kicad/pcbnew/class_board.cpp

2907 lines
85 KiB
C++

/**
* @file class_board.cpp
* @brief BOARD class functions.
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
*
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <limits.h>
#include <algorithm>
#include <iterator>
#include <fctsys.h>
#include <common.h>
#include <kicad_string.h>
#include <wxBasePcbFrame.h>
#include <msgpanel.h>
#include <pcb_netlist.h>
#include <reporter.h>
#include <base_units.h>
#include <ratsnest_data.h>
#include <ratsnest_viewitem.h>
#include <worksheet_viewitem.h>
#include <pcbnew.h>
#include <collectors.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_marker_pcb.h>
#include <class_drawsegment.h>
#include <class_pcb_text.h>
#include <class_mire.h>
#include <class_dimension.h>
#include <connectivity.h>
/* This is an odd place for this, but CvPcb won't link if it is
* in class_board_item.cpp like I first tried it.
*/
wxPoint BOARD_ITEM::ZeroOffset( 0, 0 );
BOARD::BOARD() :
BOARD_ITEM_CONTAINER( (BOARD_ITEM*) NULL, PCB_T ),
m_paper( PAGE_INFO::A4 ), m_NetInfo( this )
{
// we have not loaded a board yet, assume latest until then.
m_fileFormatVersionAtLoad = LEGACY_BOARD_FILE_VERSION;
m_Status_Pcb = 0; // Status word: bit 1 = calculate.
m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the
// zone contour currently in progress
BuildListOfNets(); // prepare pad and netlist containers.
for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer )
{
m_Layer[layer].m_name = GetStandardLayerName( ToLAYER_ID( layer ) );
if( IsCopperLayer( layer ) )
m_Layer[layer].m_type = LT_SIGNAL;
else
m_Layer[layer].m_type = LT_UNDEFINED;
}
// Initialize default netclass.
NETCLASSPTR defaultClass = m_designSettings.GetDefault();
defaultClass->SetDescription( _( "This is the default net class." ) );
m_designSettings.SetCurrentNetClass( defaultClass->GetName() );
// Set sensible initial values for custom track width & via size
m_designSettings.UseCustomTrackViaSize( false );
m_designSettings.SetCustomTrackWidth( m_designSettings.GetCurrentTrackWidth() );
m_designSettings.SetCustomViaSize( m_designSettings.GetCurrentViaSize() );
m_designSettings.SetCustomViaDrill( m_designSettings.GetCurrentViaDrill() );
// Initialize ratsnest
m_connectivity.reset( new CONNECTIVITY_DATA() );
m_connectivity->Build( this );
}
BOARD::~BOARD()
{
while( m_ZoneDescriptorList.size() )
{
ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0];
Delete( area_to_remove );
}
DeleteMARKERs();
DeleteZONEOutlines();
delete m_CurrentZoneContour;
m_CurrentZoneContour = NULL;
}
void BOARD::BuildConnectivity()
{
GetConnectivity()->Build( this );
}
const wxPoint& BOARD::GetPosition() const
{
wxLogWarning( wxT( "This should not be called on the BOARD object") );
return ZeroOffset;
}
void BOARD::SetPosition( const wxPoint& aPos )
{
wxLogWarning( wxT( "This should not be called on the BOARD object") );
}
void BOARD::Move( const wxPoint& aMoveVector ) // overload
{
// @todo : anything like this elsewhere? maybe put into GENERAL_COLLECTOR class.
static const KICAD_T top_level_board_stuff[] = {
PCB_MARKER_T,
PCB_TEXT_T,
PCB_LINE_T,
PCB_DIMENSION_T,
PCB_TARGET_T,
PCB_VIA_T,
PCB_TRACE_T,
// PCB_PAD_T, Can't be at board level
// PCB_MODULE_TEXT_T, Can't be at board level
PCB_MODULE_T,
PCB_ZONE_AREA_T,
EOT
};
INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData )
{
BOARD_ITEM* brd_item = (BOARD_ITEM*) item;
// aMoveVector was snapshotted, don't need "data".
brd_item->Move( aMoveVector );
return SEARCH_CONTINUE;
};
Visit( inspector, NULL, top_level_board_stuff );
}
TRACKS BOARD::TracksInNet( int aNetCode )
{
TRACKS ret;
INSPECTOR_FUNC inspector = [aNetCode,&ret] ( EDA_ITEM* item, void* testData )
{
TRACK* t = (TRACK*) item;
if( t->GetNetCode() == aNetCode )
ret.push_back( t );
return SEARCH_CONTINUE;
};
// visit this BOARD's TRACKs and VIAs with above TRACK INSPECTOR which
// appends all in aNetCode to ret.
Visit( inspector, NULL, GENERAL_COLLECTOR::Tracks );
return ret;
}
/**
* Function removeTrack
* removes aOneToRemove from aList, which is a non-owning std::vector
*/
static void removeTrack( TRACKS* aList, TRACK* aOneToRemove )
{
aList->erase( std::remove( aList->begin(), aList->end(), aOneToRemove ), aList->end() );
}
static void otherEnd( const TRACK& aTrack, const wxPoint& aNotThisEnd, wxPoint* aOtherEnd )
{
if( aTrack.GetStart() == aNotThisEnd )
{
*aOtherEnd = aTrack.GetEnd();
}
else
{
wxASSERT( aTrack.GetEnd() == aNotThisEnd );
*aOtherEnd = aTrack.GetStart();
}
}
/**
* Function find_vias_and_tracks_at
* collects TRACKs and VIAs at aPos and returns the @a track_count which excludes vias.
*/
static int find_vias_and_tracks_at( TRACKS& at_next, TRACKS& in_net, LSET& lset, const wxPoint& next )
{
// first find all vias (in this net) at 'next' location, and expand LSET with each
for( TRACKS::iterator it = in_net.begin(); it != in_net.end(); )
{
TRACK* t = *it;
if( t->Type() == PCB_VIA_T && (t->GetLayerSet() & lset).any() &&
( t->GetStart() == next || t->GetEnd() == next ) )
{
lset |= t->GetLayerSet();
at_next.push_back( t );
it = in_net.erase( it );
}
else
++it;
}
int track_count = 0;
// with expanded lset, find all tracks with an end on any of the layers in lset
for( TRACKS::iterator it = in_net.begin(); it != in_net.end(); /* iterates in the loop body */ )
{
TRACK* t = *it;
if( ( t->GetLayerSet() & lset ).any() && ( t->GetStart() == next || t->GetEnd() == next ) )
{
at_next.push_back( t );
it = in_net.erase( it );
++track_count;
}
else
{
++it;
}
}
return track_count;
}
/**
* Function checkConnectedTo
* returns if aTracksInNet contains a copper pathway to aGoal when starting with
* aFirstTrack. aFirstTrack should have one end situated on aStart, and the
* traversal testing begins from the other end of aFirstTrack.
* <p>
* The function throws an exception instead of returning bool so that detailed
* information can be provided about a possible failure in the track layout.
*
* @throw IO_ERROR - if points are not connected, with text saying why.
*/
static void checkConnectedTo( BOARD* aBoard, TRACKS* aList, const TRACKS& aTracksInNet,
const wxPoint& aGoal, const wxPoint& aStart, TRACK* aFirstTrack )
{
TRACKS in_net = aTracksInNet; // copy source list so the copy can be modified
wxPoint next;
otherEnd( *aFirstTrack, aStart, &next );
aList->push_back( aFirstTrack );
removeTrack( &in_net, aFirstTrack );
LSET lset( aFirstTrack->GetLayer() );
while( in_net.size() )
{
if( next == aGoal )
return; // success
// Want an exact match on the position of next, i.e. pad at next,
// not a forgiving HitTest() with tolerance type of match, otherwise the overall
// algorithm will not work. GetPadFast() is an exact match as I write this.
if( aBoard->GetPadFast( next, lset ) )
{
std::string m = StrPrintf(
"intervening pad at:(xy %s) between start:(xy %s) and goal:(xy %s)",
BOARD_ITEM::FormatInternalUnits( next ).c_str(),
BOARD_ITEM::FormatInternalUnits( aStart ).c_str(),
BOARD_ITEM::FormatInternalUnits( aGoal ).c_str()
);
THROW_IO_ERROR( m );
}
int track_count = find_vias_and_tracks_at( *aList, in_net, lset, next );
if( track_count != 1 )
{
std::string m = StrPrintf(
"found %d tracks intersecting at (xy %s), exactly 2 would be acceptable.",
track_count + aList->size() == 1 ? 1 : 0,
BOARD_ITEM::FormatInternalUnits( next ).c_str()
);
THROW_IO_ERROR( m );
}
// reduce lset down to the layer that the last track at 'next' is on.
lset = aList->back()->GetLayerSet();
otherEnd( *aList->back(), next, &next );
}
std::string m = StrPrintf(
"not enough tracks connecting start:(xy %s) and goal:(xy %s).",
BOARD_ITEM::FormatInternalUnits( aStart ).c_str(),
BOARD_ITEM::FormatInternalUnits( aGoal ).c_str()
);
THROW_IO_ERROR( m );
}
TRACKS BOARD::TracksInNetBetweenPoints( const wxPoint& aStartPos, const wxPoint& aGoalPos, int aNetCode )
{
TRACKS in_between_pts;
TRACKS on_start_point;
TRACKS in_net = TracksInNet( aNetCode ); // a small subset of TRACKs and VIAs
for( auto t : in_net )
{
if( t->Type() == PCB_TRACE_T && ( t->GetStart() == aStartPos || t->GetEnd() == aStartPos ) )
on_start_point.push_back( t );
}
wxString per_path_problem_text;
for( auto t : on_start_point ) // explore each trace (path) leaving aStartPos
{
// checkConnectedTo() fills in_between_pts on every attempt. For failures
// this set needs to be cleared.
