kicad/pcbnew/exporters/export_gencad_writer.cpp

1232 lines
41 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 1992-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <build_version.h>
#include <board.h>
#include <board_design_settings.h>
#include <convert_basic_shapes_to_polygon.h>
#include <pcb_shape.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_track.h>
#include <locale_io.h>
#include <macros.h>
#include <hash_eda.h>
#include <export_gencad_writer.h>
// layer names for Gencad export
static std::string GenCADLayerName( int aCuCount, PCB_LAYER_ID aId )
{
if( IsCopperLayer( aId ) )
{
if( aId == F_Cu )
return "TOP";
else if( aId == B_Cu )
return "BOTTOM";
else if( aId <= 14 )
return StrPrintf( "INNER%d", aCuCount - aId - 1 );
else
return StrPrintf( "LAYER%d", aId );
}
else
{
const char* txt;
// using a switch to clearly show mapping & catch out of bounds index.
switch( aId )
{
// Technicals
case B_Adhes: txt = "B.Adhes"; break;
case F_Adhes: txt = "F.Adhes"; break;
case B_Paste: txt = "SOLDERPASTE_BOTTOM"; break;
case F_Paste: txt = "SOLDERPASTE_TOP"; break;
case B_SilkS: txt = "SILKSCREEN_BOTTOM"; break;
case F_SilkS: txt = "SILKSCREEN_TOP"; break;
case B_Mask: txt = "SOLDERMASK_BOTTOM"; break;
case F_Mask: txt = "SOLDERMASK_TOP"; break;
// Users
case Dwgs_User: txt = "Dwgs.User"; break;
case Cmts_User: txt = "Cmts.User"; break;
case Eco1_User: txt = "Eco1.User"; break;
case Eco2_User: txt = "Eco2.User"; break;
case Edge_Cuts: txt = "Edge.Cuts"; break;
case Margin: txt = "Margin"; break;
// Footprint
case F_CrtYd: txt = "F_CrtYd"; break;
case B_CrtYd: txt = "B_CrtYd"; break;
case F_Fab: txt = "F_Fab"; break;
case B_Fab: txt = "B_Fab"; break;
default:
wxASSERT_MSG( 0, wxT( "aId UNEXPECTED" ) );
txt = "BAD-INDEX!"; break;
}
return txt;
}
}
static const PCB_LAYER_ID gc_seq[] = {
B_Cu,
In30_Cu,
In29_Cu,
In28_Cu,
In27_Cu,
In26_Cu,
In25_Cu,
In24_Cu,
In23_Cu,
In22_Cu,
In21_Cu,
In20_Cu,
In19_Cu,
In18_Cu,
In17_Cu,
In16_Cu,
In15_Cu,
In14_Cu,
In13_Cu,
In12_Cu,
In11_Cu,
In10_Cu,
In9_Cu,
In8_Cu,
In7_Cu,
In6_Cu,
In5_Cu,
In4_Cu,
In3_Cu,
In2_Cu,
In1_Cu,
F_Cu,
};
// flipped layer name for Gencad export (to make CAM350 imports correct)
static std::string GenCADLayerNameFlipped( int aCuCount, PCB_LAYER_ID aId )
{
if( 1<= aId && aId <= 14 )
return StrPrintf( "INNER%d", 14 - aId );
return GenCADLayerName( aCuCount, aId );
}
static wxString escapeString( const wxString& aString )
{
wxString copy( aString );
copy.Replace( wxT( "\"" ), wxT( "\\\"" ) );
return copy;
}
static std::string fmt_mask( LSET aSet )
{
return StrPrintf( "%08x", (unsigned) ( aSet & LSET::AllCuMask() ).to_ulong() );
}
// Association between shape names (using shapeName index) and components
static std::map<FOOTPRINT*, int> componentShapes;
static std::map<int, wxString> shapeNames;
const wxString GENCAD_EXPORTER::getShapeName( FOOTPRINT* aFootprint )
{
static const wxString invalid( "invalid" );
if( m_useIndividualShapes )
return aFootprint->GetReference();
auto itShape = componentShapes.find( aFootprint );
wxCHECK( itShape != componentShapes.end(), invalid );
auto itName = shapeNames.find( itShape->second );
wxCHECK( itName != shapeNames.end(), invalid );
