
|
case WRITE_AND_CELL: m_opWriteCell = &AR_MATRIX::AndCell; break;
|
|
|
|
case WRITE_ADD_CELL: m_opWriteCell = &AR_MATRIX::AddCell; break;
|
|
}
|
|
}
|
|
|
|
|
|
/* return the value stored in a cell
|
|
*/
|
|
AR_MATRIX::MATRIX_CELL AR_MATRIX::GetCell( int aRow, int aCol, int aSide )
|
|
{
|
|
MATRIX_CELL* p;
|
|
|
|
p = m_BoardSide[aSide];
|
|
return p[aRow * m_Ncols + aCol];
|
|
}
|
|
|
|
|
|
/* basic cell operation : WRITE operation
|
|
*/
|
|
void AR_MATRIX::SetCell( int aRow, int aCol, int aSide, MATRIX_CELL x )
|
|
{
|
|
MATRIX_CELL* p;
|
|
|
|
p = m_BoardSide[aSide];
|
|
p[aRow * m_Ncols + aCol] = x;
|
|
}
|
|
|
|
|
|
/* basic cell operation : OR operation
|
|
*/
|
|
void AR_MATRIX::OrCell( int aRow, int aCol, int aSide, MATRIX_CELL x )
|
|
{
|
|
MATRIX_CELL* p;
|
|
|
|
p = m_BoardSide[aSide];
|
|
p[aRow * m_Ncols + aCol] |= x;
|
|
}
|
|
|
|
|
|
/* basic cell operation : XOR operation
|
|
*/
|
|
void AR_MATRIX::XorCell( int aRow, int aCol, int aSide, MATRIX_CELL x )
|
|
{
|
|
MATRIX_CELL* p;
|
|
|
|
p = m_BoardSide[aSide];
|
|
p[aRow * m_Ncols + aCol] ^= x;
|
|
}
|
|
|
|
|
|
/* basic cell operation : AND operation
|
|
*/
|
|
void AR_MATRIX::AndCell( int aRow, int aCol, int aSide, MATRIX_CELL x )
|
|
{
|
|
MATRIX_CELL* p;
|
|
|
|
p = m_BoardSide[aSide];
|
|
p[aRow * m_Ncols + aCol] &= x;
|
|
}
|
|
|
|
|
|
/* basic cell operation : ADD operation
|
|
*/
|
|
void AR_MATRIX::AddCell( int aRow, int aCol, int aSide, MATRIX_CELL x )
|
|
{
|
|
MATRIX_CELL* p;
|
|
|
|
p = m_BoardSide[aSide];
|
|
p[aRow * m_Ncols + aCol] += x;
|
|
}
|
|
|
|
|
|
// fetch distance cell
|
|
AR_MATRIX::DIST_CELL AR_MATRIX::GetDist( int aRow, int aCol, int aSide ) // fetch distance cell
|
|
{
|
|
DIST_CELL* p;
|
|
|
|
p = m_DistSide[aSide];
|
|
return p[aRow * m_Ncols + aCol];
|
|
}
|
|
|
|
|
|
// store distance cell
|
|
void AR_MATRIX::SetDist( int aRow, int aCol, int aSide, DIST_CELL x )
|
|
{
|
|
DIST_CELL* p;
|
|
|
|
p = m_DistSide[aSide];
|
|
p[aRow * m_Ncols + aCol] = x;
|
|
}
|
|
|
|
|
|
// fetch direction cell
|
|
int AR_MATRIX::GetDir( int aRow, int aCol, int aSide )
|
|
{
|
|
DIR_CELL* p;
|
|
|
|
p = m_DirSide[aSide];
|
|
return (int) ( p[aRow * m_Ncols + aCol] );
|
|
}
|
|
|
|
|
|
// store direction cell
|
|
void AR_MATRIX::SetDir( int aRow, int aCol, int aSide, int x )
|
|
{
|
|
DIR_CELL* p;
|
|
|
|
p = m_DirSide[aSide];
|
|
p[aRow * m_Ncols + aCol] = (char) x;
|
|
}
|
|
|
|
/* The tables of distances and keep out areas are established on the basis of a
|
|
* 50 units grid size (the pitch between the cells is 50 units).
