kicad/pcbnew/connectivity/connectivity_items.cpp

499 lines
12 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2016-2018 CERN
* Copyright (C) 2019-2022, 2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <core/kicad_algo.h>
#include <macros.h>
#include <connectivity/connectivity_items.h>
#include <trigo.h>
#include <wx/log.h>
int CN_ITEM::AnchorCount() const
{
if( !m_valid )
return 0;
switch( m_parent->Type() )
{
case PCB_TRACE_T:
case PCB_ARC_T:
return 2; // start and end
case PCB_SHAPE_T:
return m_anchors.size();
default:
return 1;
}
}
const VECTOR2I CN_ITEM::GetAnchor( int n ) const
{
if( !m_valid )
return VECTOR2I();
switch( m_parent->Type() )
{
case PCB_PAD_T:
return static_cast<PAD*>( m_parent )->GetPosition();
case PCB_TRACE_T:
case PCB_ARC_T:
if( n == 0 )
return static_cast<const PCB_TRACK*>( m_parent )->GetStart();
else
return static_cast<const PCB_TRACK*>( m_parent )->GetEnd();
case PCB_VIA_T:
return static_cast<const PCB_VIA*>( m_parent )->GetStart();
case PCB_SHAPE_T:
return ( n < static_cast<int>( m_anchors.size() ) ) ? m_anchors[n]->Pos() : VECTOR2I();
default:
UNIMPLEMENTED_FOR( m_parent->GetClass() );
return VECTOR2I();
}
}
void CN_ITEM::Dump()
{
wxLogDebug( " valid: %d, connected: \n", !!Valid() );
for( CN_ITEM* i : m_connected )
{
PCB_TRACK* t = static_cast<PCB_TRACK*>( i->Parent() );
wxLogDebug( wxT( " - %p %d\n" ), t, t->Type() );
}
}
int CN_ZONE_LAYER::AnchorCount() const
{
if( !Valid() )
return 0;
const ZONE* zone = static_cast<const ZONE*>( Parent() );
return zone->GetFilledPolysList( m_layer )->COutline( m_subpolyIndex ).PointCount() ? 1 : 0;
}
const VECTOR2I CN_ZONE_LAYER::GetAnchor( int n ) const
{
if( !Valid() )
return VECTOR2I();
const ZONE* zone = static_cast<const ZONE*>( Parent() );
return zone->GetFilledPolysList( m_layer )->COutline( m_subpolyIndex ).CPoint( 0 );
}
bool CN_ZONE_LAYER::HasSingleConnection()
{
int count = 0;
for( CN_ITEM* item : ConnectedItems() )
{
if( item->Valid() )
count++;
if( count > 1 )
break;
}
return count == 1;
}
void CN_ITEM::RemoveInvalidRefs()
{
for( auto it = m_connected.begin(); it != m_connected.end(); /* increment in loop */ )
{
if( !(*it)->Valid() )
it = m_connected.erase( it );
else
++it;
}
}
CN_ITEM* CN_LIST::Add( PAD* pad )
{
if( !pad->IsOnCopperLayer() )
return nullptr;
auto item = new CN_ITEM( pad, false, 1 );
item->AddAnchor( pad->ShapePos() );
item->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) );
switch( pad->GetAttribute() )
{
case PAD_ATTRIB::SMD:
case PAD_ATTRIB::NPTH:
case PAD_ATTRIB::CONN:
{
LSET lmsk = pad->GetLayerSet();
for( int i = 0; i <= MAX_CU_LAYERS; i++ )
{
if( lmsk[i] )
{
item->SetLayer( i );
break;
}
}
break;
}
default:
break;
}
addItemtoTree( item );
m_items.push_back( item );
SetDirty();
return item;
}
CN_ITEM* CN_LIST::Add( PCB_TRACK* track )
{
CN_ITEM* item = new CN_ITEM( track, true );
m_items.push_back( item );
item->AddAnchor( track->GetStart() );
item->AddAnchor( track->GetEnd() );
item->SetLayer( track->GetLayer() );
addItemtoTree( item );
SetDirty();
return item;
}
CN_ITEM* CN_LIST::Add( PCB_ARC* aArc )
{
CN_ITEM* item = new CN_ITEM( aArc, true );
m_items.push_back( item );
item->AddAnchor( aArc->GetStart() );
item->AddAnchor( aArc->GetEnd() );
item->SetLayer( aArc->GetLayer() );
addItemtoTree( item );
SetDirty();
return item;
}
CN_ITEM* CN_LIST::Add( PCB_VIA* via )
{
CN_ITEM* item = new CN_ITEM( via, !via->GetIsFree(), 1 );
m_items.push_back( item );
item->AddAnchor( via->GetStart() );
item->SetLayers( LAYER_RANGE( via->TopLayer(), via->BottomLayer() ) );
addItemtoTree( item );
SetDirty();
return item;
}
const std::vector<CN_ITEM*> CN_LIST::Add( ZONE* zone, PCB_LAYER_ID aLayer )
{
const std::shared_ptr<SHAPE_POLY_SET>& polys = zone->GetFilledPolysList( aLayer );
std::vector<CN_ITEM*> rv;
for( int j = 0; j < polys->OutlineCount(); j++ )
{
CN_ZONE_LAYER* zitem = new CN_ZONE_LAYER( zone, aLayer, j );
zitem->BuildRTree();
for( const VECTOR2I& pt : zone->GetFilledPolysList( aLayer )->COutline( j ).CPoints() )
zitem->AddAnchor( pt );
rv.push_back( Add( zitem ) );
}
return rv;
}
CN_ITEM* CN_LIST::Add( CN_ZONE_LAYER* zitem )
{
m_items.push_back( zitem );
addItemtoTree( zitem );
SetDirty();
return zitem;
}
CN_ITEM* CN_LIST::Add( PCB_SHAPE* shape )
{
CN_ITEM* item = new CN_ITEM( shape, true );
m_items.push_back( item );
for( const VECTOR2I& point : shape->GetConnectionPoints() )
item->AddAnchor( point );
item->SetLayer( shape->GetLayer() );
addItemtoTree( item );
SetDirty();
return item;
}
void CN_LIST::RemoveInvalidItems( std::vector<CN_ITEM*>& aGarbage )
{
if( !m_hasInvalid )
return;
auto lastItem = std::remove_if( m_items.begin(), m_items.end(),
[&aGarbage]( CN_ITEM* item )
{
if( !item->Valid() )
{
aGarbage.push_back ( item );
return true;
}
return false;
} );
m_items.resize( lastItem - m_items.begin() );
for( CN_ITEM* item : aGarbage )
m_index.Remove( item );
m_hasInvalid = false;
}
BOARD_CONNECTED_ITEM* CN_ANCHOR::Parent() const
{
assert( m_item->Valid() );
return m_item->Parent();
}
bool CN_ANCHOR::Valid() const
{
if( !m_item )
return false;
return m_item->Valid();
}
bool CN_ANCHOR::Dirty() const
{
return !Valid() || m_item->Dirty();
}
bool CN_ANCHOR::IsDangling() const
{
int accuracy = 0;
if( !m_cluster )
return true;
// the minimal number of items connected to item_ref
// at this anchor point to decide the anchor is *not* dangling
size_t minimal_count = 1;
size_t connected_count = m_item->ConnectedItems().size();
// a via can be removed if connected to only one other item.
