kicad/common/md5_hash.cpp

277 lines
7.2 KiB
C++

// Code by: B-Con (http://b-con.us)
// Released under the GNU GPL
// MD5 Hash Digest implementation (little endian byte order)
#include <cstring>
#include <cstdio>
#include <md5_hash.h>
// DBL_INT_ADD treats two unsigned ints a and b as one 64-bit integer and adds c to it
#define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - c) ++b; a += c;
#define ROTLEFT(a,b) ((a << b) | (a >> (32-b)))
#define F(x,y,z) ((x & y) | (~x & z))
#define G(x,y,z) ((x & z) | (y & ~z))
#define H(x,y,z) (x ^ y ^ z)
#define I(x,y,z) (y ^ (x | ~z))
#define FF(a,b,c,d,m,s,t) { a += F(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define GG(a,b,c,d,m,s,t) { a += G(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define HH(a,b,c,d,m,s,t) { a += H(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define II(a,b,c,d,m,s,t) { a += I(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
MD5_HASH::MD5_HASH()
{
Init();
}
MD5_HASH::MD5_HASH( const MD5_HASH& aOther )
{
m_valid = aOther.m_valid;
m_ctx = aOther.m_ctx;
memcpy( m_hash, aOther.m_hash, 16 );
}
MD5_HASH::~MD5_HASH()
{
}
MD5_HASH& MD5_HASH::operator=( const MD5_HASH& aOther )
{
m_valid = aOther.m_valid;
m_ctx = aOther.m_ctx;
memcpy( m_hash, aOther.m_hash, 16 );
return *this;
}
void MD5_HASH::Init()
{
//printf("%p init\n", this);
m_valid = false;
md5_init(&m_ctx);
}
void MD5_HASH::Hash ( uint8_t *data, uint32_t length )
{
md5_update(&m_ctx, data, length);
}
void MD5_HASH::Hash ( int value )
{
md5_update(&m_ctx, (uint8_t*) &value, sizeof(int) );
}
void MD5_HASH::Finalize()
{
//printf("%p final\n", this);
md5_final(&m_ctx, m_hash);
m_valid = true;
}
bool MD5_HASH::operator==( const MD5_HASH& aOther ) const
{
return ( memcmp( m_hash, aOther.m_hash, 16 ) == 0 );
}
bool MD5_HASH::operator!=( const MD5_HASH& aOther ) const
{
return ( memcmp( m_hash, aOther.m_hash, 16 ) != 0 );
}
std::string MD5_HASH::Format()
{
std::string data;
// Build a hexadecimal string from the 16 bytes of MD5_HASH:
for( int ii = 0; ii < 16; ++ii )
{
char lsb = ( m_hash[ii] & 0x0F ) + '0';
if( lsb > '9' )
lsb += 'A'-'9';
char msb = ( ( m_hash[ii] >> 4 ) & 0x0F ) + '0';
if( msb > '9' )
msb += 'A'-'9';
data += msb;
data += lsb;
data += ' ';
}
return data;
}
void MD5_HASH::md5_transform(MD5_CTX *ctx, uint8_t data[])
{
uint32_t a,b,c,d,m[16],i,j;
// MD5 specifies big endian byte order, but this implementation assumes a little
// endian byte order CPU. Reverse all the bytes upon input, and re-reverse them
// on output (in md5_final()).