|
|
* The actual distance could be computed by a scaling factor, but this is
|
|
* not needed, we can use only reduced values
|
|
*/
|
|
|
|
/* calculate approximate distance (manhattan distance)
|
|
*/
|
|
int AR_MATRIX::GetApxDist( int r1, int c1, int r2, int c2 )
|
|
{
|
|
int d1, d2; /* row and column deltas */
|
|
|
|
if( ( d1 = r1 - r2 ) < 0 ) /* get absolute row delta */
|
|
d1 = -d1;
|
|
|
|
if( ( d2 = c1 - c2 ) < 0 ) /* get absolute column delta */
|
|
d2 = -d2;
|
|
|
|
return ( d1 + d2 ) * 50;
|
|
}
|
|
|
|
|
|
/* distance to go thru a cell (en mils) */
|
|
static const int dist[10][10] = { /* OT=Otherside, OR=Origin (source) cell */
|
|
/*..........N, NE, E, SE, S, SW, W, NW, OT, OR */
|
|
/* N */ { 50, 60, 35, 60, 99, 60, 35, 60, 12, 12 },
|
|
/* NE */ { 60, 71, 60, 71, 60, 99, 60, 71, 23, 23 },
|
|
/* E */ { 35, 60, 50, 60, 35, 60, 99, 60, 12, 12 },
|
|
/* SE */ { 60, 71, 60, 71, 60, 71, 60, 99, 23, 23 },
|
|
/* S */ { 99, 60, 35, 60, 50, 60, 35, 60, 12, 12 },
|
|
/* SW */ { 60, 99, 60, 71, 60, 71, 60, 71, 23, 23 },
|
|
/* W */ { 35, 60, 99, 60, 35, 60, 50, 60, 12, 12 },
|
|
/* NW */ { 60, 71, 60, 99, 60, 71, 60, 71, 23, 23 },
|
|
|
|
/* OT */ { 12, 23, 12, 23, 12, 23, 12, 23, 99, 99 },
|
|
/* OR */ { 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 }
|
|
};
|
|
|
|
|
|
/* penalty for extraneous holes and corners, scaled by sharpness of turn */
|
|
static const int penalty[10][10] = { /* OT=Otherside, OR=Origin (source) cell */
|
|
/*......... N, NE, E, SE, S, SW, W, NW, OT, OR */
|
|
/* N */ { 0, 5, 10, 15, 20, 15, 10, 5, 50, 0 },
|
|
/* NE */ { 5, 0, 5, 10, 15, 20, 15, 10, 50, 0 },
|
|
/* E */ { 10, 5, 0, 5, 10, 15, 20, 15, 50, 0 },
|
|
/* SE */ { 15, 10, 5, 0, 5, 10, 15, 20, 50, 0 },
|
|
/* S */ { 20, 15, 10, 5, 0, 5, 10, 15, 50, 0 },
|
|
/* SW */ { 15, 20, 15, 10, 5, 0, 5, 10, 50, 0 },
|
|
/* W */ { 10, 15, 20, 15, 10, 5, 0, 5, 50, 0 },
|
|
/* NW */ { 5, 10, 15, 20, 15, 10, 5, 0, 50, 0 },
|
|
|
|
/* OT */ { 50, 50, 50, 50, 50, 50, 50, 50, 100, 0 },
|
|
/* OR */ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
|
|
};
|
|
|
|
|
|
/* penalty pour directions preferencielles */
|
|
#define PN 20
|
|
static const int dir_penalty_TOP[10][10] = {
|
|
/* OT=Otherside, OR=Origin (source) cell */
|
|
/*......... N, NE, E, SE, S, SW, W, NW, OT, OR */
|
|
/* N */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* NE */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* E */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* SE */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* S */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* SW */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* W */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* NW */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
|
|
/* OT */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 },
|
|
/* OR */ { PN, 0, 0, 0, PN, 0, 0, 0, 0, 0 }
|
|
};
|
|
|
|
|
|
static int dir_penalty_BOTTOM[10][10] = {
|
|
/* OT=Otherside, OR=Origin (source) cell */
|
|
/*......... N, NE, E, SE, S, SW, W, NW, OT, OR */
|
|
/* N */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* NE */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* E */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* SE */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* S */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* SW */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* W */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* NW */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
|
|
/* OT */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 },
|
|
/* OR */ { 0, 0, PN, 0, 0, 0, PN, 0, 0, 0 }
|
|
};