in_between_pts.clear();
try
{
checkConnectedTo( this, &in_between_pts, in_net, aGoalPos, aStartPos, t );
}
catch( const IO_ERROR& ioe ) // means not connected
{
per_path_problem_text += "\n\t";
per_path_problem_text += ioe.Problem();
continue; // keep trying, there may be other paths leaving from aStartPos
}
// success, no exception means a valid connection,
// return this set of TRACKS without throwing.
return in_between_pts;
}
wxString m = wxString::Format(
"no clean path connecting start:(xy %s) with goal:(xy %s)",
BOARD_ITEM::FormatInternalUnits( aStartPos ).c_str(),
BOARD_ITEM::FormatInternalUnits( aGoalPos ).c_str()
);
THROW_IO_ERROR( m + per_path_problem_text );
}
void BOARD::chainMarkedSegments( wxPoint aPosition, const LSET& aLayerSet, TRACKS* aList )
{
LSET layer_set = aLayerSet;
if( !m_Track ) // no tracks at all in board
return;
/* Set the BUSY flag of all connected segments, first search starting at
* aPosition. The search ends when a pad is found (end of a track), a
* segment end has more than one other segment end connected, or when no
* connected item found.
*
* Vias are a special case because they must look for segments connected
* on other layers and they change the layer mask. They can be a track
* end or not. They will be analyzer later and vias on terminal points
* of the track will be considered as part of this track if they do not
* connect segments of another track together and will be considered as
* part of an other track when removing the via, the segments of that other
* track are disconnected.
*/
for( ; ; )
{
if( GetPad( aPosition, layer_set ) != NULL )
return;
/* Test for a via: a via changes the layer mask and can connect a lot
* of segments at location aPosition. When found, the via is just
* pushed in list. Vias will be examined later, when all connected
* segment are found and push in list. This is because when a via
* is found we do not know at this time the number of connected items
* and we do not know if this via is on the track or finish the track
*/
TRACK* via = m_Track->GetVia( NULL, aPosition, layer_set );
if( via )
{
layer_set = via->GetLayerSet();
aList->push_back( via );
}
int seg_count = 0;
TRACK* candidate = NULL;
/* Search all segments connected to point aPosition.
* if only 1 segment at aPosition: then this segment is "candidate"
* if > 1 segment:
* then end of "track" (because more than 2 segments are connected at aPosition)
*/
TRACK* segment = m_Track;
while( ( segment = ::GetTrack( segment, NULL, aPosition, layer_set ) ) != NULL )
{
if( segment->GetState( BUSY ) ) // already found and selected: skip it
{
segment = segment->Next();
continue;
}
if( segment == via ) // just previously found: skip it
{
segment = segment->Next();
continue;
}
if( ++seg_count == 1 ) // if first connected item: then segment is candidate
{
candidate = segment;
segment = segment->Next();
}
else // More than 1 segment connected -> location is end of track
{
return;
}
}
if( candidate ) // A candidate is found: flag it and push it in list
{
/* Initialize parameters to search items connected to this
* candidate:
* we must analyze connections to its other end
*/
if( aPosition == candidate->GetStart() )
{
aPosition = candidate->GetEnd();
}
else
{
aPosition = candidate->GetStart();
}
layer_set = candidate->GetLayerSet();
// flag this item and push it in list of selected items
aList->push_back( candidate );
candidate->SetState( BUSY, true );
}
else
{
return;
}
}
}
void BOARD::PushHighLight()
{
m_highLightPrevious = m_highLight;
}
void BOARD::PopHighLight()
{
m_highLight = m_highLightPrevious;
m_highLightPrevious.Clear();
}
bool BOARD::SetLayerDescr( PCB_LAYER_ID aIndex, const LAYER& aLayer )
{
if( unsigned( aIndex ) < DIM( m_Layer ) )
{
m_Layer[ aIndex ] = aLayer;
return true;
}
return false;
}
#include <stdio.h>
const PCB_LAYER_ID BOARD::GetLayerID( const wxString& aLayerName ) const
{
// Look for the BOARD specific copper layer names
for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer )
{
if ( IsCopperLayer( layer ) && ( m_Layer[ layer ].m_name == aLayerName ) )
{
return ToLAYER_ID( layer );
}
}
// Otherwise fall back to the system standard layer names
for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer )
{
if( GetStandardLayerName( ToLAYER_ID( layer ) ) == aLayerName )
{
return ToLAYER_ID( layer );
}
}
return UNDEFINED_LAYER;
}
const wxString BOARD::GetLayerName( PCB_LAYER_ID aLayer ) const
{
// All layer names are stored in the BOARD.
if( IsLayerEnabled( aLayer ) )
{
// Standard names were set in BOARD::BOARD() but they may be
// over-ridden by BOARD::SetLayerName().
// For copper layers, return the actual copper layer name,
// otherwise return the Standard English layer name.
if( IsCopperLayer( aLayer ) )
return m_Layer[aLayer].m_name;
}
return GetStandardLayerName( aLayer );
}
bool BOARD::SetLayerName( PCB_LAYER_ID aLayer, const wxString& aLayerName )
{
if( !IsCopperLayer( aLayer ) )
return false;
if( aLayerName == wxEmptyString || aLayerName.Len() > 20 )
return false;
// no quote chars in the name allowed
if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND )
return false;
wxString nameTemp = aLayerName;
// replace any spaces with underscores before we do any comparing
nameTemp.Replace( wxT( " " ), wxT( "_" ) );
if( IsLayerEnabled( aLayer ) )
{
#if 0
for( LAYER_NUM i = FIRST_COPPER_LAYER; i < NB_COPPER_LAYERS; ++i )
{
if( i != aLayer && IsLayerEnabled( i ) && nameTemp == m_Layer[i].m_Name )
return false;
}
#else
for( LSEQ cu = GetEnabledLayers().CuStack(); cu; ++cu )
{
PCB_LAYER_ID id = *cu;
// veto changing the name if it exists elsewhere.
if( id != aLayer && nameTemp == m_Layer[id].m_name )
// if( id != aLayer && nameTemp == wxString( m_Layer[id].m_name ) )
return false;
}
#endif
m_Layer[aLayer].m_name = nameTemp;
return true;
}
return false;
}
LAYER_T BOARD::GetLayerType( PCB_LAYER_ID aLayer ) const
{
if( !IsCopperLayer( aLayer ) )
return LT_SIGNAL;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayer ) )
return m_Layer[aLayer].m_type;
return LT_SIGNAL;
}
bool BOARD::SetLayerType( PCB_LAYER_ID aLayer, LAYER_T aLayerType )
{
if( !IsCopperLayer( aLayer ) )
return false;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayer ) )
{
m_Layer[aLayer].m_type = aLayerType;
return true;
}
return false;
}
const char* LAYER::ShowType( LAYER_T aType )
{
const char* cp;
switch( aType )
{
default:
case LT_SIGNAL:
cp = "signal";
break;
case LT_POWER:
cp = "power";
break;
case LT_MIXED:
cp = "mixed";
break;
case LT_JUMPER:
cp = "jumper";
break;
}
return cp;
}
LAYER_T LAYER::ParseType( const char* aType )
{
if( strcmp( aType, "signal" ) == 0 )
return LT_SIGNAL;
else if( strcmp( aType, "power" ) == 0 )
return LT_POWER;
else if( strcmp( aType, "mixed" ) == 0 )
return LT_MIXED;
else if( strcmp( aType, "jumper" ) == 0 )
return LT_JUMPER;
else
return LT_UNDEFINED;
}
int BOARD::GetCopperLayerCount() const
{
return m_designSettings.GetCopperLayerCount();
}
void BOARD::SetCopperLayerCount( int aCount )
{
m_designSettings.SetCopperLayerCount( aCount );
}
LSET BOARD::GetEnabledLayers() const
{
return m_designSettings.GetEnabledLayers();
}
LSET BOARD::GetVisibleLayers() const
{
return m_designSettings.GetVisibleLayers();
}
void BOARD::SetEnabledLayers( LSET aLayerSet )
{
m_designSettings.SetEnabledLayers( aLayerSet );
}
void BOARD::SetVisibleLayers( LSET aLayerSet )
{
m_designSettings.SetVisibleLayers( aLayerSet );
}
void BOARD::SetVisibleElements( int aMask )
{
// Call SetElementVisibility for each item
// to ensure specific calculations that can be needed by some items,
// just changing the visibility flags could be not sufficient.