return itName->second;
}
// GerbTool chokes on units different than INCH so this is the conversion factor
const static double SCALE_FACTOR = 1000.0 * pcbIUScale.IU_PER_MILS;
/* Two helper functions to calculate coordinates of footprints in gencad values
* (GenCAD Y axis from bottom to top)
*/
double GENCAD_EXPORTER::MapXTo( int aX )
{
return (aX - GencadOffset.x) / SCALE_FACTOR;
}
double GENCAD_EXPORTER::MapYTo( int aY )
{
return (GencadOffset.y - aY) / SCALE_FACTOR;
}
bool GENCAD_EXPORTER::WriteFile( wxString& aFullFileName )
{
componentShapes.clear();
shapeNames.clear();
m_file = wxFopen( aFullFileName, wxT( "wt" ) );
if( !m_file )
return false;
// Switch the locale to standard C (needed to print floating point numbers)
LOCALE_IO toggle;
BOARD* pcb = m_board;
// Update some board data, to ensure a reliable gencad export
pcb->ComputeBoundingBox( false, false );
/* Temporary modification of footprints that are flipped (i.e. on bottom
* layer) to convert them to non flipped footprints.
* This is necessary to easily export shapes to GenCAD,
* that are given as normal orientation (non flipped, rotation = 0))
* these changes will be undone later
*/
for( FOOTPRINT* footprint : pcb->Footprints() )
{
footprint->SetFlag( 0 );
if( footprint->GetLayer() == B_Cu )
{
footprint->Flip( footprint->GetPosition(), false );
footprint->SetFlag( 1 );
}
}
/* Gencad has some mandatory and some optional sections: some importer
* need the padstack section (which is optional) anyway. Also the
* order of the section *is* important */
CreateHeaderInfoData(); // Gencad header
CreateBoardSection(); // Board perimeter
CreatePadsShapesSection(); // Pads and padstacks
CreateArtworksSection(); // Empty but mandatory
/* Gencad splits a component info in shape, component and device.
* We don't do any sharing (it would be difficult since each module is
* customizable after placement) */
CreateShapesSection();
CreateComponentsSection();
CreateDevicesSection();
// In a similar way the netlist is split in net, track and route
CreateSignalsSection();
CreateTracksInfoData();
CreateRoutesSection();
fclose( m_file );
// Undo the footprints modifications (flipped footprints)
for( FOOTPRINT* footprint : pcb->Footprints() )
{
if( footprint->GetFlag() )
{
footprint->Flip( footprint->GetPosition(), false );
footprint->SetFlag( 0 );
}
}
componentShapes.clear();
shapeNames.clear();
return true;
}
// Sort vias for uniqueness
static bool ViaSort( const PCB_VIA* aPadref, const PCB_VIA* aPadcmp )
{
if( aPadref->GetWidth() != aPadcmp->GetWidth() )
return aPadref->GetWidth() < aPadcmp->GetWidth();
if( aPadref->GetDrillValue() != aPadcmp->GetDrillValue() )
return aPadref->GetDrillValue() < aPadcmp->GetDrillValue();
if( aPadref->GetLayerSet() != aPadcmp->GetLayerSet() )
return aPadref->GetLayerSet().FmtBin().compare( aPadcmp->GetLayerSet().FmtBin() ) < 0;
return false;
}
void GENCAD_EXPORTER::CreateArtworksSection( )
{
// The ARTWORKS section is empty but (officially) mandatory
fputs( "$ARTWORKS\n", m_file );
fputs( "$ENDARTWORKS\n\n", m_file );
}
void GENCAD_EXPORTER::CreatePadsShapesSection()
{
// Emit PADS and PADSTACKS. They are sorted and emitted uniquely.
