kicad/pcbnew/connectivity/connectivity_items.cpp

473 lines
12 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2016-2018 CERN
* Copyright (C) 2019 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <connectivity/connectivity_items.h>
int CN_ITEM::AnchorCount() const
{
if( !m_valid )
return 0;
switch( m_parent->Type() )
{
case PCB_PAD_T:
return 5; // center, north, south, east and west
case PCB_TRACE_T:
case PCB_ARC_T:
return 2; // start and end
default:
return 1;
}
}
const VECTOR2I CN_ITEM::GetAnchor( int n ) const
{
VECTOR2I pt0;
if( !m_valid )
return pt0;
switch( m_parent->Type() )
{
case PCB_PAD_T:
{
D_PAD* pad = (D_PAD*) m_parent;
if( n == 0 )
return VECTOR2I( pad->GetPosition() );
// ShapePos() is the geometric center (not anchor) for the pad
pt0 = pad->ShapePos();
VECTOR2I pt1 = pt0;
switch( pad->GetShape() )
{
case PAD_SHAPE_RECT:
case PAD_SHAPE_CIRCLE:
case PAD_SHAPE_OVAL:
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_CHAMFERED_RECT:
switch( n )
{
case 1: pt1.y -= pad->GetSize().y / 2; break; // North
case 2: pt1.y += pad->GetSize().y / 2; break; // South
case 3: pt1.x -= pad->GetSize().x / 2; break; // East
case 4: pt1.x += pad->GetSize().x / 2; break; // West
default: break; // Wicked witch
}
if( pad->GetOrientation() )
RotatePoint( pt1, pad->ShapePos(), pad->GetOrientation() );
// Thermal spokes on circular pads form an 'X' instead of a '+'
if( pad->GetShape() == PAD_SHAPE_CIRCLE )
RotatePoint( pt1, pad->ShapePos(), 450 );
return pt1;
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_CUSTOM:
{
switch( n )
{
case 1: pt1.y = INT_MIN / 2; break; // North
case 2: pt1.y = INT_MAX / 2; break; // South
case 3: pt1.x = INT_MIN / 2; break; // East
case 4: pt1.x = INT_MAX / 2; break; // West
default: break; // Wicked witch
}
if( pad->GetOrientation() )
RotatePoint( pt1, pad->ShapePos(), pad->GetOrientation() );
SHAPE_POLY_SET padPolySet;
pad->BuildPadShapePolygon( padPolySet, wxSize( 0, 0 ), ARC_LOW_DEF );
const SHAPE_LINE_CHAIN& padOutline = padPolySet.COutline( 0 );
SHAPE_LINE_CHAIN::INTERSECTIONS intersections;
padOutline.Intersect( SEG( pt0, pt1 ), intersections );
if( intersections.empty() )
{
// There should always be at least some copper outside the hole and/or
// shapePos center
assert( false );
return pt0;
}
return intersections[ intersections.size() - 1 ].p;
}
}
break;
}
case PCB_TRACE_T:
case PCB_ARC_T:
if( n == 0 )
return static_cast<const TRACK*>( m_parent )->GetStart();
else
return static_cast<const TRACK*>( m_parent )->GetEnd();
case PCB_VIA_T:
return static_cast<const VIA*>( m_parent )->GetStart();
default:
assert( false );
break;
}
return pt0;
}
void CN_ITEM::Dump()
{
printf(" valid: %d, connected: \n", !!Valid());
for( auto i : m_connected )
{
TRACK* t = static_cast<TRACK*>( i->Parent() );
printf( " - %p %d\n", t, t->Type() );
}
}
int CN_ZONE::AnchorCount() const
{
if( !Valid() )
return 0;
const auto zone = static_cast<const ZONE_CONTAINER*>( Parent() );
const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.PointCount() ? 1 : 0;
}
const VECTOR2I CN_ZONE::GetAnchor( int n ) const
{
if( !Valid() )
return VECTOR2I();
const auto zone = static_cast<const ZONE_CONTAINER*> ( Parent() );
const auto& outline = zone->GetFilledPolysList().COutline( m_subpolyIndex );
return outline.CPoint( 0 );
}
void CN_ITEM::RemoveInvalidRefs()
{
for( auto it = m_connected.begin(); it != m_connected.end(); )
{
if( !(*it)->Valid() )
it = m_connected.erase( it );
else
++it;
}
}
CN_ITEM* CN_LIST::Add( D_PAD* pad )
{
if( !pad->IsOnCopperLayer() )
return nullptr;
auto item = new CN_ITEM( pad, false, 1 );
item->AddAnchor( pad->ShapePos() );
item->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) );
switch( pad->GetAttribute() )
{
case PAD_ATTRIB_SMD:
case PAD_ATTRIB_HOLE_NOT_PLATED:
case PAD_ATTRIB_CONN:
{
LSET lmsk = pad->GetLayerSet();
for( int i = 0; i <= MAX_CU_LAYERS; i++ )
{
if( lmsk[i] )
{
item->SetLayer( i );
break;
}
}
break;
}
default:
break;
}
addItemtoTree( item );
m_items.push_back( item );
SetDirty();
return item;
}
CN_ITEM* CN_LIST::Add( TRACK* track )
{
auto item = new CN_ITEM( track, true );
m_items.push_back( item );
item->AddAnchor( track->GetStart() );
item->AddAnchor( track->GetEnd() );
item->SetLayer( track->GetLayer() );
addItemtoTree( item );
SetDirty();
return item;
}
CN_ITEM* CN_LIST::Add( ARC* aArc )
{
auto item = new CN_ITEM( aArc, true );
m_items.push_back( item );