for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii )
{
int item_mask = 1 << GAL_LAYER_INDEX( ii );
SetElementVisibility( ii, aMask & item_mask );
}
}
void BOARD::SetVisibleAlls()
{
SetVisibleLayers( LSET().set() );
// Call SetElementVisibility for each item,
// to ensure specific calculations that can be needed by some items
for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii )
SetElementVisibility( ii, true );
}
int BOARD::GetVisibleElements() const
{
return m_designSettings.GetVisibleElements();
}
bool BOARD::IsElementVisible( GAL_LAYER_ID LAYER_aPCB ) const
{
return m_designSettings.IsElementVisible( LAYER_aPCB );
}
void BOARD::SetElementVisibility( GAL_LAYER_ID LAYER_aPCB, bool isEnabled )
{
m_designSettings.SetElementVisibility( LAYER_aPCB, isEnabled );
switch( LAYER_aPCB )
{
case LAYER_RATSNEST:
{
bool visible = IsElementVisible( LAYER_RATSNEST );
// we must clear or set the CH_VISIBLE flags to hide/show ratsnest
// because we have a tool to show/hide ratsnest relative to a pad or a module
// so the hide/show option is a per item selection
for( unsigned int net = 1; net < GetNetCount(); net++ )
{
auto rn = GetConnectivity()->GetRatsnestForNet( net );
if( rn )
rn->SetVisible( visible );
}
for( auto track : Tracks() )
track->SetLocalRatsnestVisible( isEnabled );
for( auto mod : Modules() )
{
for( auto pad : mod->Pads() )
pad->SetLocalRatsnestVisible( isEnabled );
}
for( int i = 0; i<GetAreaCount(); i++ )
{
auto zone = GetArea( i );
zone->SetLocalRatsnestVisible( isEnabled );
}
m_Status_Pcb = 0;
break;
}
default:
;
}
}
bool BOARD::IsModuleLayerVisible( PCB_LAYER_ID layer )
{
switch( layer )
{
case F_Cu:
return IsElementVisible( LAYER_MOD_FR );
case B_Cu:
return IsElementVisible( LAYER_MOD_BK );
default:
wxFAIL_MSG( wxT( "BOARD::IsModuleLayerVisible() param error: bad layer" ) );
return true;
}
}
void BOARD::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode )
{
if( aBoardItem == NULL )
{
wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) );
return;
}
switch( aBoardItem->Type() )
{
case PCB_NETINFO_T:
m_NetInfo.AppendNet( (NETINFO_ITEM*) aBoardItem );
break;
// this one uses a vector
case PCB_MARKER_T:
m_markers.push_back( (MARKER_PCB*) aBoardItem );
break;
// this one uses a vector
case PCB_ZONE_AREA_T:
m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem );
break;
case PCB_TRACE_T:
case PCB_VIA_T:
if( aMode == ADD_APPEND )
{
m_Track.PushBack( (TRACK*) aBoardItem );
}
else
{
TRACK* insertAid;
insertAid = ( (TRACK*) aBoardItem )->GetBestInsertPoint( this );
m_Track.Insert( (TRACK*) aBoardItem, insertAid );
}
break;
case PCB_ZONE_T:
if( aMode == ADD_APPEND )
m_Zone.PushBack( (SEGZONE*) aBoardItem );
else
m_Zone.PushFront( (SEGZONE*) aBoardItem );
break;
case PCB_MODULE_T:
if( aMode == ADD_APPEND )
m_Modules.PushBack( (MODULE*) aBoardItem );
else
m_Modules.PushFront( (MODULE*) aBoardItem );
// Because the list of pads has changed, reset the status
// This indicate the list of pad and nets must be recalculated before use
m_Status_Pcb = 0;
break;
case PCB_DIMENSION_T:
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_TARGET_T:
if( aMode == ADD_APPEND )
m_Drawings.PushBack( aBoardItem );
else
m_Drawings.PushFront( aBoardItem );
break;
// other types may use linked list
default:
{
wxString msg;
msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() );
wxFAIL_MSG( msg );
return;
}
break;
}
aBoardItem->SetParent( this );
m_connectivity->Add( aBoardItem );
}
void BOARD::Remove( BOARD_ITEM* aBoardItem )
{
// find these calls and fix them! Don't send me no stinking' NULL.
wxASSERT( aBoardItem );
switch( aBoardItem->Type() )
{
case PCB_NETINFO_T:
{
NETINFO_ITEM* item = (NETINFO_ITEM*) aBoardItem;
m_NetInfo.RemoveNet( item );
break;
}
case PCB_MARKER_T:
// find the item in the vector, then remove it
for( unsigned i = 0; i<m_markers.size(); ++i )
{
if( m_markers[i] == (MARKER_PCB*) aBoardItem )
{
m_markers.erase( m_markers.begin() + i );
break;
}
}
break;
case PCB_ZONE_AREA_T: // this one uses a vector
// find the item in the vector, then delete then erase it.
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i )
{
if( m_ZoneDescriptorList[i] == (ZONE_CONTAINER*) aBoardItem )
{
m_ZoneDescriptorList.erase( m_ZoneDescriptorList.begin() + i );
break;
}
}
break;
case PCB_MODULE_T:
m_Modules.Remove( (MODULE*) aBoardItem );
break;
case PCB_TRACE_T:
case PCB_VIA_T:
m_Track.Remove( (TRACK*) aBoardItem );
break;
case PCB_ZONE_T:
m_Zone.Remove( (SEGZONE*) aBoardItem );
break;
case PCB_DIMENSION_T:
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_TARGET_T:
m_Drawings.Remove( aBoardItem );
break;
// other types may use linked list
default:
wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) );
}
m_connectivity->Remove( aBoardItem );
}
void BOARD::DeleteMARKERs()
{
// the vector does not know how to delete the MARKER_PCB, it holds pointers
for( unsigned i = 0; i<m_markers.size(); ++i )
delete m_markers[i];
m_markers.clear();
}
void BOARD::DeleteZONEOutlines()
{
// the vector does not know how to delete the ZONE Outlines, it holds
// pointers
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i )
delete m_ZoneDescriptorList[i];
m_ZoneDescriptorList.clear();
}
int BOARD::GetNumSegmTrack() const
{
return m_Track.GetCount();
}
int BOARD::GetNumSegmZone() const
{
return m_Zone.GetCount();
}
unsigned BOARD::GetNodesCount() const
{
return m_connectivity->GetPadCount();
}
unsigned BOARD::GetUnconnectedNetCount() const
{
return m_connectivity->GetUnconnectedCount();
}
EDA_RECT BOARD::ComputeBoundingBox( bool aBoardEdgesOnly ) const
{
bool hasItems = false;
EDA_RECT area;
// Check segments, dimensions, texts, and fiducials
for( BOARD_ITEM* item = m_Drawings; item; item = item->Next() )
{
if( aBoardEdgesOnly && (item->Type() != PCB_LINE_T || item->GetLayer() != Edge_Cuts ) )
continue;
if( !hasItems )
area = item->GetBoundingBox();
else
area.Merge( item->GetBoundingBox() );
hasItems = true;
}
if( !aBoardEdgesOnly )
{
// Check modules
for( MODULE* module = m_Modules; module; module = module->Next() )
{
if( !hasItems )
area = module->GetBoundingBox();
else
area.Merge( module->GetBoundingBox() );
hasItems = true;
}
// Check tracks
for( TRACK* track = m_Track; track; track = track->Next() )
{
if( !hasItems )
area = track->GetBoundingBox();
else
area.Merge( track->GetBoundingBox() );
hasItems = true;
}
// Check segment zones
for( TRACK* track = m_Zone; track; track = track->Next() )
{
if( !hasItems )
area = track->GetBoundingBox();
else
area.Merge( track->GetBoundingBox() );
hasItems = true;
}
// Check polygonal zones
for( unsigned int i = 0; i < m_ZoneDescriptorList.size(); i++ )
{
ZONE_CONTAINER* aZone = m_ZoneDescriptorList[i];
if( !hasItems )
area = aZone->GetBoundingBox();
else
area.Merge( aZone->GetBoundingBox() );
area.Merge( aZone->GetBoundingBox() );
hasItems = true;
}
}
return area;
}
// virtual, see pcbstruct.h
void BOARD::GetMsgPanelInfo( std::vector< MSG_PANEL_ITEM >& aList )
{
wxString txt;
int viasCount = 0;
int trackSegmentsCount = 0;
for( BOARD_ITEM* item = m_Track; item; item = item->Next() )
{
if( item->Type() == PCB_VIA_T )
viasCount++;
else
trackSegmentsCount++;
}
txt.Printf( wxT( "%d" ), GetPadCount() );
aList.push_back( MSG_PANEL_ITEM( _( "Pads" ), txt, DARKGREEN ) );
txt.Printf( wxT( "%d" ), viasCount );
aList.push_back( MSG_PANEL_ITEM( _( "Vias" ), txt, DARKGREEN ) );
txt.Printf( wxT( "%d" ), trackSegmentsCount );
aList.push_back( MSG_PANEL_ITEM( _( "Track Segments" ), txt, DARKGREEN ) );
txt.Printf( wxT( "%d" ), GetNodesCount() );
aList.push_back( MSG_PANEL_ITEM( _( "Nodes" ), txt, DARKCYAN ) );
txt.Printf( wxT( "%d" ), m_NetInfo.GetNetCount() );
aList.push_back( MSG_PANEL_ITEM( _( "Nets" ), txt, RED ) );
txt.Printf( wxT( "%d" ), GetConnectivity()->GetUnconnectedCount() );
aList.push_back( MSG_PANEL_ITEM( _( "Unconnected" ), txt, BLUE ) );
}
// virtual, see pcbstruct.h
SEARCH_RESULT BOARD::Visit( INSPECTOR inspector, void* testData, const KICAD_T scanTypes[] )
{
KICAD_T stype;
SEARCH_RESULT result = SEARCH_CONTINUE;
const KICAD_T* p = scanTypes;
bool done = false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
while( !done )
{
stype = *p;
switch( stype )
{
case PCB_T:
result = inspector( this, testData ); // inspect me
// skip over any types handled in the above call.