// Via name is synthesized from their attributes, pads are numbered
std::vector<PAD*> padstacks;
std::vector<PCB_VIA*> vias;
std::vector<PCB_VIA*> viastacks;
padstacks.resize( 1 ); // We count pads from 1
// The master layermask (i.e. the enabled layers) for padstack generation
LSET master_layermask = m_board->GetDesignSettings().GetEnabledLayers();
int cu_count = m_board->GetCopperLayerCount();
fputs( "$PADS\n", m_file );
// Enumerate and sort the pads
std::vector<PAD*> pads = m_board->GetPads();
std::sort( pads.begin(), pads.end(), []( const PAD* a, const PAD* b )
{
return PAD::Compare( a, b ) < 0;
} );
// The same for vias
for( PCB_TRACK* track : m_board->Tracks() )
{
if( PCB_VIA* via = dyn_cast<PCB_VIA*>( track ) )
vias.push_back( via );
}
std::sort( vias.begin(), vias.end(), ViaSort );
vias.erase( std::unique( vias.begin(), vias.end(), []( const PCB_VIA* a, const PCB_VIA* b )
{
return ViaSort( a, b ) == false;
} ),
vias.end() );
// Emit vias pads
for( PCB_VIA* via : vias )
{
viastacks.push_back( via );
fprintf( m_file, "PAD V%d.%d.%s ROUND %g\nCIRCLE 0 0 %g\n",
via->GetWidth(), via->GetDrillValue(),
fmt_mask( via->GetLayerSet() & master_layermask ).c_str(),
via->GetDrillValue() / SCALE_FACTOR,
via->GetWidth() / (SCALE_FACTOR * 2) );
}
// Emit component pads
PAD* old_pad = nullptr;
int pad_name_number = 0;
for( unsigned i = 0; i<pads.size(); ++i )
{
PAD* pad = pads[i];
const VECTOR2I& off = pad->GetOffset();
pad->SetSubRatsnest( pad_name_number );
// @warning: This code is not 100% correct. The #PAD::Compare function does not test
// custom pad primitives so there may be duplicate custom pads in the export.
if( old_pad && 0 == PAD::Compare( old_pad, pad ) )
continue;
old_pad = pad;
pad_name_number++;
pad->SetSubRatsnest( pad_name_number );
fprintf( m_file, "PAD P%d", pad->GetSubRatsnest() );
padstacks.push_back( pad ); // Will have its own padstack later
int dx = pad->GetSize().x / 2;
int dy = pad->GetSize().y / 2;
switch( pad->GetShape() )
{
default:
UNIMPLEMENTED_FOR( pad->ShowPadShape() );
KI_FALLTHROUGH;
case PAD_SHAPE::CIRCLE:
fprintf( m_file, " ROUND %g\n",
pad->GetDrillSize().x / SCALE_FACTOR );
/* Circle is center, radius */
fprintf( m_file, "CIRCLE %g %g %g\n",
off.x / SCALE_FACTOR,
-off.y / SCALE_FACTOR,
pad->GetSize().x / (SCALE_FACTOR * 2) );
break;
case PAD_SHAPE::RECTANGLE:
fprintf( m_file, " RECTANGULAR %g\n",
pad->GetDrillSize().x / SCALE_FACTOR );
// Rectangle is begin, size *not* begin, end!