|
|
|
|
/*
|
|
** x is the direction to enter the cell of interest.
|
|
** y is the direction to exit the cell of interest.
|
|
** z is the direction to really exit the cell, if y=FROM_OTHERSIDE.
|
|
**
|
|
** return the distance of the trace through the cell of interest.
|
|
** the calculation is driven by the tables above.
|
|
*/
|
|
|
|
|
|
/* calculate distance (with penalty) of a trace through a cell
|
|
*/
|
|
int AR_MATRIX::CalcDist( int x, int y, int z, int side )
|
|
{
|
|
int adjust, ldist;
|
|
|
|
adjust = 0; /* set if hole is encountered */
|
|
|
|
if( x == CELL_IS_EMPTY )
|
|
x = 10;
|
|
|
|
if( y == CELL_IS_EMPTY )
|
|
{
|
|
y = 10;
|
|
}
|
|
else if( y == FROM_OTHERSIDE )
|
|
{
|
|
if( z == CELL_IS_EMPTY )
|
|
z = 10;
|
|
|
|
adjust = penalty[x - 1][z - 1];
|
|
}
|
|
|
|
ldist = dist[x - 1][y - 1] + penalty[x - 1][y - 1] + adjust;
|
|
|
|
if( m_RouteCount > 1 )
|
|
{
|
|
if( side == AR_SIDE_BOTTOM )
|
|
ldist += dir_penalty_TOP[x - 1][y - 1];
|
|
|
|
if( side == AR_SIDE_TOP )
|
|
ldist += dir_penalty_BOTTOM[x - 1][y - 1];
|
|
}
|
|
|
|
return ldist * 10;
|
|
}
|
|
|
|
|
|
#define OP_CELL( layer, dy, dx ) \
|
|
{ \
|
|
if( layer == UNDEFINED_LAYER ) \
|
|
{ \
|
|
WriteCell( dy, dx, AR_SIDE_BOTTOM, color ); \
|
|
if( m_RoutingLayersCount > 1 ) \
|
|
WriteCell( dy, dx, AR_SIDE_TOP, color ); \
|
|
} \
|
|
else \
|
|
{ \
|
|
if( layer == m_routeLayerBottom ) \
|
|
WriteCell( dy, dx, AR_SIDE_BOTTOM, color ); \
|
|
if( m_RoutingLayersCount > 1 ) \
|
|
if( layer == m_routeLayerTop ) \
|
|
WriteCell( dy, dx, AR_SIDE_TOP, color ); \
|
|
} \
|
|
}
|
|
|
|
/* Fills all cells inside a segment
|
|
* half-width = lg, org = ux0,uy0 end = ux1,uy1
|
|
* coordinates are in PCB units
|
|
*/
|
|
void AR_MATRIX::drawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, LAYER_NUM layer,
|
|
int color, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int64_t row, col;
|
|
int64_t inc;
|
|
int64_t row_max, col_max, row_min, col_min;
|
|
int64_t demi_pas;
|
|
|
|
int cx, cy, dx, dy;
|
|
|
|
|
|
//printf("segmQcq %d %d %d %d\n", ux0, uy0, ux1, uy1);
|
|
|
|
SetCellOperation( op_logic );
|
|
|
|
// Make coordinate ux1 tj > ux0 to simplify calculations
|
|
if( ux1 < ux0 )
|
|
{
|
|
std::swap( ux1, ux0 );
|
|
std::swap( uy1, uy0 );
|
|
}
|
|
|
|
// Calculating the incrementing the Y axis
|
|
inc = 1;
|
|
|
|
if( uy1 < uy0 )
|
|
inc = -1;
|
|
|
|
demi_pas = m_GridRouting / 2;
|
|
|
|
col_min = ( ux0 - lg ) / m_GridRouting;
|
|
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
|
|
col_max = ( ux1 + lg + demi_pas ) / m_GridRouting;
|
|
|
|
if( col_max > ( m_Ncols - 1 ) )
|
|
col_max = m_Ncols - 1;
|
|
|
|
if( inc > 0 )
|
|
{
|
|
row_min = ( uy0 - lg ) / m_GridRouting;
|
|
row_max = ( uy1 + lg + demi_pas ) / m_GridRouting;
|
|
}
|
|
else
|
|
{
|
|
row_min = ( uy1 - lg ) / m_GridRouting;
|
|
row_max = ( uy0 + lg + demi_pas ) / m_GridRouting;
|
|
}
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
|
|
if( row_min > ( m_Nrows - 1 ) )
|
|
row_min = m_Nrows - 1;
|
|
|
|
if( row_max < 0 )
|
|
row_max = 0;
|
|
|
|
if( row_max > ( m_Nrows - 1 ) )
|
|
row_max = m_Nrows - 1;
|
|
|
|
dx = ux1 - ux0;
|
|
dy = uy1 - uy0;
|
|
|
|
double angle;
|
|
if( dx )
|
|
{
|
|
angle = ArcTangente( dy, dx );
|
|
}
|
|
else
|
|
{
|
|
angle = 900;
|
|
|
|
if( dy < 0 )
|
|
angle = -900;
|
|
}
|
|
|
|
RotatePoint( &dx, &dy, angle ); // dx = length, dy = 0
|
|
|
|
|
|
//printf("col_min %d max %d row_min %d max %d\n", col_min, col_max, row_min, row_max);
|
|
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
int64_t cxr;
|
|
cxr = ( col * m_GridRouting ) - ux0;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
cy = ( row * m_GridRouting ) - uy0;
|
|
cx = cxr;
|
|
RotatePoint( &cx, &cy, angle );
|
|
|
|
if( abs( cy ) > lg )
|
|
continue; // The point is too far on the Y axis.
|
|
|
|
/* This point a test is close to the segment: the position
|
|
* along the X axis must be tested.
|
|
*/
|
|
if( ( cx >= 0 ) && ( cx <= dx ) )
|
|
{
|
|
OP_CELL( layer, row, col );
|
|
continue;
|
|
}
|
|
|
|
// Examination of extremities are rounded.
|
|
if( ( cx < 0 ) && ( cx >= -lg ) )
|
|
{
|
|
if( ( ( cx * cx ) + ( cy * cy ) ) <= ( lg * lg ) )
|
|
OP_CELL( layer, row, col );
|
|
|
|
continue;
|
|
}
|
|
|
|
if( ( cx > dx ) && ( cx <= ( dx + lg ) ) )
|
|
{
|
|
if( ( ( ( cx - dx ) * ( cx - dx ) ) + ( cy * cy ) ) <= ( lg * lg ) )
|
|
OP_CELL( layer, row, col );
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Fills all cells of the routing matrix contained in the circle
|
|
* half-width = lg, center = ux0, uy0, ux1,uy1 is a point on the circle.