++p;
break;
/* Instances of the requested KICAD_T live in a list, either one
* that I manage, or that my modules manage. If it's a type managed
* by class MODULE, then simply pass it on to each module's
* MODULE::Visit() function by way of the
* IterateForward( m_Modules, ... ) call.
*/
case PCB_MODULE_T:
case PCB_PAD_T:
case PCB_MODULE_TEXT_T:
case PCB_MODULE_EDGE_T:
// this calls MODULE::Visit() on each module.
result = IterateForward( m_Modules, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_MODULE_T:
case PCB_PAD_T:
case PCB_MODULE_TEXT_T:
case PCB_MODULE_EDGE_T:
continue;
default:
;
}
break;
}
break;
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_DIMENSION_T:
case PCB_TARGET_T:
result = IterateForward( m_Drawings, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_DIMENSION_T:
case PCB_TARGET_T:
continue;
default:
;
}
break;
}
;
break;
#if 0 // both these are on same list, so we must scan it twice in order
// to get VIA priority, using new #else code below.
// But we are not using separate lists for TRACKs and VIA, because
// items are ordered (sorted) in the linked
// list by netcode AND by physical distance:
// when created, if a track or via is connected to an existing track or
// via, it is put in linked list after this existing track or via
// So usually, connected tracks or vias are grouped in this list
// So the algorithm (used in ratsnest computations) which computes the
// track connectivity is faster (more than 100 time regarding to
// a non ordered list) because when it searches for a connection, first
// it tests the near (near in term of linked list) 50 items
// from the current item (track or via) in test.
// Usually, because of this sort, a connected item (if exists) is
// found.
// If not found (and only in this case) an exhaustive (and time
// consuming) search is made, but this case is statistically rare.
case PCB_VIA_T:
case PCB_TRACE_T:
result = IterateForward( m_Track, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_VIA_T:
case PCB_TRACE_T:
continue;
default:
;
}
break;
}
break;
#else
case PCB_VIA_T:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
case PCB_TRACE_T:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
#endif
case PCB_MARKER_T:
// MARKER_PCBS are in the m_markers std::vector
for( unsigned i = 0; i<m_markers.size(); ++i )
{
result = m_markers[i]->Visit( inspector, testData, p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case PCB_ZONE_AREA_T:
// PCB_ZONE_AREA_T are in the m_ZoneDescriptorList std::vector
for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i )
{
result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p );
if( result == SEARCH_QUIT )
break;
}
++p;
break;
case PCB_ZONE_T:
result = IterateForward( m_Zone, inspector, testData, p );
++p;
break;
default: // catch EOT or ANY OTHER type here and return.
done = true;
break;
}
if( result == SEARCH_QUIT )
break;
}
return result;
}
NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const
{
// the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1.
// zero is reserved for "no connection" and is not actually a net.
// NULL is returned for non valid netcodes
wxASSERT( m_NetInfo.GetNetCount() > 0 ); // net zero should exist
if( aNetcode == NETINFO_LIST::UNCONNECTED && m_NetInfo.GetNetCount() == 0 )
return &NETINFO_LIST::ORPHANED_ITEM;
else
return m_NetInfo.GetNetItem( aNetcode );
}
NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const
{
return m_NetInfo.GetNetItem( aNetname );
}
MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const
{
MODULE* found = nullptr;
// search only for MODULES
static const KICAD_T scanTypes[] = { PCB_MODULE_T, EOT };
INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData )
{
MODULE* module = (MODULE*) item;
if( aReference == module->GetReference() )
{
found = module;
return SEARCH_QUIT;
}
return SEARCH_CONTINUE;
};
// visit this BOARD with the above inspector
BOARD* nonconstMe = (BOARD*) this;
nonconstMe->Visit( inspector, NULL, scanTypes );
return found;
}
MODULE* BOARD::FindModule( const wxString& aRefOrTimeStamp, bool aSearchByTimeStamp ) const
{
if( aSearchByTimeStamp )
{
for( MODULE* module = m_Modules; module; module = module->Next() )
{
if( aRefOrTimeStamp.CmpNoCase( module->GetPath() ) == 0 )
return module;
}
}
else
{
return FindModuleByReference( aRefOrTimeStamp );
}
return NULL;
}
// Sort nets by decreasing pad count. For same pad count, sort by alphabetic names
static bool sortNetsByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b )
{
auto connectivity = a->GetParent()->GetConnectivity();
int countA = connectivity->GetPadCount( a->GetNet() );
int countB = connectivity->GetPadCount( b->GetNet() );
if( countA == countB )
return a->GetNetname() < b->GetNetname();
else
return countB < countA;
}
// Sort nets by alphabetic names
static bool sortNetsByNames( const NETINFO_ITEM* a, const NETINFO_ITEM* b )
{
return a->GetNetname() < b->GetNetname();
}
int BOARD::SortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount )
{
if( m_NetInfo.GetNetCount() == 0 )
return 0;
// Build the list
std::vector <NETINFO_ITEM*> netBuffer;
netBuffer.reserve( m_NetInfo.GetNetCount() );
for( NETINFO_LIST::iterator net( m_NetInfo.begin() ), netEnd( m_NetInfo.end() );
net != netEnd; ++net )
{
if( net->GetNet() > 0 )
netBuffer.push_back( *net );
}
// sort the list
if( aSortbyPadsCount )
sort( netBuffer.begin(), netBuffer.end(), sortNetsByNodes );
else
sort( netBuffer.begin(), netBuffer.end(), sortNetsByNames );
for( unsigned ii = 0; ii < netBuffer.size(); ii++ )
aNames.Add( netBuffer[ii]->GetNetname() );
return netBuffer.size();
}
void BOARD::RedrawAreasOutlines( EDA_DRAW_PANEL* panel, wxDC* aDC, GR_DRAWMODE aDrawMode, PCB_LAYER_ID aLayer )
{
if( !aDC )
return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea( ii );
if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) )
edge_zone->Draw( panel, aDC, aDrawMode );
}
}
void BOARD::RedrawFilledAreas( EDA_DRAW_PANEL* panel, wxDC* aDC, GR_DRAWMODE aDrawMode, PCB_LAYER_ID aLayer )
{
if( !aDC )
return;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* edge_zone = GetArea( ii );
if( (aLayer < 0) || ( aLayer == edge_zone->GetLayer() ) )
edge_zone->DrawFilledArea( panel, aDC, aDrawMode );
}
}
ZONE_CONTAINER* BOARD::HitTestForAnyFilledArea( const wxPoint& aRefPos,
PCB_LAYER_ID aStartLayer, PCB_LAYER_ID aEndLayer, int aNetCode )
{
if( aEndLayer < 0 )
aEndLayer = aStartLayer;
if( aEndLayer < aStartLayer )
std::swap( aEndLayer, aStartLayer );
for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ )
{
ZONE_CONTAINER* area = m_ZoneDescriptorList[ia];
LAYER_NUM layer = area->GetLayer();
if( layer < aStartLayer || layer > aEndLayer )
continue;
// In locate functions we must skip tagged items with BUSY flag set.
if( area->GetState( BUSY ) )
continue;
if( aNetCode >= 0 && area->GetNetCode() != aNetCode )
continue;
if( area->HitTestFilledArea( aRefPos ) )
return area;
}
return NULL;
}
int BOARD::SetAreasNetCodesFromNetNames()
{
int error_count = 0;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* it = GetArea( ii );
if( !it->IsOnCopperLayer() )
{
it->SetNetCode( NETINFO_LIST::UNCONNECTED );
continue;
}
if( it->GetNetCode() != 0 ) // i.e. if this zone is connected to a net
{
const NETINFO_ITEM* net = it->GetNet();
if( net )
{
it->SetNetCode( net->GetNet() );
}
else
{
error_count++;
// keep Net Name and set m_NetCode to -1 : error flag.