fprintf( m_file, "RECTANGLE %g %g %g %g\n",
(-dx + off.x ) / SCALE_FACTOR,
(-dy - off.y ) / SCALE_FACTOR,
dx / (SCALE_FACTOR / 2), dy / (SCALE_FACTOR / 2) );
break;
case PAD_SHAPE::ROUNDRECT:
case PAD_SHAPE::OVAL:
{
const VECTOR2I& size = pad->GetSize();
int radius = std::min( size.x, size.y ) / 2;
if( pad->GetShape() == PAD_SHAPE::ROUNDRECT )
{
radius = pad->GetRoundRectCornerRadius();
}
int lineX = size.x / 2 - radius;
int lineY = size.y / 2 - radius;
fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR );
// bottom left arc
fprintf( m_file, "ARC %g %g %g %g %g %g\n",
( off.x - lineX - radius ) / SCALE_FACTOR,
( -off.y - lineY ) / SCALE_FACTOR, ( off.x - lineX ) / SCALE_FACTOR,
( -off.y - lineY - radius ) / SCALE_FACTOR,
( off.x - lineX ) / SCALE_FACTOR, ( -off.y - lineY ) / SCALE_FACTOR );
// bottom line
if( lineX > 0 )
{
fprintf( m_file, "LINE %g %g %g %g\n",
( off.x - lineX ) / SCALE_FACTOR,
( -off.y - lineY - radius ) / SCALE_FACTOR,
( off.x + lineX ) / SCALE_FACTOR,
( -off.y - lineY - radius ) / SCALE_FACTOR );
}
// bottom right arc
fprintf( m_file, "ARC %g %g %g %g %g %g\n",
( off.x + lineX ) / SCALE_FACTOR,
( -off.y - lineY - radius ) / SCALE_FACTOR,
( off.x + lineX + radius ) / SCALE_FACTOR,
( -off.y - lineY ) / SCALE_FACTOR, ( off.x + lineX ) / SCALE_FACTOR,
( -off.y - lineY ) / SCALE_FACTOR );
// right line
if( lineY > 0 )
{
fprintf( m_file, "LINE %g %g %g %g\n",
( off.x + lineX + radius ) / SCALE_FACTOR,
( -off.y + lineY ) / SCALE_FACTOR,
( off.x + lineX + radius ) / SCALE_FACTOR,
( -off.y - lineY ) / SCALE_FACTOR );
}
// top right arc
fprintf( m_file, "ARC %g %g %g %g %g %g\n",
( off.x + lineX + radius ) / SCALE_FACTOR,
( -off.y + lineY ) / SCALE_FACTOR, ( off.x + lineX ) / SCALE_FACTOR,
( -off.y + lineY + radius ) / SCALE_FACTOR,
( off.x + lineX ) / SCALE_FACTOR, ( -off.y + lineY ) / SCALE_FACTOR );
// top line
if( lineX > 0 )
{
fprintf( m_file, "LINE %g %g %g %g\n"
, ( off.x - lineX ) / SCALE_FACTOR,
( -off.y + lineY + radius ) / SCALE_FACTOR,
( off.x + lineX ) / SCALE_FACTOR,
( -off.y + lineY + radius ) / SCALE_FACTOR );
}
// top left arc
fprintf( m_file, "ARC %g %g %g %g %g %g\n",
( off.x - lineX ) / SCALE_FACTOR,
( -off.y + lineY + radius ) / SCALE_FACTOR,
( off.x - lineX - radius ) / SCALE_FACTOR,
( -off.y + lineY ) / SCALE_FACTOR, ( off.x - lineX ) / SCALE_FACTOR,
( -off.y + lineY ) / SCALE_FACTOR );
// left line
if( lineY > 0 )
{
fprintf( m_file, "LINE %g %g %g %g\n",
( off.x - lineX - radius ) / SCALE_FACTOR,
( -off.y - lineY ) / SCALE_FACTOR,
( off.x - lineX - radius ) / SCALE_FACTOR,
( -off.y + lineY ) / SCALE_FACTOR );
}
break;
}
case PAD_SHAPE::TRAPEZOID:
{
fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR );
int ddx = pad->GetDelta().x / 2;
int ddy = pad->GetDelta().y / 2;
VECTOR2I poly[4];
poly[0] = VECTOR2I( -dx + ddy, dy + ddx );