if( Parent()->Type() == PCB_VIA_T )
return connected_count < 2;
if( m_item->AnchorCount() == 1 )
return connected_count < minimal_count;
if( Parent()->Type() == PCB_TRACE_T || Parent()->Type() == PCB_ARC_T )
{
accuracy = KiROUND( static_cast<const PCB_TRACK*>( Parent() )->GetWidth() / 2 );
}
else if( Parent()->Type() == PCB_SHAPE_T )
{
auto shape = static_cast<const PCB_SHAPE*>( Parent() );
if( !shape->IsFilled() )
accuracy = KiROUND( shape->GetWidth() / 2 );
}
// Items with multiple anchors have usually items connected to each anchor.
// We want only the item count of this anchor point
connected_count = 0;
for( CN_ITEM* item : m_item->ConnectedItems() )
{
if( item->Parent()->Type() == PCB_ZONE_T )
{
ZONE* zone = static_cast<ZONE*>( item->Parent() );
if( zone->HitTestFilledArea( ToLAYER_ID( item->Layer() ), Pos(), accuracy ) )
connected_count++;
}
else if( item->Parent()->HitTest( Pos(), accuracy ) )
{
connected_count++;
}
}
return connected_count < minimal_count;
}
int CN_ANCHOR::ConnectedItemsCount() const
{
if( !m_cluster )
return 0;
int connected_count = 0;
for( CN_ITEM* item : m_item->ConnectedItems() )
{
if( item->Parent()->Type() == PCB_ZONE_T )
{
ZONE* zone = static_cast<ZONE*>( item->Parent() );
if( zone->HitTestFilledArea( ToLAYER_ID( item->Layer() ), Pos() ) )
connected_count++;
}
else if( item->Parent()->HitTest( Pos() ) )
{
connected_count++;
}
}
return connected_count;
}
CN_CLUSTER::CN_CLUSTER()
{
m_items.reserve( 64 );
m_originPad = nullptr;
m_originNet = -1;
m_conflicting = false;
}
CN_CLUSTER::~CN_CLUSTER()
{
}
wxString CN_CLUSTER::OriginNetName() const
{
if( !m_originPad || !m_originPad->Valid() )
return "<none>";
else
return m_originPad->Parent()->GetNetname();
}
bool CN_CLUSTER::Contains( const CN_ITEM* aItem )
{
return alg::contains( m_items, aItem );
}
bool CN_CLUSTER::Contains( const BOARD_CONNECTED_ITEM* aItem )
{
return std::find_if( m_items.begin(), m_items.end(),
[&aItem]( const CN_ITEM* item )
{
return item->Valid() && item->Parent() == aItem;
} ) != m_items.end();
}
void CN_CLUSTER::Dump()
{
for( CN_ITEM* item : m_items )
{
wxLogTrace( wxT( "CN" ), wxT( " - item : %p bitem : %p type : %d inet %s\n" ),
item,
item->Parent(),
item->Parent()->Type(),
(const char*) item->Parent()->GetNetname().c_str() );
wxLogTrace( wxT( "CN" ), wxT( "- item : %p bitem : %p type : %d inet %s\n" ),
item,
item->Parent(),
item->Parent()->Type(),
(const char*) item->Parent()->GetNetname().c_str() );
item->Dump();
}
}
void CN_CLUSTER::Add( CN_ITEM* item )
{
m_items.push_back( item );
int netCode = item->Net();
if( netCode <= 0 )
return;
if( m_originNet <= 0 )
{
m_originNet = netCode;
m_netRanks[m_originNet] = 0;
}
if( item->Parent()->Type() == PCB_PAD_T && !static_cast<PAD*>( item->Parent() )->IsFreePad() )
{
int rank;
auto it = m_netRanks.find( netCode );
if( it == m_netRanks.end() )
{
m_netRanks[netCode] = 1;
rank = 1;
}
else
{
it->second++;
rank = it->second;
}
if( !m_originPad || rank > m_netRanks[m_originNet] )
{
m_originPad = item;
m_originNet = netCode;
}
if( m_originPad && item->Net() != m_originNet )
m_conflicting = true;
}
}