422 lines
12 KiB
C++
422 lines
12 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2018 KiCad Developers, see CHANGELOG.TXT for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <geometry/shape_arc.h>
|
|
|
|
#include <geometry/shape_line_chain.h>
|
|
|
|
#include <unit_test_utils/geometry.h>
|
|
#include <unit_test_utils/numeric.h>
|
|
#include <unit_test_utils/unit_test_utils.h>
|
|
|
|
#include "geom_test_utils.h"
|
|
|
|
BOOST_AUTO_TEST_SUITE( ShapeArc )
|
|
|
|
/**
|
|
* All properties of an arc (depending on how it's constructed, some of these
|
|
* might be the same as the constructor params)
|
|
*/
|
|
struct ARC_PROPERTIES
|
|
{
|
|
VECTOR2I m_center_point;
|
|
VECTOR2I m_start_point;
|
|
VECTOR2I m_end_point;
|
|
double m_center_angle;
|
|
double m_start_angle;
|
|
double m_end_angle;
|
|
int m_radius;
|
|
BOX2I m_bbox;
|
|
};
|
|
|
|
/**
|
|
* Check a #SHAPE_ARC against a given set of geometric properties
|
|
*/
|
|
static void CheckArcGeom( const SHAPE_ARC& aArc, const ARC_PROPERTIES& aProps )
|
|
{
|
|
// Angular error - not this can get quite large for very small arcs,
|
|
// as the integral position rounding has a relatively greater effect
|
|
const double angle_tol_deg = 0.01;
|
|
|
|
// Position error - rounding to nearest integer
|
|
const int pos_tol = 1;
|
|
|
|
BOOST_CHECK_PREDICATE( KI_TEST::IsVecWithinTol<VECTOR2I>,
|
|
( aProps.m_start_point )( aProps.m_start_point )( pos_tol ) );
|
|
BOOST_CHECK_PREDICATE(
|
|
KI_TEST::IsVecWithinTol<VECTOR2I>, ( aArc.GetP1() )( aProps.m_end_point )( pos_tol ) );
|
|
BOOST_CHECK_PREDICATE( KI_TEST::IsVecWithinTol<VECTOR2I>,
|
|
( aArc.GetCenter() )( aProps.m_center_point )( pos_tol ) );
|
|
BOOST_CHECK_PREDICATE( KI_TEST::IsWithin<double>,
|
|
( aArc.GetCentralAngle() )( aProps.m_center_angle )( angle_tol_deg ) );
|
|
BOOST_CHECK_PREDICATE( KI_TEST::IsWithin<double>,
|
|
( aArc.GetStartAngle() )( aProps.m_start_angle )( angle_tol_deg ) );
|
|
BOOST_CHECK_PREDICATE( KI_TEST::IsWithin<double>,
|
|
( aArc.GetEndAngle() )( aProps.m_end_angle )( angle_tol_deg ) );
|
|
BOOST_CHECK_PREDICATE(
|
|
KI_TEST::IsWithin<double>, ( aArc.GetRadius() )( aProps.m_radius )( pos_tol ) );
|
|
|
|
/// Check the chord agrees
|
|
const auto chord = aArc.GetChord();
|
|
|
|
BOOST_CHECK_PREDICATE(
|
|
KI_TEST::IsVecWithinTol<VECTOR2I>, ( chord.A )( aProps.m_start_point )( pos_tol ) );
|
|
BOOST_CHECK_PREDICATE(
|
|
KI_TEST::IsVecWithinTol<VECTOR2I>, ( chord.B )( aProps.m_end_point )( pos_tol ) );
|
|
|
|
/// All arcs are solid
|
|
BOOST_CHECK_EQUAL( aArc.IsSolid(), true );
|
|
|
|
BOOST_CHECK_PREDICATE(
|
|
KI_TEST::IsBoxWithinTol<BOX2I>, ( aArc.BBox() )( aProps.m_bbox )( pos_tol ) );
|
|
|
|
/// Collisions will be checked elsewhere.