it->SetNetCode( -1 );
}
}
}
return error_count;
}
VIA* BOARD::GetViaByPosition( const wxPoint& aPosition, PCB_LAYER_ID aLayer) const
{
for( VIA *via = GetFirstVia( m_Track); via; via = GetFirstVia( via->Next() ) )
{
if( (via->GetStart() == aPosition) &&
(via->GetState( BUSY | IS_DELETED ) == 0) &&
((aLayer == UNDEFINED_LAYER) || (via->IsOnLayer( aLayer ))) )
return via;
}
return NULL;
}
D_PAD* BOARD::GetPad( const wxPoint& aPosition, LSET aLayerSet )
{
if( !aLayerSet.any() )
aLayerSet = LSET::AllCuMask();
for( MODULE* module = m_Modules; module; module = module->Next() )
{
D_PAD* pad = module->GetPad( aPosition, aLayerSet );
if( pad )
return pad;
}
return NULL;
}
D_PAD* BOARD::GetPad( TRACK* aTrace, ENDPOINT_T aEndPoint )
{
const wxPoint& aPosition = aTrace->GetEndPoint( aEndPoint );
LSET lset( aTrace->GetLayer() );
for( MODULE* module = m_Modules; module; module = module->Next() )
{
D_PAD* pad = module->GetPad( aPosition, lset );
if( pad )
return pad;
}
return NULL;
}
std::list<TRACK*> BOARD::GetTracksByPosition( const wxPoint& aPosition, PCB_LAYER_ID aLayer ) const
{
std::list<TRACK*> tracks;
for( TRACK* track = GetFirstTrack( m_Track ); track; track = GetFirstTrack( track->Next() ) )
{
if( ( ( track->GetStart() == aPosition ) || track->GetEnd() == aPosition ) &&
( track->GetState( BUSY | IS_DELETED ) == 0 ) &&
( ( aLayer == UNDEFINED_LAYER ) || ( track->IsOnLayer( aLayer ) ) ) )
tracks.push_back( track );
}
return tracks;
}
D_PAD* BOARD::GetPadFast( const wxPoint& aPosition, LSET aLayerSet )
{
for( auto mod : Modules() )
{
for ( auto pad : mod->Pads() )
{
if( pad->GetPosition() != aPosition )
continue;
// Pad found, it must be on the correct layer
if( ( pad->GetLayerSet() & aLayerSet ).any() )
return pad;
}
}
return nullptr;
}
D_PAD* BOARD::GetPad( std::vector<D_PAD*>& aPadList, const wxPoint& aPosition, LSET aLayerSet )
{
// Search aPadList for aPosition
// aPadList is sorted by X then Y values, and a fast binary search is used
int idxmax = aPadList.size()-1;
int delta = aPadList.size();
int idx = 0; // Starting index is the beginning of list
while( delta )
{
// Calculate half size of remaining interval to test.
// Ensure the computed value is not truncated (too small)
if( (delta & 1) && ( delta > 1 ) )
delta++;
delta /= 2;
D_PAD* pad = aPadList[idx];
if( pad->GetPosition() == aPosition ) // candidate found
{
// The pad must match the layer mask:
if( ( aLayerSet & pad->GetLayerSet() ).any() )
return pad;
// More than one pad can be at aPosition
// search for a pad at aPosition that matched this mask
// search next
for( int ii = idx+1; ii <= idxmax; ii++ )
{
pad = aPadList[ii];
if( pad->GetPosition() != aPosition )
break;
if( ( aLayerSet & pad->GetLayerSet() ).any() )
return pad;
}
// search previous
for( int ii = idx-1 ;ii >=0; ii-- )
{
pad = aPadList[ii];
if( pad->GetPosition() != aPosition )
break;
if( ( aLayerSet & pad->GetLayerSet() ).any() )
return pad;
}
// Not found:
return 0;
}
if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate
{
if( pad->GetPosition().y < aPosition.y ) // Must search after this item
{
idx += delta;
if( idx > idxmax )
idx = idxmax;
}
else // Must search before this item
{
idx -= delta;
if( idx < 0 )
idx = 0;
}
}
else if( pad->GetPosition().x < aPosition.x ) // Must search after this item
{
idx += delta;
if( idx > idxmax )
idx = idxmax;
}
else // Must search before this item
{
idx -= delta;
if( idx < 0 )
idx = 0;
}
}
return NULL;
}
/**
* Function SortPadsByXCoord
* is used by GetSortedPadListByXCoord to Sort a pad list by x coordinate value.
* This function is used to build ordered pads lists
*/
bool sortPadsByXthenYCoord( D_PAD* const & ref, D_PAD* const & comp )
{
if( ref->GetPosition().x == comp->GetPosition().x )
return ref->GetPosition().y < comp->GetPosition().y;
return ref->GetPosition().x < comp->GetPosition().x;
}
void BOARD::GetSortedPadListByXthenYCoord( std::vector<D_PAD*>& aVector, int aNetCode )
{
for ( auto mod : Modules() )
{
for ( auto pad : mod->Pads( ) )
{
if( aNetCode < 0 || pad->GetNetCode() == aNetCode )
{
aVector.push_back( pad );
}
}
}
std::sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord );
}
void BOARD::PadDelete( D_PAD* aPad )
{
aPad->DeleteStructure();
}
TRACK* BOARD::GetVisibleTrack( TRACK* aStartingTrace, const wxPoint& aPosition,
LSET aLayerSet ) const
{
for( TRACK* track = aStartingTrace; track; track = track->Next() )
{
PCB_LAYER_ID layer = track->GetLayer();
if( track->GetState( BUSY | IS_DELETED ) )
continue;
// track's layer is not visible
if( m_designSettings.IsLayerVisible( layer ) == false )
continue;
if( track->Type() == PCB_VIA_T ) // VIA encountered.
{
if( track->HitTest( aPosition ) )
return track;
}
else
{
if( !aLayerSet[layer] )
continue; // track's layer is not in aLayerSet
if( track->HitTest( aPosition ) )
return track;
}
}
return NULL;
}
#if defined(DEBUG) && 0
static void dump_tracks( const char* aName, const TRACKS& aList )
{
printf( "%s: count=%zd\n", aName, aList.size() );
for( unsigned i = 0; i < aList.size(); ++i )
{
TRACK* seg = aList[i];
::VIA* via = dynamic_cast< ::VIA* >( seg );
if( via )
printf( " via[%u]: (%d, %d)\n", i, via->GetStart().x, via->GetStart().y );
else
printf( " seg[%u]: (%d, %d) (%d, %d)\n", i,
seg->GetStart().x, seg->GetStart().y,
seg->GetEnd().x, seg->GetEnd().y );
}
}
#endif
TRACK* BOARD::MarkTrace( TRACK* aTrace, int* aCount,
double* aTraceLength, double* aPadToDieLength,
bool aReorder )
{
TRACKS trackList;
if( aCount )
*aCount = 0;
if( aTraceLength )
*aTraceLength = 0;
if( aTrace == NULL )
return NULL;
// Ensure the flag BUSY of all tracks of the board is cleared
// because we use it to mark segments of the track
for( TRACK* track = m_Track; track; track = track->Next() )
track->SetState( BUSY, false );
// Set flags of the initial track segment
aTrace->SetState( BUSY, true );
LSET layer_set = aTrace->GetLayerSet();
trackList.push_back( aTrace );
/* Examine the initial track segment : if it is really a segment, this is
* easy.
* If it is a via, one must search for connected segments.
* If <=2, this via connect 2 segments (or is connected to only one
* segment) and this via and these 2 segments are a part of a track.
* If > 2 only this via is flagged (the track has only this via)
*/
if( aTrace->Type() == PCB_VIA_T )
{
TRACK* segm1 = ::GetTrack( m_Track, NULL, aTrace->GetStart(), layer_set );
TRACK* segm2 = NULL;
TRACK* segm3 = NULL;
if( segm1 )
{
segm2 = ::GetTrack( segm1->Next(), NULL, aTrace->GetStart(), layer_set );
}
if( segm2 )
{
segm3 = ::GetTrack( segm2->Next(), NULL, aTrace->GetStart(), layer_set );
}
if( segm3 )
{
// More than 2 segments are connected to this via.
// The "track" is only this via.
if( aCount )
*aCount = 1;
return aTrace;
}
if( segm1 ) // search for other segments connected to the initial segment start point
{
layer_set = segm1->GetLayerSet();
chainMarkedSegments( aTrace->GetStart(), layer_set, &trackList );
}
if( segm2 ) // search for other segments connected to the initial segment end point
{
layer_set = segm2->GetLayerSet();
chainMarkedSegments( aTrace->GetStart(), layer_set, &trackList );
}
}
else // mark the chain using both ends of the initial segment
{
TRACKS from_start;
TRACKS from_end;
chainMarkedSegments( aTrace->GetStart(), layer_set, &from_start );
chainMarkedSegments( aTrace->GetEnd(), layer_set, &from_end );
// DBG( dump_tracks( "first_clicked", trackList ); )
// DBG( dump_tracks( "from_start", from_start ); )
// DBG( dump_tracks( "from_end", from_end ); )
// combine into one trackList:
trackList.insert( trackList.end(), from_start.begin(), from_start.end() );
trackList.insert( trackList.end(), from_end.begin(), from_end.end() );
}
// Now examine selected vias and flag them if they are on the track
// If a via is connected to only one or 2 segments, it is flagged (is on the track)
// If a via is connected to more than 2 segments, it is a track end, and it
// is removed from the list.
// Go through the list backwards.
for( int i = trackList.size() - 1; i>=0; --i )
{
::VIA* via = dynamic_cast< ::VIA* >( trackList[i] );
if( !via )
continue;
if( via == aTrace )
continue;
via->SetState( BUSY, true ); // Try to flag it. the flag will be cleared later if needed
layer_set = via->GetLayerSet();
TRACK* track = ::GetTrack( m_Track, NULL, via->GetStart(), layer_set );
// GetTrace does not consider tracks flagged BUSY.
// So if no connected track found, this via is on the current track
// only: keep it
if( track == NULL )
continue;
/* If a track is found, this via connects also other segments of
* another track. This case happens when a via ends the selected
* track but must we consider this via is on the selected track, or
* on another track.
* (this is important when selecting a track for deletion: must this
* via be deleted or not?)
* We consider this via to be on our track if other segments connected
* to this via remain connected when removing this via.
* We search for all other segments connected together:
* if they are on the same layer, then the via is on the selected track;
* if they are on different layers, the via is on another track.