|
|
* coord are in PCB units.
|
|
*/
|
|
void AR_MATRIX::traceCircle( int ux0, int uy0, int ux1, int uy1, int lg, LAYER_NUM layer, int color,
|
|
AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int radius, nb_segm;
|
|
int x0, y0, // Starting point of the current segment trace.
|
|
x1, y1; // End point.
|
|
int ii;
|
|
int angle;
|
|
|
|
radius = KiROUND( Distance( ux0, uy0, ux1, uy1 ) );
|
|
|
|
x0 = x1 = radius;
|
|
y0 = y1 = 0;
|
|
|
|
if( lg < 1 )
|
|
lg = 1;
|
|
|
|
nb_segm = ( 2 * radius ) / lg;
|
|
|
|
if( nb_segm < 5 )
|
|
nb_segm = 5;
|
|
|
|
if( nb_segm > 100 )
|
|
nb_segm = 100;
|
|
|
|
for( ii = 1; ii < nb_segm; ii++ )
|
|
{
|
|
angle = ( 3600 * ii ) / nb_segm;
|
|
x1 = KiROUND( cosdecideg( radius, angle ) );
|
|
y1 = KiROUND( sindecideg( radius, angle ) );
|
|
drawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logic );
|
|
x0 = x1;
|
|
y0 = y1;
|
|
}
|
|
|
|
drawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + radius, uy0, lg, layer, color, op_logic );
|
|
}
|
|
|
|
|
|
void AR_MATRIX::traceFilledCircle(
|
|
int cx, int cy, int radius, LSET aLayerMask, int color, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int row, col;
|
|
int ux0, uy0, ux1, uy1;
|
|
int row_max, col_max, row_min, col_min;
|
|
int trace = 0;
|
|
double fdistmin, fdistx, fdisty;
|
|
int tstwrite = 0;
|
|
int distmin;
|
|
|
|
if( aLayerMask[m_routeLayerBottom] )
|
|
trace = 1; // Trace on BOTTOM
|
|
|
|
if( aLayerMask[m_routeLayerTop] )
|
|
if( m_RoutingLayersCount > 1 )
|
|
trace |= 2; // Trace on TOP
|
|
|
|
if( trace == 0 )
|
|
return;
|
|
|
|
SetCellOperation( op_logic );
|
|
|
|
cx -= GetBrdCoordOrigin().x;
|
|
cy -= GetBrdCoordOrigin().y;
|
|
|
|
distmin = radius;
|
|
|
|
// Calculate the bounding rectangle of the circle.
|
|
ux0 = cx - radius;
|
|
uy0 = cy - radius;
|
|
ux1 = cx + radius;
|
|
uy1 = cy + radius;
|
|
|
|
// Calculate limit coordinates of cells belonging to the rectangle.
|
|
row_max = uy1 / m_GridRouting;
|
|
col_max = ux1 / m_GridRouting;
|
|
row_min = uy0 / m_GridRouting; // if (uy0 > row_min*Board.m_GridRouting) row_min++;
|
|
col_min = ux0 / m_GridRouting; // if (ux0 > col_min*Board.m_GridRouting) col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
|
|
if( row_max >= ( m_Nrows - 1 ) )
|
|
row_max = m_Nrows - 1;
|
|
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
|
|
if( col_max >= ( m_Ncols - 1 ) )
|
|
col_max = m_Ncols - 1;
|
|
|
|
// Calculate coordinate limits of cell belonging to the rectangle.
|
|
if( row_min > row_max )
|
|
row_max = row_min;
|
|
|
|
if( col_min > col_max )
|
|
col_max = col_min;
|
|
|
|
fdistmin = (double) distmin * distmin;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
fdisty = (double) ( cy - ( row * m_GridRouting ) );
|
|
fdisty *= fdisty;
|
|
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
fdistx = (double) ( cx - ( col * m_GridRouting ) );
|
|
fdistx *= fdistx;
|
|
|
|
if( fdistmin <= ( fdistx + fdisty ) )
|
|
continue;
|
|
|
|
if( trace & 1 )
|
|
WriteCell( row, col, AR_SIDE_BOTTOM, color );
|
|
|
|
if( trace & 2 )
|
|
WriteCell( row, col, AR_SIDE_TOP, color );
|
|
|
|
tstwrite = 1;
|
|
}
|
|
}
|
|
|
|
if( tstwrite )
|
|
return;
|
|
|
|
/* If no cell has been written, it affects the 4 neighboring diagonal
|
|
* (Adverse event: pad off grid in the center of the 4 neighboring
|
|
* diagonal) */
|
|
distmin = m_GridRouting / 2 + 1;
|
|
fdistmin = ( (double) distmin * distmin ) * 2; // Distance to center point diagonally
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
fdisty = (double) ( cy - ( row * m_GridRouting ) );
|
|
fdisty *= fdisty;
|
|
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
fdistx = (double) ( cx - ( col * m_GridRouting ) );
|
|
fdistx *= fdistx;
|
|
|
|
if( fdistmin <= ( fdistx + fdisty ) )
|
|
continue;
|
|
|
|
if( trace & 1 )
|
|
WriteCell( row, col, AR_SIDE_BOTTOM, color );
|
|
|
|
if( trace & 2 )
|
|
WriteCell( row, col, AR_SIDE_TOP, color );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Fills all routing matrix cells contained in the arc
|
|
* angle = ArcAngle, half-width lg
|
|
* center = ux0,uy0, starting at ux1, uy1. Coordinates are in
|
|
* PCB units.