poly[1] = VECTOR2I( dx - ddy, dy - ddx );
poly[2] = VECTOR2I( dx + ddy, -dy + ddx );
poly[3] = VECTOR2I( -dx - ddy, -dy - ddx );
for( int cur = 0; cur < 4; ++cur )
{
int next = ( cur + 1 ) % 4;
fprintf( m_file, "LINE %g %g %g %g\n",
( off.x + poly[cur].x ) / SCALE_FACTOR,
( -off.y - poly[cur].y ) / SCALE_FACTOR,
( off.x + poly[next].x ) / SCALE_FACTOR,
( -off.y - poly[next].y ) / SCALE_FACTOR );
}
break;
}
case PAD_SHAPE::CHAMFERED_RECT:
{
fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR );
SHAPE_POLY_SET outline;
int maxError = m_board->GetDesignSettings().m_MaxError;
VECTOR2I padOffset( 0, 0 );
TransformRoundChamferedRectToPolygon( outline, padOffset, pad->GetSize(),
pad->GetOrientation(),
pad->GetRoundRectCornerRadius(),
pad->GetChamferRectRatio(),
pad->GetChamferPositions(), 0, maxError,
ERROR_INSIDE );
for( int jj = 0; jj < outline.OutlineCount(); ++jj )
{
const SHAPE_LINE_CHAIN& poly = outline.COutline( jj );
int pointCount = poly.PointCount();
for( int ii = 0; ii < pointCount; ii++ )
{
int next = ( ii + 1 ) % pointCount;
fprintf( m_file, "LINE %g %g %g %g\n",
poly.CPoint( ii ).x / SCALE_FACTOR,
-poly.CPoint( ii ).y / SCALE_FACTOR,
poly.CPoint( next ).x / SCALE_FACTOR,
-poly.CPoint( next ).y / SCALE_FACTOR );
}
}
break;
}
case PAD_SHAPE::CUSTOM:
{
fprintf( m_file, " POLYGON %g\n", pad->GetDrillSize().x / SCALE_FACTOR );
SHAPE_POLY_SET outline;
pad->MergePrimitivesAsPolygon( &outline );
for( int jj = 0; jj < outline.OutlineCount(); ++jj )
{
const SHAPE_LINE_CHAIN& poly = outline.COutline( jj );
int pointCount = poly.PointCount();
for( int ii = 0; ii < pointCount; ii++ )
{
int next = ( ii + 1 ) % pointCount;
fprintf( m_file, "LINE %g %g %g %g\n",
( off.x + poly.CPoint( ii ).x ) / SCALE_FACTOR,
( -off.y - poly.CPoint( ii ).y ) / SCALE_FACTOR,
( off.x + poly.CPoint( next ).x ) / SCALE_FACTOR,
( -off.y - poly.CPoint( next ).y ) / SCALE_FACTOR );
}
}
break;
}
}
}
fputs( "\n$ENDPADS\n\n", m_file );
// Now emit the padstacks definitions, using the combined layer masks
fputs( "$PADSTACKS\n", m_file );
// Via padstacks
for( unsigned i = 0; i < viastacks.size(); i++ )
{
PCB_VIA* via = viastacks[i];
LSET mask = via->GetLayerSet() & master_layermask;
fprintf( m_file, "PADSTACK VIA%d.%d.%s %g\n",
via->GetWidth(), via->GetDrillValue(),
fmt_mask( mask ).c_str(),
via->GetDrillValue() / SCALE_FACTOR );
for( LSEQ seq = mask.Seq( gc_seq, arrayDim( gc_seq ) ); seq; ++seq )
{
PCB_LAYER_ID layer = *seq;
fprintf( m_file, "PAD V%d.%d.%s %s 0 0\n",
via->GetWidth(), via->GetDrillValue(),
fmt_mask( mask ).c_str(),
GenCADLayerName( cu_count, layer ).c_str() );
}
}
/* Component padstacks
* Older versions of CAM350 don't apply correctly the FLIP semantics for
* padstacks, i.e. doesn't swap the top and bottom layers... so I need to
* define the shape as MIRRORX and define a separate 'flipped' padstack...