*/
LAYER_NUM layer = track->GetLayer();
while( ( track = ::GetTrack( track->Next(), NULL, via->GetStart(), layer_set ) ) != NULL )
{
if( layer != track->GetLayer() )
{
// The via connects segments of another track: it is removed
// from list because it is member of another track
DBG(printf( "%s: omit track (%d, %d) (%d, %d) on layer:%d (!= our_layer:%d)\n",
__func__,
track->GetStart().x, track->GetStart().y,
track->GetEnd().x, track->GetEnd().y,
track->GetLayer(), layer
); )
via->SetState( BUSY, false );
break;
}
}
}
/* Rearrange the track list in order to have flagged segments linked
* from firstTrack so the NbSegmBusy segments are consecutive segments
* in list, the first item in the full track list is firstTrack, and
* the NbSegmBusy-1 next items (NbSegmBusy when including firstTrack)
* are the flagged segments
*/
int busy_count = 0;
TRACK* firstTrack;
for( firstTrack = m_Track; firstTrack; firstTrack = firstTrack->Next() )
{
// Search for the first flagged BUSY segments
if( firstTrack->GetState( BUSY ) )
{
busy_count = 1;
break;
}
}
if( firstTrack == NULL )
return NULL;
// First step: calculate the track length and find the pads (when exist)
// at each end of the trace.
double full_len = 0;
double lenPadToDie = 0;
// Because we have a track (a set of track segments between 2 nodes),
// only 2 pads (maximum) will be taken in account:
// that are on each end of the track, if any.
// keep trace of them, to know the die length and the track length ibside each pad.
D_PAD* s_pad = NULL; // the pad on one end of the trace
D_PAD* e_pad = NULL; // the pad on the other end of the trace
int dist_fromstart = INT_MAX;
int dist_fromend = INT_MAX;
for( TRACK* track = firstTrack; track; track = track->Next() )
{
if( !track->GetState( BUSY ) )
continue;
layer_set = track->GetLayerSet();
D_PAD * pad_on_start = GetPad( track->GetStart(), layer_set );
D_PAD * pad_on_end = GetPad( track->GetEnd(), layer_set );
// a segment fully inside a pad does not contribute to the track len
// (an other track end inside this pad will contribute to this lenght)
if( pad_on_start && ( pad_on_start == pad_on_end ) )
continue;
full_len += track->GetLength();
if( pad_on_start == NULL && pad_on_end == NULL )
// This most of time the case
continue;
// At this point, we can have one track end on a pad, or the 2 track ends on
// 2 different pads.
// We don't know what pad (s_pad or e_pad) must be used to store the
// start point and the end point of the track, so if a pad is already set,
// use the other
if( pad_on_start )
{
SEG segm( track->GetStart(), pad_on_start->GetPosition() );
int dist = segm.Length();
if( s_pad == NULL )
{
dist_fromstart = dist;
s_pad = pad_on_start;
}
else if( e_pad == NULL )
{
dist_fromend = dist;
e_pad = pad_on_start;
}
else // Should not occur, at least for basic pads
{
// wxLogMessage( "BOARD::MarkTrace: multiple pad_on_start" );
}
}
if( pad_on_end )
{
SEG segm( track->GetEnd(), pad_on_end->GetPosition() );
int dist = segm.Length();
if( s_pad == NULL )
{
dist_fromstart = dist;
s_pad = pad_on_end;
}
else if( e_pad == NULL )
{
dist_fromend = dist;
e_pad = pad_on_end;
}
else // Should not occur, at least for basic pads
{
// wxLogMessage( "BOARD::MarkTrace: multiple pad_on_end" );
}
}
}
if( aReorder )
{
DLIST<TRACK>* list = (DLIST<TRACK>*)firstTrack->GetList();
wxASSERT( list );
/* Rearrange the chain starting at firstTrack
* All other BUSY flagged items are moved from their position to the end
* of the flagged list
*/
TRACK* next;
for( TRACK* track = firstTrack->Next(); track; track = next )
{
next = track->Next();
if( track->GetState( BUSY ) ) // move it!
{
busy_count++;
track->UnLink();
list->Insert( track, firstTrack->Next() );
}
}
}
else if( aTraceLength )
{
busy_count = 0;
for( TRACK* track = firstTrack; track; track = track->Next() )
{
if( track->GetState( BUSY ) )
{
busy_count++;
track->SetState( BUSY, false );
}
}
DBG( printf( "%s: busy_count:%d\n", __func__, busy_count ); )
}
if( s_pad )
{
full_len += dist_fromstart;
lenPadToDie += (double) s_pad->GetPadToDieLength();
}
if( e_pad )
{
full_len += dist_fromend;
lenPadToDie += (double) e_pad->GetPadToDieLength();
}
if( aTraceLength )
*aTraceLength = full_len;
if( aPadToDieLength )
*aPadToDieLength = lenPadToDie;
if( aCount )
*aCount = busy_count;
return firstTrack;
}
MODULE* BOARD::GetFootprint( const wxPoint& aPosition, PCB_LAYER_ID aActiveLayer,
bool aVisibleOnly, bool aIgnoreLocked )
{
MODULE* pt_module;
MODULE* module = NULL;
MODULE* alt_module = NULL;
int min_dim = 0x7FFFFFFF;
int alt_min_dim = 0x7FFFFFFF;
bool current_layer_back = IsBackLayer( aActiveLayer );
for( pt_module = m_Modules; pt_module; pt_module = pt_module->Next() )
{
// is the ref point within the module's bounds?
if( !pt_module->HitTest( aPosition ) )
continue;
// if caller wants to ignore locked modules, and this one is locked, skip it.
if( aIgnoreLocked && pt_module->IsLocked() )
continue;
PCB_LAYER_ID layer = pt_module->GetLayer();
// Filter non visible modules if requested
if( !aVisibleOnly || IsModuleLayerVisible( layer ) )
{
EDA_RECT bb = pt_module->GetFootprintRect();
int offx = bb.GetX() + bb.GetWidth() / 2;
int offy = bb.GetY() + bb.GetHeight() / 2;
// off x & offy point to the middle of the box.
int dist = ( aPosition.x - offx ) * ( aPosition.x - offx ) +
( aPosition.y - offy ) * ( aPosition.y - offy );
if( current_layer_back == IsBackLayer( layer ) )
{
if( dist <= min_dim )
{
// better footprint shown on the active side
module = pt_module;
min_dim = dist;
}
}
else if( aVisibleOnly && IsModuleLayerVisible( layer ) )
{
if( dist <= alt_min_dim )
{
// better footprint shown on the other side
alt_module = pt_module;
alt_min_dim = dist;
}
}
}
}
if( module )
{
return module;
}
if( alt_module)
{
return alt_module;
}
return NULL;
}
BOARD_CONNECTED_ITEM* BOARD::GetLockPoint( const wxPoint& aPosition, LSET aLayerSet )
{
for( MODULE* module = m_Modules; module; module = module->Next() )
{
D_PAD* pad = module->GetPad( aPosition, aLayerSet );
if( pad )
return pad;
}
// No pad has been located so check for a segment of the trace.
TRACK* segment = ::GetTrack( m_Track, NULL, aPosition, aLayerSet );
if( !segment )
segment = GetVisibleTrack( m_Track, aPosition, aLayerSet );
return segment;
}
TRACK* BOARD::CreateLockPoint( wxPoint& aPosition, TRACK* aSegment, PICKED_ITEMS_LIST* aList )
{
/* creates an intermediate point on aSegment and break it into two segments
* at aPosition.
* The new segment starts from aPosition and ends at the end point of
* aSegment. The original segment now ends at aPosition.
*/
if( aSegment->GetStart() == aPosition || aSegment->GetEnd() == aPosition )
return NULL;
// A via is a good lock point
if( aSegment->Type() == PCB_VIA_T )
{
aPosition = aSegment->GetStart();
return aSegment;
}
// Calculation coordinate of intermediate point relative to the start point of aSegment
wxPoint delta = aSegment->GetEnd() - aSegment->GetStart();
// calculate coordinates of aPosition relative to aSegment->GetStart()
wxPoint lockPoint = aPosition - aSegment->GetStart();
// lockPoint must be on aSegment:
// Ensure lockPoint.y/lockPoint.y = delta.y/delta.x
if( delta.x == 0 )
lockPoint.x = 0; // horizontal segment
else
lockPoint.y = KiROUND( ( (double)lockPoint.x * delta.y ) / delta.x );
/* Create the intermediate point (that is to say creation of a new
* segment, beginning at the intermediate point.