item->AddAnchor( aArc->GetStart() );
item->AddAnchor( aArc->GetEnd() );
item->SetLayer( aArc->GetLayer() );
addItemtoTree( item );
SetDirty();
return item;
}
CN_ITEM* CN_LIST::Add( VIA* via )
{
auto item = new CN_ITEM( via, true, 1 );
m_items.push_back( item );
item->AddAnchor( via->GetStart() );
item->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) );
addItemtoTree( item );
SetDirty();
return item;
}
const std::vector<CN_ITEM*> CN_LIST::Add( ZONE_CONTAINER* zone )
{
const auto& polys = zone->GetFilledPolysList();
std::vector<CN_ITEM*> rv;
for( int j = 0; j < polys.OutlineCount(); j++ )
{
CN_ZONE* zitem = new CN_ZONE( zone, false, j );
const auto& outline = zone->GetFilledPolysList().COutline( j );
for( int k = 0; k < outline.PointCount(); k++ )
zitem->AddAnchor( outline.CPoint( k ) );
m_items.push_back( zitem );
zitem->SetLayer( zone->GetLayer() );
addItemtoTree( zitem );
rv.push_back( zitem );
SetDirty();
}
return rv;
}
void CN_LIST::RemoveInvalidItems( std::vector<CN_ITEM*>& aGarbage )
{
if( !m_hasInvalid )
return;
auto lastItem = std::remove_if(m_items.begin(), m_items.end(), [&aGarbage] ( CN_ITEM* item )
{
if( !item->Valid() )
{
aGarbage.push_back ( item );
return true;
}
return false;
} );
m_items.resize( lastItem - m_items.begin() );
for( auto item : m_items )
item->RemoveInvalidRefs();
for( auto item : aGarbage )
m_index.Remove( item );
m_hasInvalid = false;
}
BOARD_CONNECTED_ITEM* CN_ANCHOR::Parent() const
{
assert( m_item->Valid() );
return m_item->Parent();
}
bool CN_ANCHOR::Valid() const
{
if( !m_item )
return false;
return m_item->Valid();
}
bool CN_ANCHOR::IsDangling() const
{
if( !m_cluster )
return true;
// the minimal number of items connected to item_ref
// at this anchor point to decide the anchor is *not* dangling
size_t minimal_count = 1;
size_t connected_count = m_item->ConnectedItems().size();
// a via can be removed if connected to only one other item.
if( Parent()->Type() == PCB_VIA_T )
return connected_count < 2;
if( m_item->AnchorCount() == 1 )
return connected_count < minimal_count;
// Items with multiple anchors have usually items connected to each anchor.
// We want only the item count of this anchor point
connected_count = 0;
for( auto item : m_item->ConnectedItems() )
{
if( item->Parent()->Type() == PCB_ZONE_AREA_T )
{
ZONE_CONTAINER* zone = static_cast<ZONE_CONTAINER*>( item->Parent() );
if( zone->HitTestFilledArea( (wxPoint) Pos() ) )
connected_count++;
}
else if( item->Parent()->HitTest( (wxPoint) Pos() ) )
connected_count++;
}
return connected_count < minimal_count;
}
int CN_ANCHOR::ConnectedItemsCount() const
{
if( !m_cluster )
return 0;
int connected_count = 0;
for( auto item : m_item->ConnectedItems() )
{
if( item->Parent()->Type() == PCB_ZONE_AREA_T )
{
ZONE_CONTAINER* zone = static_cast<ZONE_CONTAINER*>( item->Parent() );
if( zone->HitTestFilledArea( wxPoint( Pos().x, Pos().y ) ) )
connected_count++;
}
else if( item->Parent()->HitTest( wxPoint( Pos().x, Pos().y ) ) )
connected_count++;
}
return connected_count;
}
CN_CLUSTER::CN_CLUSTER()
{
m_items.reserve( 64 );
m_originPad = nullptr;
m_originNet = -1;
m_conflicting = false;
}
CN_CLUSTER::~CN_CLUSTER()
{
}
wxString CN_CLUSTER::OriginNetName() const
{
if( !m_originPad || !m_originPad->Valid() )
return "<none>";
else
return m_originPad->Parent()->GetNetname();
}
bool CN_CLUSTER::Contains( const CN_ITEM* aItem )
{
return std::find( m_items.begin(), m_items.end(), aItem ) != m_items.end();
}
bool CN_CLUSTER::Contains( const BOARD_CONNECTED_ITEM* aItem )
{
return std::find_if( m_items.begin(), m_items.end(), [ &aItem ] ( const CN_ITEM* item )
{ return item->Valid() && item->Parent() == aItem; } ) != m_items.end();
}
void CN_CLUSTER::Dump()
{
for( auto item : m_items )
{
wxLogTrace( "CN", " - item : %p bitem : %p type : %d inet %s\n", item, item->Parent(),
item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() );
printf( "- item : %p bitem : %p type : %d inet %s\n", item, item->Parent(),
item->Parent()->Type(), (const char*) item->Parent()->GetNetname().c_str() );
item->Dump();
}
}
void CN_CLUSTER::Add( CN_ITEM* item )
{
m_items.push_back( item );
if( item->Net() <= 0 )
return;
if( m_originNet <= 0 )
{
m_originNet = item->Net();
}
if( item->Parent()->Type() == PCB_PAD_T )
{
if( !m_originPad )
{
m_originPad = item;
m_originNet = item->Net();
}
if( m_originPad && item->Net() != m_originNet )
{
m_conflicting = true;
}
}
}