for (i=0,j=0; i < 16; ++i, j += 4)
m[i] = (data[j]) + (data[j+1] << 8) + (data[j+2] << 16) + (data[j+3] << 24);
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
FF(a,b,c,d,m[0], 7,0xd76aa478);
FF(d,a,b,c,m[1], 12,0xe8c7b756);
FF(c,d,a,b,m[2], 17,0x242070db);
FF(b,c,d,a,m[3], 22,0xc1bdceee);
FF(a,b,c,d,m[4], 7,0xf57c0faf);
FF(d,a,b,c,m[5], 12,0x4787c62a);
FF(c,d,a,b,m[6], 17,0xa8304613);
FF(b,c,d,a,m[7], 22,0xfd469501);
FF(a,b,c,d,m[8], 7,0x698098d8);
FF(d,a,b,c,m[9], 12,0x8b44f7af);
FF(c,d,a,b,m[10],17,0xffff5bb1);
FF(b,c,d,a,m[11],22,0x895cd7be);
FF(a,b,c,d,m[12], 7,0x6b901122);
FF(d,a,b,c,m[13],12,0xfd987193);
FF(c,d,a,b,m[14],17,0xa679438e);
FF(b,c,d,a,m[15],22,0x49b40821);
GG(a,b,c,d,m[1], 5,0xf61e2562);
GG(d,a,b,c,m[6], 9,0xc040b340);
GG(c,d,a,b,m[11],14,0x265e5a51);
GG(b,c,d,a,m[0], 20,0xe9b6c7aa);
GG(a,b,c,d,m[5], 5,0xd62f105d);
GG(d,a,b,c,m[10], 9,0x02441453);
GG(c,d,a,b,m[15],14,0xd8a1e681);
GG(b,c,d,a,m[4], 20,0xe7d3fbc8);
GG(a,b,c,d,m[9], 5,0x21e1cde6);
GG(d,a,b,c,m[14], 9,0xc33707d6);
GG(c,d,a,b,m[3], 14,0xf4d50d87);
GG(b,c,d,a,m[8], 20,0x455a14ed);
GG(a,b,c,d,m[13], 5,0xa9e3e905);
GG(d,a,b,c,m[2], 9,0xfcefa3f8);
GG(c,d,a,b,m[7], 14,0x676f02d9);
GG(b,c,d,a,m[12],20,0x8d2a4c8a);
HH(a,b,c,d,m[5], 4,0xfffa3942);
HH(d,a,b,c,m[8], 11,0x8771f681);
HH(c,d,a,b,m[11],16,0x6d9d6122);
HH(b,c,d,a,m[14],23,0xfde5380c);
HH(a,b,c,d,m[1], 4,0xa4beea44);
HH(d,a,b,c,m[4], 11,0x4bdecfa9);
HH(c,d,a,b,m[7], 16,0xf6bb4b60);
HH(b,c,d,a,m[10],23,0xbebfbc70);
HH(a,b,c,d,m[13], 4,0x289b7ec6);
HH(d,a,b,c,m[0], 11,0xeaa127fa);
HH(c,d,a,b,m[3], 16,0xd4ef3085);
HH(b,c,d,a,m[6], 23,0x04881d05);
HH(a,b,c,d,m[9], 4,0xd9d4d039);
HH(d,a,b,c,m[12],11,0xe6db99e5);
HH(c,d,a,b,m[15],16,0x1fa27cf8);
HH(b,c,d,a,m[2], 23,0xc4ac5665);
II(a,b,c,d,m[0], 6,0xf4292244);
II(d,a,b,c,m[7], 10,0x432aff97);
II(c,d,a,b,m[14],15,0xab9423a7);
II(b,c,d,a,m[5], 21,0xfc93a039);
II(a,b,c,d,m[12], 6,0x655b59c3);
II(d,a,b,c,m[3], 10,0x8f0ccc92);
II(c,d,a,b,m[10],15,0xffeff47d);
II(b,c,d,a,m[1], 21,0x85845dd1);
II(a,b,c,d,m[8], 6,0x6fa87e4f);
II(d,a,b,c,m[15],10,0xfe2ce6e0);
II(c,d,a,b,m[6], 15,0xa3014314);
II(b,c,d,a,m[13],21,0x4e0811a1);
II(a,b,c,d,m[4], 6,0xf7537e82);
II(d,a,b,c,m[11],10,0xbd3af235);
II(c,d,a,b,m[2], 15,0x2ad7d2bb);
II(b,c,d,a,m[9], 21,0xeb86d391);
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
}
void MD5_HASH::md5_init(MD5_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen[0] = 0;
ctx->bitlen[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
}
void MD5_HASH::md5_update(MD5_CTX *ctx, uint8_t data[], uint32_t len)
{
uint32_t i;
for (i=0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
md5_transform(ctx,ctx->data);
DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],512);
ctx->datalen = 0;
}
}
}
void MD5_HASH::md5_final(MD5_CTX *ctx, uint8_t hash[])
{
uint32_t i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else if (ctx->datalen >= 56) {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
md5_transform(ctx,ctx->data);
memset(ctx->data,0,56);
}
// Append to the padding the total message's length in bits and transform.
DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],8 * ctx->datalen);
ctx->data[56] = ctx->bitlen[0];
ctx->data[57] = ctx->bitlen[0] >> 8;
ctx->data[58] = ctx->bitlen[0] >> 16;
ctx->data[59] = ctx->bitlen[0] >> 24;
ctx->data[60] = ctx->bitlen[1];
ctx->data[61] = ctx->bitlen[1] >> 8;
ctx->data[62] = ctx->bitlen[1] >> 16;
ctx->data[63] = ctx->bitlen[1] >> 24;
md5_transform(ctx,ctx->data);
// Since this implementation uses little endian byte ordering and MD uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i=0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (i*8)) & 0x000000ff;
hash[i+4] = (ctx->state[1] >> (i*8)) & 0x000000ff;
hash[i+8] = (ctx->state[2] >> (i*8)) & 0x000000ff;
hash[i+12] = (ctx->state[3] >> (i*8)) & 0x000000ff;
}
}