*/
lockPoint += aSegment->GetStart();
TRACK* newTrack = (TRACK*)aSegment->Clone();
// The new segment begins at the new point,
newTrack->SetStart(lockPoint);
newTrack->start = aSegment;
newTrack->SetState( BEGIN_ONPAD, false );
DLIST<TRACK>* list = (DLIST<TRACK>*)aSegment->GetList();
wxASSERT( list );
list->Insert( newTrack, aSegment->Next() );
if( aList )
{
// Prepare the undo command for the now track segment
ITEM_PICKER picker( newTrack, UR_NEW );
aList->PushItem( picker );
// Prepare the undo command for the old track segment
// before modifications
picker.SetItem( aSegment );
picker.SetStatus( UR_CHANGED );
picker.SetLink( aSegment->Clone() );
aList->PushItem( picker );
}
// Old track segment now ends at new point.
aSegment->SetEnd(lockPoint);
aSegment->end = newTrack;
aSegment->SetState( END_ONPAD, false );
D_PAD * pad = GetPad( newTrack, ENDPOINT_START );
if( pad )
{
newTrack->start = pad;
newTrack->SetState( BEGIN_ONPAD, true );
aSegment->end = pad;
aSegment->SetState( END_ONPAD, true );
}
aPosition = lockPoint;
return newTrack;
}
ZONE_CONTAINER* BOARD::AddArea( PICKED_ITEMS_LIST* aNewZonesList, int aNetcode,
PCB_LAYER_ID aLayer, wxPoint aStartPointPosition, int aHatch )
{
ZONE_CONTAINER* new_area = InsertArea( aNetcode,
m_ZoneDescriptorList.size( ) - 1,
aLayer, aStartPointPosition.x,
aStartPointPosition.y, aHatch );
if( aNewZonesList )
{
ITEM_PICKER picker( new_area, UR_NEW );
aNewZonesList->PushItem( picker );
}
return new_area;
}
void BOARD::RemoveArea( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_to_remove )
{
if( area_to_remove == NULL )
return;
if( aDeletedList )
{
ITEM_PICKER picker( area_to_remove, UR_DELETED );
aDeletedList->PushItem( picker );
Remove( area_to_remove ); // remove from zone list, but does not delete it
}
else
{
Delete( area_to_remove );
}
}
ZONE_CONTAINER* BOARD::InsertArea( int aNetcode, int aAreaIdx, PCB_LAYER_ID aLayer,
int aCornerX, int aCornerY, int aHatch )
{
ZONE_CONTAINER* new_area = new ZONE_CONTAINER( this );
new_area->SetNetCode( aNetcode );
new_area->SetLayer( aLayer );
new_area->SetTimeStamp( GetNewTimeStamp() );
if( aAreaIdx < (int) ( m_ZoneDescriptorList.size() - 1 ) )
m_ZoneDescriptorList.insert( m_ZoneDescriptorList.begin() + aAreaIdx + 1, new_area );
else
m_ZoneDescriptorList.push_back( new_area );
new_area->SetHatchStyle( (ZONE_CONTAINER::HATCH_STYLE) aHatch );
// Add the first corner to the new zone
new_area->AppendCorner( wxPoint( aCornerX, aCornerY ), -1 );
return new_area;
}
bool BOARD::NormalizeAreaPolygon( PICKED_ITEMS_LIST * aNewZonesList, ZONE_CONTAINER* aCurrArea )
{
// mark all areas as unmodified except this one, if modified
for( unsigned ia = 0; ia < m_ZoneDescriptorList.size(); ia++ )
m_ZoneDescriptorList[ia]->SetLocalFlags( 0 );
aCurrArea->SetLocalFlags( 1 );
if( aCurrArea->Outline()->IsSelfIntersecting() )
{
aCurrArea->UnHatch();
// Normalize copied area and store resulting number of polygons
int n_poly = aCurrArea->Outline()->NormalizeAreaOutlines();
// If clipping has created some polygons, we must add these new copper areas.
if( n_poly > 1 )
{
ZONE_CONTAINER* NewArea;
// Move the newly created polygons to new areas, removing them from the current area
for( int ip = 1; ip < n_poly; ip++ )
{
// Create new copper area and copy poly into it
SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( ip ) );
NewArea = AddArea( aNewZonesList, aCurrArea->GetNetCode(), aCurrArea->GetLayer(),
wxPoint(0, 0), aCurrArea->GetHatchStyle() );
// remove the poly that was automatically created for the new area
// and replace it with a poly from NormalizeAreaOutlines
delete NewArea->Outline();
NewArea->SetOutline( new_p );
NewArea->Hatch();
NewArea->SetLocalFlags( 1 );
}
SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( 0 ) );
delete aCurrArea->Outline();
aCurrArea->SetOutline( new_p );
}
}
aCurrArea->Hatch();
return true;
}
void BOARD::ReplaceNetlist( NETLIST& aNetlist, bool aDeleteSinglePadNets,
std::vector<MODULE*>* aNewFootprints, REPORTER* aReporter )
{
unsigned i;
wxPoint bestPosition;
wxString msg;
std::vector<MODULE*> newFootprints;
if( !IsEmpty() )
{
// Position new components below any existing board features.
EDA_RECT bbbox = GetBoardEdgesBoundingBox();
if( bbbox.GetWidth() || bbbox.GetHeight() )
{
bestPosition.x = bbbox.Centre().x;
bestPosition.y = bbbox.GetBottom() + Millimeter2iu( 10 );
}
}
else
{
// Position new components in the center of the page when the board is empty.
wxSize pageSize = m_paper.GetSizeIU();
bestPosition.x = pageSize.GetWidth() / 2;
bestPosition.y = pageSize.GetHeight() / 2;
}
m_Status_Pcb = 0;
for( i = 0; i < aNetlist.GetCount(); i++ )
{
COMPONENT* component = aNetlist.GetComponent( i );
MODULE* footprint;
if( aReporter )
{
msg.Printf( _( "Checking netlist component footprint \"%s:%s:%s\".\n" ),
GetChars( component->GetReference() ),
GetChars( component->GetTimeStamp() ),
GetChars( component->GetFPID().Format() ) );
aReporter->Report( msg, REPORTER::RPT_INFO );
}
if( aNetlist.IsFindByTimeStamp() )
footprint = FindModule( aNetlist.GetComponent( i )->GetTimeStamp(), true );
else
footprint = FindModule( aNetlist.GetComponent( i )->GetReference() );
if( footprint == NULL ) // A new footprint.
{
if( aReporter )
{
if( component->GetModule() != NULL )
{
msg.Printf( _( "Adding new component \"%s:%s\" footprint \"%s\".\n" ),
GetChars( component->GetReference() ),
GetChars( component->GetTimeStamp() ),
GetChars( component->GetFPID().Format() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
else
{
msg.Printf( _( "Cannot add new component \"%s:%s\" due to missing "
"footprint \"%s\".\n" ),
GetChars( component->GetReference() ),
GetChars( component->GetTimeStamp() ),
GetChars( component->GetFPID().Format() ) );
aReporter->Report( msg, REPORTER::RPT_ERROR );
}
}
if( !aNetlist.IsDryRun() && (component->GetModule() != NULL) )
{
// Owned by NETLIST, can only copy it.
footprint = new MODULE( *component->GetModule() );
footprint->SetParent( this );
footprint->SetPosition( bestPosition );
footprint->SetTimeStamp( GetNewTimeStamp() );
newFootprints.push_back( footprint );
Add( footprint, ADD_APPEND );
m_connectivity->Add( footprint );
}
}
else // An existing footprint.
{
// Test for footprint change.
if( !component->GetFPID().empty() &&
footprint->GetFPID() != component->GetFPID() )
{
if( aNetlist.GetReplaceFootprints() )
{
if( aReporter )
{
if( component->GetModule() != NULL )
{
msg.Printf( _( "Replacing component \"%s:%s\" footprint \"%s\" with "
"\"%s\".\n" ),
GetChars( footprint->GetReference() ),
GetChars( footprint->GetPath() ),
GetChars( footprint->GetFPID().Format() ),
GetChars( component->GetFPID().Format() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
else
{
msg.Printf( _( "Cannot replace component \"%s:%s\" due to missing "
"footprint \"%s\".\n" ),
GetChars( footprint->GetReference() ),
GetChars( footprint->GetPath() ),
GetChars( component->GetFPID().Format() ) );
aReporter->Report( msg, REPORTER::RPT_ERROR );
}
}
if( !aNetlist.IsDryRun() && (component->GetModule() != NULL) )
{
wxASSERT( footprint != NULL );
MODULE* newFootprint = new MODULE( *component->GetModule() );
if( aNetlist.IsFindByTimeStamp() )
newFootprint->SetReference( footprint->GetReference() );
else
newFootprint->SetPath( footprint->GetPath() );
// Copy placement and pad net names.
// optionally, copy or not local settings (like local clearances)
// if the second parameter is "true", previous values will be used.