|
|
*/
|
|
void AR_MATRIX::traceArc( int ux0, int uy0, int ux1, int uy1, double ArcAngle, int lg,
|
|
LAYER_NUM layer, int color, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int radius, nb_segm;
|
|
int x0, y0, // Starting point of the current segment trace
|
|
x1, y1; // End point
|
|
int ii;
|
|
double angle, StAngle;
|
|
|
|
|
|
radius = KiROUND( Distance( ux0, uy0, ux1, uy1 ) );
|
|
|
|
x0 = ux1 - ux0;
|
|
y0 = uy1 - uy0;
|
|
StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 );
|
|
|
|
if( lg < 1 )
|
|
lg = 1;
|
|
|
|
nb_segm = ( 2 * radius ) / lg;
|
|
nb_segm = ( nb_segm * std::abs( ArcAngle ) ) / 3600;
|
|
|
|
if( nb_segm < 5 )
|
|
nb_segm = 5;
|
|
|
|
if( nb_segm > 100 )
|
|
nb_segm = 100;
|
|
|
|
for( ii = 1; ii <= nb_segm; ii++ )
|
|
{
|
|
angle = ( ArcAngle * ii ) / nb_segm;
|
|
angle += StAngle;
|
|
|
|
NORMALIZE_ANGLE_POS( angle );
|
|
|
|
x1 = KiROUND( cosdecideg( radius, angle ) );
|
|
y1 = KiROUND( cosdecideg( radius, angle ) );
|
|
drawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logic );
|
|
x0 = x1;
|
|
y0 = y1;
|
|
}
|
|
}
|
|
|
|
|
|
void AR_MATRIX::TraceFilledRectangle( int ux0, int uy0, int ux1, int uy1, double angle,
|
|
LSET aLayerMask, int color, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int row, col;
|
|
int cx, cy; // Center of rectangle
|
|
int radius; // Radius of the circle
|
|
int row_min, row_max, col_min, col_max;
|
|
int rotrow, rotcol;
|
|
int trace = 0;
|
|
|
|
if( aLayerMask[m_routeLayerBottom] )
|
|
trace = 1; // Trace on BOTTOM
|
|
|
|
if( aLayerMask[m_routeLayerTop] )
|
|
{
|
|
if( m_RoutingLayersCount > 1 )
|
|
trace |= 2; // Trace on TOP
|
|
}
|
|
|
|
if( trace == 0 )
|
|
return;
|
|
|
|
SetCellOperation( op_logic );
|
|
|
|
ux0 -= GetBrdCoordOrigin().x;
|
|
uy0 -= GetBrdCoordOrigin().y;
|
|
ux1 -= GetBrdCoordOrigin().x;
|
|
uy1 -= GetBrdCoordOrigin().y;
|
|
|
|
cx = ( ux0 + ux1 ) / 2;
|
|
cy = ( uy0 + uy1 ) / 2;
|
|
radius = KiROUND( Distance( ux0, uy0, cx, cy ) );
|
|
|
|
// Calculating coordinate limits belonging to the rectangle.
|
|
row_max = ( cy + radius ) / m_GridRouting;
|
|
col_max = ( cx + radius ) / m_GridRouting;
|
|
row_min = ( cy - radius ) / m_GridRouting;
|
|
|
|
if( uy0 > row_min * m_GridRouting )
|
|
row_min++;
|
|
|
|
col_min = ( cx - radius ) / m_GridRouting;
|
|
|
|
if( ux0 > col_min * m_GridRouting )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
|
|
if( row_max >= ( m_Nrows - 1 ) )
|
|
row_max = m_Nrows - 1;
|
|
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
|
|
if( col_max >= ( m_Ncols - 1 ) )
|
|
col_max = m_Ncols - 1;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
rotrow = row * m_GridRouting;
|
|
rotcol = col * m_GridRouting;
|
|
RotatePoint( &rotcol, &rotrow, cx, cy, -angle );
|
|
|
|
if( rotrow <= uy0 )
|
|
continue;
|
|
|
|
if( rotrow >= uy1 )
|
|
continue;
|
|
|
|
if( rotcol <= ux0 )
|
|
continue;
|
|
|
|
if( rotcol >= ux1 )
|
|
continue;
|
|
|
|
if( trace & 1 )
|
|
WriteCell( row, col, AR_SIDE_BOTTOM, color );
|
|
|
|
if( trace & 2 )
|
|
WriteCell( row, col, AR_SIDE_TOP, color );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void AR_MATRIX::TraceFilledRectangle( int ux0, int uy0, int ux1, int uy1, LSET aLayerMask,
|
|
int color, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int row, col;
|
|
int row_min, row_max, col_min, col_max;
|
|
int trace = 0;
|
|
|
|
if( aLayerMask[m_routeLayerBottom] )
|
|
trace = 1; // Trace on BOTTOM
|
|
|
|
if( aLayerMask[m_routeLayerTop] && m_RoutingLayersCount > 1 )
|
|
trace |= 2; // Trace on TOP
|
|
|
|
if( trace == 0 )
|
|
return;
|
|
|
|
SetCellOperation( op_logic );
|
|
|
|
ux0 -= GetBrdCoordOrigin().x;
|
|
uy0 -= GetBrdCoordOrigin().y;
|
|
ux1 -= GetBrdCoordOrigin().x;
|
|
uy1 -= GetBrdCoordOrigin().y;
|
|
|
|
// Calculating limits coord cells belonging to the rectangle.