* until it appears yet another non-compliant importer */
for( unsigned i = 1; i < padstacks.size(); i++ )
{
PAD* pad = padstacks[i];
// Straight padstack
fprintf( m_file, "PADSTACK PAD%u %g\n", i, pad->GetDrillSize().x / SCALE_FACTOR );
LSET pad_set = pad->GetLayerSet() & master_layermask;
// the special gc_seq
for( LSEQ seq = pad_set.Seq( gc_seq, arrayDim( gc_seq ) ); seq; ++seq )
{
PCB_LAYER_ID layer = *seq;
fprintf( m_file, "PAD P%u %s 0 0\n", i, GenCADLayerName( cu_count, layer ).c_str() );
}
// Flipped padstack
if( m_flipBottomPads )
{
fprintf( m_file, "PADSTACK PAD%uF %g\n", i, pad->GetDrillSize().x / SCALE_FACTOR );
// the normal PCB_LAYER_ID sequence is inverted from gc_seq[]
for( LSEQ seq = pad_set.Seq(); seq; ++seq )
{
PCB_LAYER_ID layer = *seq;
fprintf( m_file, "PAD P%u %s 0 0\n", i,
GenCADLayerNameFlipped( cu_count, layer ).c_str() );
}
}
}
fputs( "$ENDPADSTACKS\n\n", m_file );
}
/// Compute hashes for footprints without taking into account their position, rotation or layer
static size_t hashFootprint( const FOOTPRINT* aFootprint )
{
size_t ret = 0x11223344;
constexpr int flags = HASH_FLAGS::HASH_POS | HASH_FLAGS::REL_COORD
| HASH_FLAGS::HASH_ROT | HASH_FLAGS::HASH_LAYER;
for( PCB_FIELD* i : aFootprint->Fields() )
ret += hash_fp_item( i, flags );
for( BOARD_ITEM* i : aFootprint->GraphicalItems() )
ret += hash_fp_item( i, flags );
for( PAD* i : aFootprint->Pads() )
ret += hash_fp_item( i, flags );
return ret;
}
/* Creates the footprint shape list.
* Since module shape is customizable after the placement we cannot share them;
* instead we opt for the one-module-one-shape-one-component-one-device approach
*/
void GENCAD_EXPORTER::CreateShapesSection()
{
const char* layer;
wxString pinname;
const char* mirror = "0";
std::map<wxString, size_t> shapes;
fputs( "$SHAPES\n", m_file );
for( FOOTPRINT* footprint : m_board->Footprints() )
{
if( !m_useIndividualShapes )
{
// Check if such shape has been already generated, and if so - reuse it
// It is necessary to compute hash (i.e. check all children objects) as
// certain components instances might have been modified on the board.
// In such case the shape will be different despite the same LIB_ID.
wxString shapeName = footprint->GetFPID().Format();
auto shapeIt = shapes.find( shapeName );
size_t modHash = hashFootprint( footprint );
if( shapeIt != shapes.end() )
{
if( modHash != shapeIt->second )
{
// there is an entry for this footprint, but it has a modified shape,
// so we need to create a new entry
wxString newShapeName;
int suffix = 0;
// find an unused name or matching entry
do
{
newShapeName = wxString::Format( wxT( "%s_%d" ), shapeName, suffix );
shapeIt = shapes.find( newShapeName );
++suffix;
}
while( shapeIt != shapes.end() && shapeIt->second != modHash );
shapeName = newShapeName;
}
if( shapeIt != shapes.end() && modHash == shapeIt->second )
{
// shape found, so reuse it
componentShapes[footprint] = modHash;
continue;
}
}
// new shape
componentShapes[footprint] = modHash;
shapeNames[modHash] = shapeName;
shapes[shapeName] = modHash;
FootprintWriteShape( footprint, shapeName );
}
else // individual shape for each component
{
FootprintWriteShape( footprint, footprint->GetReference() );
}
// set of already emitted pins to check for duplicates
std::set<wxString> pins;
for( PAD* pad : footprint->Pads() )
{
/* Padstacks are defined using the correct layers for the pads, therefore to
* all pads need to be marked as TOP to use the padstack information correctly.
*/
layer = "TOP";
pinname = pad->GetNumber();
if( pinname.IsEmpty() )
pinname = wxT( "none" );
if( m_useUniquePins )
{
int suffix = 0;
wxString origPinname( pinname );
auto it = pins.find( pinname );
while( it != pins.end() )
{
pinname = wxString::Format( wxT( "%s_%d" ), origPinname, suffix );
++suffix;
it = pins.find( pinname );
}
pins.insert( pinname );
}
EDA_ANGLE orient = pad->GetOrientation() - footprint->GetOrientation();
orient.Normalize();
VECTOR2I padPos = pad->GetFPRelativePosition();
// Bottom side footprints use the flipped padstack
fprintf( m_file, ( m_flipBottomPads && footprint->GetFlag() ) ?