// if "false", the default library values of the new footprint
// will be used
footprint->CopyNetlistSettings( newFootprint, false );
// Compare the footprint name only, in case the nickname is empty or in case
// user moved the footprint to a new library. Chances are if footprint name is
// same then the footprint is very nearly the same and the two texts should
// be kept at same size, position, and rotation.
if( newFootprint->GetFPID().GetLibItemName() == footprint->GetFPID().GetLibItemName() )
{
newFootprint->Reference().SetEffects( footprint->Reference() );
newFootprint->Value().SetEffects( footprint->Value() );
}
m_connectivity->Remove( footprint );
Remove( footprint );
Add( newFootprint, ADD_APPEND );
m_connectivity->Add( footprint );
footprint = newFootprint;
}
}
}
// Test for reference designator field change.
if( footprint->GetReference() != component->GetReference() )
{
if( aReporter )
{
msg.Printf( _( "Changing component \"%s:%s\" reference to \"%s\".\n" ),
GetChars( footprint->GetReference() ),
GetChars( footprint->GetPath() ),
GetChars( component->GetReference() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
if( !aNetlist.IsDryRun() )
footprint->SetReference( component->GetReference() );
}
// Test for value field change.
if( footprint->GetValue() != component->GetValue() )
{
if( aReporter )
{
msg.Printf( _( "Changing component \"%s:%s\" value from \"%s\" to \"%s\".\n" ),
GetChars( footprint->GetReference() ),
GetChars( footprint->GetPath() ),
GetChars( footprint->GetValue() ),
GetChars( component->GetValue() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
if( !aNetlist.IsDryRun() )
footprint->SetValue( component->GetValue() );
}
// Test for time stamp change.
if( footprint->GetPath() != component->GetTimeStamp() )
{
if( aReporter )
{
msg.Printf( _( "Changing component path \"%s:%s\" to \"%s\".\n" ),
GetChars( footprint->GetReference() ),
GetChars( footprint->GetPath() ),
GetChars( component->GetTimeStamp() ) );
aReporter->Report( msg, REPORTER::RPT_INFO );
}
if( !aNetlist.IsDryRun() )
footprint->SetPath( component->GetTimeStamp() );
}
}
if( footprint == NULL )
continue;
// At this point, the component footprint is updated. Now update the nets.
for( auto pad : footprint->Pads() )
{
COMPONENT_NET net = component->GetNet( pad->GetPadName() );
if( !net.IsValid() ) // Footprint pad had no net.
{
if( aReporter && !pad->GetNetname().IsEmpty() )
{
msg.Printf( _( "Clearing component \"%s:%s\" pin \"%s\" net name.\n" ),
GetChars( footprint->GetReference() ),
GetChars( footprint->GetPath() ),
GetChars( pad->GetPadName() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
if( !aNetlist.IsDryRun() )
{
m_connectivity->Remove( pad );
pad->SetNetCode( NETINFO_LIST::UNCONNECTED );
}
}
else // Footprint pad has a net.
{
if( net.GetNetName() != pad->GetNetname() )
{
if( aReporter )
{
msg.Printf( _( "Changing component \"%s:%s\" pin \"%s\" net name from "
"\"%s\" to \"%s\".\n" ),
GetChars( footprint->GetReference() ),
GetChars( footprint->GetPath() ),
GetChars( pad->GetPadName() ),
GetChars( pad->GetNetname() ),
GetChars( net.GetNetName() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
if( !aNetlist.IsDryRun() )
{
NETINFO_ITEM* netinfo = FindNet( net.GetNetName() );
if( netinfo == NULL )
{
// It is a new net, we have to add it
netinfo = new NETINFO_ITEM( this, net.GetNetName() );
Add( netinfo );
}
m_connectivity->Remove( pad );
pad->SetNetCode( netinfo->GetNet() );
m_connectivity->Add( pad );
}
}
}
}
}
// Remove all components not in the netlist.
if( aNetlist.GetDeleteExtraFootprints() )
{
MODULE* nextModule;
const COMPONENT* component;
for( MODULE* module = m_Modules; module != NULL; module = nextModule )
{
nextModule = module->Next();
if( module->IsLocked() )
continue;
if( aNetlist.IsFindByTimeStamp() )
component = aNetlist.GetComponentByTimeStamp( module->GetPath() );
else
component = aNetlist.GetComponentByReference( module->GetReference() );
if( component == NULL )
{
if( aReporter )
{
msg.Printf( _( "Removing unused component \"%s:%s\".\n" ),
GetChars( module->GetReference() ),
GetChars( module->GetPath() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
if( !aNetlist.IsDryRun() )
{
m_connectivity->Remove( module );
module->DeleteStructure();
}
}
}
}
BuildListOfNets();
std::vector<D_PAD*> padlist = GetPads();
auto connAlgo = m_connectivity->GetConnectivityAlgo();
// If needed, remove the single pad nets:
if( aDeleteSinglePadNets && !aNetlist.IsDryRun() )
{
std::vector<unsigned int> padCount( connAlgo->NetCount() );
for( const auto cnItem : connAlgo->PadList() )
{
int net = cnItem->Parent()->GetNetCode();
if( net > 0 )
++padCount[net];
}
for( i = 0; i < (unsigned)connAlgo->NetCount(); ++i )
{
// First condition: only one pad in the net
if( padCount[i] == 1 )
{
// Second condition, no zones attached to the pad
D_PAD* pad = nullptr;
int zoneCount = 0;
const KICAD_T types[] = { PCB_PAD_T, PCB_ZONE_AREA_T, EOT };
auto netItems = m_connectivity->GetNetItems( i, types );
for( const auto item : netItems )
{
if( item->Type() == PCB_ZONE_AREA_T )
{
wxASSERT( !pad || pad->GetNet() == item->GetNet() );
++zoneCount;
}
else if( item->Type() == PCB_PAD_T )
{
wxASSERT( !pad );
pad = static_cast<D_PAD*>( item );
}
}
wxASSERT( pad ); // pad = 0 means the pad list is not up to date
if( pad && zoneCount == 0 )
{
if( aReporter )
{
msg.Printf( _( "Remove single pad net \"%s\" on \"%s\" pad '%s'\n" ),
GetChars( pad->GetNetname() ),
GetChars( pad->GetParent()->GetReference() ),
GetChars( pad->GetPadName() ) );
aReporter->Report( msg, REPORTER::RPT_ACTION );
}
m_connectivity->Remove( pad );
pad->SetNetCode( NETINFO_LIST::UNCONNECTED );
}
}
}
}
// Last step: Some tests:
// verify all pads found in netlist:
// They should exist in footprints, otherwise the footprint is wrong
// note also references or time stamps are updated, so we use only
// the reference to find a footprint
//
// Also verify if zones have acceptable nets, i.e. nets with pads.
// Zone with no pad belongs to a "dead" net which happens after changes in schematic
// when no more pad use this net name.
if( aReporter )
{
wxString padname;
for( i = 0; i < aNetlist.GetCount(); i++ )
{
const COMPONENT* component = aNetlist.GetComponent( i );
MODULE* footprint = FindModuleByReference( component->GetReference() );
if( footprint == NULL ) // It can be missing in partial designs
continue;
// Explore all pins/pads in component
for( unsigned jj = 0; jj < component->GetNetCount(); jj++ )
{
COMPONENT_NET net = component->GetNet( jj );
padname = net.GetPinName();
if( footprint->FindPadByName( padname ) )
continue; // OK, pad found
// not found: bad footprint, report error
msg.Printf( _( "Component '%s' pad '%s' not found in footprint '%s'\n" ),
GetChars( component->GetReference() ),
GetChars( padname ),
GetChars( footprint->GetFPID().Format() ) );
aReporter->Report( msg, REPORTER::RPT_ERROR );
}
}
// Test copper zones to detect "dead" nets (nets without any pad):
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = GetArea( ii );
if( !zone->IsOnCopperLayer() || zone->GetIsKeepout() )
continue;
if( m_connectivity->GetPadCount( zone->GetNetCode() ) == 0 )
{
msg.Printf( _( "Copper zone (net name '%s'): net has no pads connected." ),
GetChars( zone->GetNet()->GetNetname() ) );
aReporter->Report( msg, REPORTER::RPT_WARNING );
}
}
}
m_connectivity->RecalculateRatsnest();
std::swap( newFootprints, *aNewFootprints );
}
BOARD_ITEM* BOARD::Duplicate( const BOARD_ITEM* aItem,
bool aAddToBoard )
{
BOARD_ITEM* new_item = NULL;
switch( aItem->Type() )
{
case PCB_MODULE_T:
case PCB_TEXT_T:
case PCB_LINE_T:
case PCB_TRACE_T:
case PCB_VIA_T:
case PCB_ZONE_AREA_T:
case PCB_TARGET_T:
case PCB_DIMENSION_T:
new_item = static_cast<BOARD_ITEM*>( aItem->Clone() );
break;
default:
// Un-handled item for duplication
new_item = NULL;
break;
}
if( new_item && aAddToBoard )
Add( new_item );
return new_item;
}
/* Extracts the board outlines and build a closed polygon
* from lines, arcs and circle items on edge cut layer
* Any closed outline inside the main outline is a hole
* All contours should be closed, i.e. are valid vertices for a closed polygon
* return true if success, false if a contour is not valid
*/
extern bool BuildBoardPolygonOutlines( BOARD* aBoard,
SHAPE_POLY_SET& aOutlines,
wxString* aErrorText );
bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines,
wxString* aErrorText )
{
bool success = BuildBoardPolygonOutlines( this, aOutlines, aErrorText );
// Make polygon strictly simple to avoid issues (especially in 3D viewer)
aOutlines.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
return success;
}
const std::vector<D_PAD*> BOARD::GetPads()
{
std::vector<D_PAD*> rv;
for ( auto mod: Modules() )
{
for ( auto pad: mod->Pads() )
rv.push_back ( pad );
}
return rv;
}
unsigned BOARD::GetPadCount() const
{
return m_connectivity->GetPadCount();
}
/**
* Function GetPad
* @return D_PAD* - at the \a aIndex
*/
D_PAD* BOARD::GetPad( unsigned aIndex ) const
{
unsigned count = 0;
for( MODULE* mod = m_Modules; mod ; mod = mod->Next() ) // FIXME: const DLIST_ITERATOR
{
for( D_PAD* pad = mod->PadsList(); pad; pad = pad->Next() )
{
if( count == aIndex )
return pad;
count++;
}
}
return nullptr;
}