|
|
row_max = uy1 / m_GridRouting;
|
|
col_max = ux1 / m_GridRouting;
|
|
row_min = uy0 / m_GridRouting;
|
|
|
|
if( uy0 > row_min * m_GridRouting )
|
|
row_min++;
|
|
|
|
col_min = ux0 / m_GridRouting;
|
|
|
|
if( ux0 > col_min * m_GridRouting )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
|
|
if( row_max >= ( m_Nrows - 1 ) )
|
|
row_max = m_Nrows - 1;
|
|
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
|
|
if( col_max >= ( m_Ncols - 1 ) )
|
|
col_max = m_Ncols - 1;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
if( trace & 1 )
|
|
WriteCell( row, col, AR_SIDE_BOTTOM, color );
|
|
|
|
if( trace & 2 )
|
|
WriteCell( row, col, AR_SIDE_TOP, color );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Draws a line, if layer = -1 on all layers
|
|
*/
|
|
void AR_MATRIX::tracePcbLine(
|
|
int x0, int y0, int x1, int y1, LAYER_NUM layer, int color, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int dx, dy, lim;
|
|
int cumul, inc, il, delta;
|
|
|
|
SetCellOperation( op_logic );
|
|
|
|
if( x0 == x1 ) // Vertical.
|
|
{
|
|
if( y1 < y0 )
|
|
std::swap( y0, y1 );
|
|
|
|
dy = y0 / m_GridRouting;
|
|
lim = y1 / m_GridRouting;
|
|
dx = x0 / m_GridRouting;
|
|
|
|
// Clipping limits of board.
|
|
if( ( dx < 0 ) || ( dx >= m_Ncols ) )
|
|
return;
|
|
|
|
if( dy < 0 )
|
|
dy = 0;
|
|
|
|
if( lim >= m_Nrows )
|
|
lim = m_Nrows - 1;
|
|
|
|
for( ; dy <= lim; dy++ )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if( y0 == y1 ) // Horizontal
|
|
{
|
|
if( x1 < x0 )
|
|
std::swap( x0, x1 );
|
|
|
|
dx = x0 / m_GridRouting;
|
|
lim = x1 / m_GridRouting;
|
|
dy = y0 / m_GridRouting;
|
|
|
|
// Clipping limits of board.
|
|
if( ( dy < 0 ) || ( dy >= m_Nrows ) )
|
|
return;
|
|
|
|
if( dx < 0 )
|
|
dx = 0;
|
|
|
|
if( lim >= m_Ncols )
|
|
lim = m_Ncols - 1;
|
|
|
|
for( ; dx <= lim; dx++ )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Here is some perspective: using the algorithm LUCAS.