|
|
}
|
|
|
|
/**
|
|
* Check an arcs geometry and other class functions
|
|
*/
|
|
static void CheckArc( const SHAPE_ARC& aArc, const ARC_PROPERTIES& aProps )
|
|
{
|
|
// Check the original arc
|
|
CheckArcGeom( aArc, aProps );
|
|
|
|
// Test the Clone function (also tests copy-ctor)
|
|
std::unique_ptr<SHAPE> new_shape{ aArc.Clone() };
|
|
|
|
BOOST_CHECK_EQUAL( new_shape->Type(), SH_ARC );
|
|
|
|
SHAPE_ARC* new_arc = dynamic_cast<SHAPE_ARC*>( new_shape.get() );
|
|
|
|
BOOST_REQUIRE( new_arc != nullptr );
|
|
|
|
/// Should have identical geom props
|
|
CheckArcGeom( *new_arc, aProps );
|
|
}
|
|
|
|
/**
|
|
* Check correct handling of filter strings (as used by WX)
|
|
*/
|
|
BOOST_AUTO_TEST_CASE( NullCtor )
|
|
{
|
|
auto arc = SHAPE_ARC();
|
|
|
|
BOOST_CHECK_EQUAL( arc.GetWidth(), 0 );
|
|
|
|
static ARC_PROPERTIES null_props{
|
|
{ 0, 0 },
|
|
{ 0, 0 },
|
|
{ 0, 0 },
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
};
|
|
|
|
CheckArc( arc, null_props );
|
|
}
|
|
|
|
/**
|
|
* Info to set up an arc by centre, start point and angle
|
|
*
|
|
* In future there may be more ways to set this up, so keep it separate
|
|
*/
|
|
struct ARC_CENTRE_PT_ANGLE
|
|
{
|
|
VECTOR2I m_center_point;
|
|
VECTOR2I m_start_point;
|
|
double m_center_angle;
|
|
};
|
|
|
|
struct ARC_CPA_CASE
|
|
{
|
|
/// The text context name
|
|
std::string m_ctx_name;
|
|
|
|
/// Geom of the arc
|
|
ARC_CENTRE_PT_ANGLE m_geom;
|
|
|
|
/// Arc line width
|
|
int m_width;
|
|
|
|
/// Expected properties
|
|
ARC_PROPERTIES m_properties;
|
|
};
|
|
|
|
static const std::vector<ARC_CPA_CASE> arc_cases = {
|
|
{
|
|
"C(0,0) 180 + 90 degree",
|
|
{
|
|
{ 0, 0 },
|
|
{ -100, 0 },
|
|
90,
|
|
},
|
|
0,
|
|
{
|
|
{ 0, 0 },
|
|
{ -100, 0 },
|
|
{ 0, -100 },
|
|
90,
|
|
180,
|
|
270,
|
|
100,
|
|
{ { -100, -100 }, { 100, 100 } },
|
|
},
|
|
},
|
|
{
|
|
"C(100,200) 0 - 30 degree",
|
|
{
|
|
{ 100, 200 },
|
|
{ 300, 200 },
|
|
-30,
|
|
},
|
|
0,
|
|
{
|
|
{ 100, 200 },
|
|
{ 300, 200 },
|
|
{ 273, 100 }, // 200 * sin(30) = 100, 200* cos(30) = 173
|
|
-30,
|
|
0,
|
|
330,
|
|
200,
|
|
{ { 100, 100 }, { 200, 100 } },
|
|
},
|
|
},
|
|
{
|
|
// This is a "fan shape" which includes the top quadrant point,
|
|
// so it exercises the bounding box code (centre and end points
|
|
// do not contain the top quadrant)
|
|
"C(0,0) 30 + 120 degree",
|
|
{
|
|
{ 0, 0 },
|
|
{ 17320, 10000 },
|
|
120,
|
|
},
|
|
0,
|
|
{
|
|
{ 0, 0 },
|
|
{ 17320, 10000 },
|
|
{ -17320, 10000 }, // 200 * sin(30) = 100, 200* cos(30) = 173
|
|
120,
|
|
30,
|
|
150,
|
|
20000,
|
|
// bbox defined by: centre, top quadrant point, two endpoints
|
|
{ { -17320, 0 }, { 17320 * 2, 20000 } },
|
|
},
|
|
},
|
|
{
|
|
// An arc that covers three quadrant points (L/R, bottom)
|
|
"C(0,0) 150 + 240 degree",
|
|
{
|
|
{ 0, 0 },
|
|
{ -17320, 10000 },
|
|
240,
|
|
},
|
|
0,
|
|
{
|
|
{ 0, 0 },
|
|
{ -17320, 10000 },
|
|
{ 17320, 10000 },
|
|
240,
|
|
150,
|
|
30,
|
|
20000,
|
|
// bbox defined by: L/R quads, bottom quad and start/end
|
|
{ { -20000, -20000 }, { 40000, 30000 } },
|
|
},
|
|
},
|
|
{
|
|
// Same as above but reverse direction
|
|
"C(0,0) 30 - 300 degree",
|
|
{
|
|
{ 0, 0 },
|
|
{ 17320, 10000 },
|
|
-240,
|
|
},
|
|
0,
|
|
{
|
|
{ 0, 0 },
|
|
{ 17320, 10000 },
|
|
{ -17320, 10000 },
|
|
-240,
|
|
30,
|
|
150,
|
|
20000,
|
|
// bbox defined by: L/R quads, bottom quad and start/end
|
|
{ { -20000, -20000 }, { 40000, 30000 } },
|
|
},
|
|
},
|
|
};
|
|
|
|
BOOST_AUTO_TEST_CASE( BasicCPAGeom )
|
|
{
|
|
for( const auto& c : arc_cases )
|
|
{
|
|
BOOST_TEST_CONTEXT( c.m_ctx_name )
|
|
{
|
|
|
|
const auto this_arc = SHAPE_ARC{ c.m_geom.m_center_point, c.m_geom.m_start_point,
|
|
c.m_geom.m_center_angle, c.m_width };