|
|
if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) // segment slightly inclined/
|
|
{
|
|
if( x1 < x0 )
|
|
{
|
|
std::swap( x1, x0 );
|
|
std::swap( y1, y0 );
|
|
}
|
|
|
|
dx = x0 / m_GridRouting;
|
|
lim = x1 / m_GridRouting;
|
|
dy = y0 / m_GridRouting;
|
|
inc = 1;
|
|
|
|
if( y1 < y0 )
|
|
inc = -1;
|
|
|
|
il = lim - dx;
|
|
cumul = il / 2;
|
|
delta = abs( y1 - y0 ) / m_GridRouting;
|
|
|
|
for( ; dx <= lim; )
|
|
{
|
|
if( ( dx >= 0 ) && ( dy >= 0 ) && ( dx < m_Ncols ) && ( dy < m_Nrows ) )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
|
|
dx++;
|
|
cumul += delta;
|
|
|
|
if( cumul > il )
|
|
{
|
|
cumul -= il;
|
|
dy += inc;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( y1 < y0 )
|
|
{
|
|
std::swap( x1, x0 );
|
|
std::swap( y1, y0 );
|
|
}
|
|
|
|
dy = y0 / m_GridRouting;
|
|
lim = y1 / m_GridRouting;
|
|
dx = x0 / m_GridRouting;
|
|
inc = 1;
|
|
|
|
if( x1 < x0 )
|
|
inc = -1;
|
|
|
|
il = lim - dy;
|
|
cumul = il / 2;
|
|
delta = abs( x1 - x0 ) / m_GridRouting;
|
|
|
|
for( ; dy <= lim; )
|
|
{
|
|
if( ( dx >= 0 ) && ( dy >= 0 ) && ( dx < m_Ncols ) && ( dy < m_Nrows ) )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
|
|
dy++;
|
|
cumul += delta;
|
|
|
|
if( cumul > il )
|
|
{
|
|
cumul -= il;
|
|
dx += inc;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AR_MATRIX::TraceSegmentPcb(
|
|
DRAWSEGMENT* pt_segm, int color, int marge, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int half_width = ( pt_segm->GetWidth() / 2 ) + marge;
|
|
|
|
// Calculate the bounding rectangle of the segment (if H, V or Via)
|
|
int ux0 = pt_segm->GetStart().x - GetBrdCoordOrigin().x;
|
|
int uy0 = pt_segm->GetStart().y - GetBrdCoordOrigin().y;
|
|
int ux1 = pt_segm->GetEnd().x - GetBrdCoordOrigin().x;
|
|
int uy1 = pt_segm->GetEnd().y - GetBrdCoordOrigin().y;
|
|
|
|
//printf("traceSegm %d %d %d %d\n", ux0, uy0, ux1, uy1);
|
|
|
|
LAYER_NUM layer = pt_segm->GetLayer();
|
|
|
|
//if( color == VIA_IMPOSSIBLE )
|
|
layer = UNDEFINED_LAYER;
|
|
|
|
|
|
switch( pt_segm->GetShape() )
|
|
{
|
|
// The segment is here a straight line or a circle or an arc.:
|
|
case S_CIRCLE: traceCircle( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic ); break;
|
|
|
|
case S_ARC:
|
|
traceArc( ux0, uy0, ux1, uy1, pt_segm->GetAngle(), half_width, layer, color, op_logic );
|
|
break;
|
|
|
|
// The segment is here a line segment.
|
|
default: drawSegmentQcq( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic ); break;
|
|
}
|
|
}
|
|
|
|
|
|
void AR_MATRIX::TraceSegmentPcb( TRACK* aTrack, int color, int marge, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int half_width = ( aTrack->GetWidth() / 2 ) + marge;
|
|
|
|
// Test if VIA (filled circle need to be drawn)
|
|
if( aTrack->Type() == PCB_VIA_T )
|
|
{
|
|
LSET layer_mask;
|
|
|
|
if( aTrack->IsOnLayer( m_routeLayerBottom ) )
|
|
layer_mask.set( m_routeLayerBottom );
|
|
|
|
if( aTrack->IsOnLayer( m_routeLayerTop ) )
|
|
{
|
|
if( !layer_mask.any() )
|
|
layer_mask = LSET( m_routeLayerTop );
|
|
else
|
|
layer_mask.set();
|
|
}
|
|
|
|
if( color == VIA_IMPOSSIBLE )
|
|
layer_mask.set();
|
|
|
|
if( layer_mask.any() )
|
|
traceFilledCircle( aTrack->GetStart().x, aTrack->GetStart().y, half_width, layer_mask,
|
|
color, op_logic );
|
|
}
|
|
else
|
|
{
|
|
// Calculate the bounding rectangle of the segment
|
|
int ux0 = aTrack->GetStart().x - GetBrdCoordOrigin().x;
|
|
int uy0 = aTrack->GetStart().y - GetBrdCoordOrigin().y;
|
|
int ux1 = aTrack->GetEnd().x - GetBrdCoordOrigin().x;
|
|
int uy1 = aTrack->GetEnd().y - GetBrdCoordOrigin().y;
|
|
|
|
// Ordinary track
|
|
PCB_LAYER_ID layer = aTrack->GetLayer();
|
|
|
|
if( color == VIA_IMPOSSIBLE )
|
|
layer = UNDEFINED_LAYER;
|
|
|
|
drawSegmentQcq( ux0, uy0, ux1, uy1, half_width, layer, color, op_logic );
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Function CreateKeepOutRectangle
|
|
* builds the cost map:
|
|
* Cells ( in Dist map ) inside the rect x0,y0 a x1,y1 are
|
|
* incremented by value aKeepOut
|
|
* Cell outside this rectangle, but inside the rectangle
|
|
* x0,y0 -marge to x1,y1 + marge are incremented by a decreasing value
|
|
* (aKeepOut ... 0). The decreasing value depends on the distance to the first rectangle
|
|
* Therefore the cost is high in rect x0,y0 to x1,y1, and decrease outside this rectangle
|
|
*/
|
|
void AR_MATRIX::CreateKeepOutRectangle(
|
|
int ux0, int uy0, int ux1, int uy1, int marge, int aKeepOut, LSET aLayerMask )
|
|
{
|
|
int row, col;
|
|
int row_min, row_max, col_min, col_max, pmarge;
|
|
int trace = 0;
|
|
DIST_CELL data, LocalKeepOut;
|
|
int lgain, cgain;
|
|
|
|
if( aLayerMask[m_routeLayerBottom] )
|
|
trace = 1; // Trace on bottom layer.
|
|
|
|
if( aLayerMask[m_routeLayerTop] && m_RoutingLayersCount )
|
|
trace |= 2; // Trace on top layer.
|
|
|
|
if( trace == 0 )
|
|
return;
|
|
|
|
ux0 -= m_BrdBox.GetX();
|
|
uy0 -= m_BrdBox.GetY();
|
|
ux1 -= m_BrdBox.GetX();
|
|
uy1 -= m_BrdBox.GetY();
|
|
|
|
ux0 -= marge;
|
|
ux1 += marge;
|
|
uy0 -= marge;
|
|
uy1 += marge;
|
|
|
|
pmarge = marge / m_GridRouting;
|
|
|
|
if( pmarge < 1 )
|
|
pmarge = 1;
|
|
|
|
// Calculate the coordinate limits of the rectangle.
|
|
row_max = uy1 / m_GridRouting;
|
|
col_max = ux1 / m_GridRouting;
|
|
row_min = uy0 / m_GridRouting;
|
|
|
|
if( uy0 > row_min * m_GridRouting )
|
|
row_min++;
|
|
|
|
col_min = ux0 / m_GridRouting;
|
|
|
|
if( ux0 > col_min * m_GridRouting )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
|
|
if( row_max >= ( m_Nrows - 1 ) )
|
|
row_max = m_Nrows - 1;
|
|
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
|
|
if( col_max >= ( m_Ncols - 1 ) )
|
|
col_max = m_Ncols - 1;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
lgain = 256;
|
|
|
|
if( row < pmarge )
|
|
lgain = ( 256 * row ) / pmarge;
|
|
else if( row > row_max - pmarge )
|
|
lgain = ( 256 * ( row_max - row ) ) / pmarge;
|
|
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
// RoutingMatrix Dist map containt the "cost" of the cell
|
|
// at position (row, col)
|
|
// in autoplace this is the cost of the cell, when
|
|
// a footprint overlaps it, near a "master" footprint
|
|
// this cost is hight near the "master" footprint
|
|
// and decrease with the distance
|
|
cgain = 256;
|
|
LocalKeepOut = aKeepOut;
|
|
|
|
if( col < pmarge )
|
|
cgain = ( 256 * col ) / pmarge;
|
|
else if( col > col_max - pmarge )
|
|
cgain = ( 256 * ( col_max - col ) ) / pmarge;
|
|
|
|
cgain = ( cgain * lgain ) / 256;
|
|
|
|
if( cgain != 256 )
|
|
LocalKeepOut = ( LocalKeepOut * cgain ) / 256;
|
|
|
|
if( trace & 1 )
|
|
{
|
|
data = GetDist( row, col, AR_SIDE_BOTTOM ) + LocalKeepOut;
|
|
SetDist( row, col, AR_SIDE_BOTTOM, data );
|
|
}
|
|
|
|
if( trace & 2 )
|
|
{
|
|
data = GetDist( row, col, AR_SIDE_TOP );
|
|
data = std::max( data, LocalKeepOut );
|
|
SetDist( row, col, AR_SIDE_TOP, data );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void AR_MATRIX::PlacePad( D_PAD* aPad, int color, int marge, AR_MATRIX::CELL_OP op_logic )
|
|
{
|
|
int dx, dy;
|
|
wxPoint shape_pos = aPad->ShapePos();
|
|
|
|
dx = aPad->GetSize().x / 2;
|
|
dx += marge;
|
|
|
|
if( aPad->GetShape() == PAD_SHAPE_CIRCLE )
|
|
{
|
|
traceFilledCircle( shape_pos.x, shape_pos.y, dx, aPad->GetLayerSet(), color, op_logic );
|
|
return;
|
|
}
|
|
|
|
dy = aPad->GetSize().y / 2;
|
|
dy += marge;
|
|
|
|
if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID )
|
|
{
|
|
dx += abs( aPad->GetDelta().y ) / 2;
|
|
dy += abs( aPad->GetDelta().x ) / 2;
|
|
}
|
|
|
|
// The pad is a rectangle ( horizontal or vertical )
|
|
if( int( aPad->GetOrientation() ) % 900 == 0 )
|
|
{
|
|
// Orientation turned 90 deg.
|
|
if( aPad->GetOrientation() == 900 || aPad->GetOrientation() == 2700 )
|
|
{
|
|
std::swap( dx, dy );
|
|
}
|
|
|
|
TraceFilledRectangle( shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx,
|
|
shape_pos.y + dy, aPad->GetLayerSet(), color, op_logic );
|
|
}
|
|
else
|
|
{
|
|
TraceFilledRectangle( shape_pos.x - dx, shape_pos.y - dy, shape_pos.x + dx,
|
|
shape_pos.y + dy, aPad->GetOrientation(), aPad->GetLayerSet(), color, op_logic );
|
|
}
|
|
}
|