|
|
|
|
CheckArc( this_arc, c.m_properties );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
struct ARC_TO_POLYLINE_CASE
|
|
{
|
|
std::string m_ctx_name;
|
|
ARC_CENTRE_PT_ANGLE m_geom;
|
|
};
|
|
|
|
|
|
/**
|
|
* Predicate for checking a polyline has all the points on (near) a circle of
|
|
* given centre and radius
|
|
* @param aPolyline the polyline to check
|
|
* @param aCentre the circle centre
|
|
* @param aRad the circle radius
|
|
* @param aTolEnds the tolerance for the endpoint-centre distance
|
|
* @return true if predicate met
|
|
*/
|
|
bool ArePolylineEndPointsNearCircle(
|
|
const SHAPE_LINE_CHAIN& aPolyline, const VECTOR2I& aCentre, int aRad, int aTolEnds )
|
|
{
|
|
std::vector<VECTOR2I> points;
|
|
|
|
for( int i = 0; i < aPolyline.PointCount(); ++i )
|
|
{
|
|
points.push_back( aPolyline.CPoint( i ) );
|
|
}
|
|
|
|
return GEOM_TEST::ArePointsNearCircle( points, aCentre, aRad, aTolEnds );
|
|
}
|
|
|
|
/**
|
|
* Predicate for checking a polyline has all the segment mid points on
|
|
* (near) a circle of given centre and radius
|
|
* @param aPolyline the polyline to check
|
|
* @param aCentre the circle centre
|
|
* @param aRad the circle radius
|
|
* @param aTolEnds the tolerance for the midpoint-centre distance
|
|
* @return true if predicate met
|
|
*/
|
|
bool ArePolylineMidPointsNearCircle(
|
|
const SHAPE_LINE_CHAIN& aPolyline, const VECTOR2I& aCentre, int aRad, int aTolMidPts )
|
|
{
|
|
std::vector<VECTOR2I> points;
|
|
|
|
for( int i = 0; i < aPolyline.PointCount() - 1; ++i )
|
|
{
|
|
const VECTOR2I mid_pt = ( aPolyline.CPoint( i ) + aPolyline.CPoint( i + 1 ) ) / 2;
|
|
points.push_back( mid_pt );
|
|
}
|
|
|
|
return GEOM_TEST::ArePointsNearCircle( points, aCentre, aRad, aTolMidPts );
|
|
}
|
|
|
|
#ifdef HAVE_EXPECTED_FAILURES
|
|
|
|
// Start and end point check fail for the 3 non-zero radius cases
|
|
BOOST_AUTO_TEST_CASE( ArcToPolyline, *boost::unit_test::expected_failures( 3 * 2 ) )
|
|
{
|
|
const std::vector<ARC_TO_POLYLINE_CASE> cases = {
|
|
{
|
|
"Zero rad",
|
|
{
|
|
{ 0, 0 },
|
|
{ 0, 0 },
|
|
180,
|
|
},
|
|
},
|
|
{
|
|
"Semicircle",
|
|
{
|
|
{ 0, 0 },
|
|
{ -10, 0 },
|
|
180,
|
|
},
|
|
},
|
|
{
|
|
// check larger sizes still have required precisions
|
|
// and that reverse angles work too
|
|
"Larger semicircle",
|
|
{
|
|
{ 0, 0 },
|
|
{ -10000, 0 },
|
|
-180,
|
|
},
|
|
},
|
|
{
|
|
// Make sure it doesn't only work for "easy" angles
|
|
"Non-round geometry",
|
|
{
|
|
{ 0, 0 },
|
|
{ -1234, 0 },
|
|
42.22,
|
|
},
|
|
},
|
|
};
|
|
|
|
const int width = 0;
|
|
const double accuracy = 1.0;
|
|
|
|
for( const auto& c : cases )
|
|
{
|
|
BOOST_TEST_CONTEXT( c.m_ctx_name )
|
|
{
|
|
const SHAPE_ARC this_arc{ c.m_geom.m_center_point, c.m_geom.m_start_point,
|
|
c.m_geom.m_center_angle, width };
|
|
|
|
const SHAPE_LINE_CHAIN chain = this_arc.ConvertToPolyline( accuracy );
|
|
|
|
BOOST_TEST_MESSAGE( "Polyline has " << chain.PointCount() << " points" );
|
|
|
|
const int pt_tol = 1;
|
|
|
|
// Start point where expected
|
|
BOOST_CHECK_EQUAL( chain.CPoint( 0 ), c.m_geom.m_start_point );
|
|
|
|
// End point where expected
|
|
BOOST_CHECK_PREDICATE( KI_TEST::IsVecWithinTol<VECTOR2I>,
|
|
( chain.CPoint( -1 ) )( this_arc.GetP1() )( pt_tol ) );
|
|
|
|
const int radius = ( c.m_geom.m_center_point - c.m_geom.m_start_point ).EuclideanNorm();
|
|
|
|
const int ep_tol = 2;
|
|
BOOST_CHECK_PREDICATE( ArePolylineEndPointsNearCircle,
|
|
( chain )( c.m_geom.m_center_point )( radius )( ep_tol ) );
|
|
|
|
const int mp_tol = 3;
|
|
BOOST_CHECK_PREDICATE( ArePolylineMidPointsNearCircle,
|
|
( chain )( c.m_geom.m_center_point )( radius )( mp_tol ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|