"PIN \"%s\" PAD%dF %g %g %s %g %s\n" :
"PIN \"%s\" PAD%d %g %g %s %g %s\n",
TO_UTF8( escapeString( pinname ) ), pad->GetSubRatsnest(),
padPos.x / SCALE_FACTOR,
-padPos.y / SCALE_FACTOR,
layer, orient.AsDegrees(), mirror );
}
}
fputs( "$ENDSHAPES\n\n", m_file );
}
/* Creates the section $COMPONENTS (Footprints placement)
* Bottom side components are difficult to handle: shapes must be mirrored or
* flipped, silk layers need to be handled correctly and so on. Also it seems
* that *no one* follows the specs...
*/
void GENCAD_EXPORTER::CreateComponentsSection()
{
fputs( "$COMPONENTS\n", m_file );
int cu_count = m_board->GetCopperLayerCount();
for( FOOTPRINT* footprint : m_board->Footprints() )
{
const char* mirror;
const char* flip;
EDA_ANGLE fp_orient = footprint->GetOrientation();
if( footprint->GetFlag() )
{
mirror = "MIRRORX";
flip = "FLIP";
fp_orient = fp_orient.Invert().Normalize();
}
else
{
mirror = "0";
flip = "0";
}
fprintf( m_file, "\nCOMPONENT \"%s\"\n",
TO_UTF8( escapeString( footprint->GetReference() ) ) );
fprintf( m_file, "DEVICE \"DEV_%s\"\n",
TO_UTF8( escapeString( getShapeName( footprint ) ) ) );
fprintf( m_file, "PLACE %g %g\n",
MapXTo( footprint->GetPosition().x ),
MapYTo( footprint->GetPosition().y ) );
fprintf( m_file, "LAYER %s\n",
footprint->GetFlag() ? "BOTTOM" : "TOP" );
fprintf( m_file, "ROTATION %g\n",
fp_orient.AsDegrees() );
fprintf( m_file, "SHAPE \"%s\" %s %s\n",
TO_UTF8( escapeString( getShapeName( footprint ) ) ),
mirror, flip );
// Text on silk layer: RefDes and value (are they actually useful?)
for( PCB_TEXT* textItem : { &footprint->Reference(), &footprint->Value() } )
{
std::string layer = GenCADLayerName( cu_count,
footprint->GetFlag() ? B_SilkS : F_SilkS );
fprintf( m_file, "TEXT %g %g %g %g %s %s \"%s\"",
textItem->GetFPRelativePosition().x / SCALE_FACTOR,
-textItem->GetFPRelativePosition().y / SCALE_FACTOR,
textItem->GetTextWidth() / SCALE_FACTOR,
textItem->GetTextAngle().AsDegrees(),
mirror,
layer.c_str(),
TO_UTF8( escapeString( textItem->GetText() ) ) );
BOX2I textBox = textItem->GetTextBox();
fprintf( m_file, " 0 0 %g %g\n",
textBox.GetWidth() / SCALE_FACTOR,
textBox.GetHeight() / SCALE_FACTOR );
}
// The SHEET is a 'generic description' for referencing the component
fprintf( m_file, "SHEET \"RefDes: %s, Value: %s\"\n",
TO_UTF8( footprint->GetReference() ),
TO_UTF8( footprint->GetValue() ) );
}
fputs( "$ENDCOMPONENTS\n\n", m_file );
}
void GENCAD_EXPORTER::CreateSignalsSection()
{
// Emit the netlist (which is actually the thing for which GenCAD is used these
// days!); tracks are handled later
wxString msg;
NETINFO_ITEM* net;
int NbNoConn = 1;
fputs( "$SIGNALS\n", m_file );
for( unsigned ii = 0; ii < m_board->GetNetCount(); ii++ )
{
net = m_board->FindNet( ii );
if( net )
{
if( net->GetNetname() == wxEmptyString ) // dummy netlist (no connection)
{
msg.Printf( wxT( "NoConnection%d" ), NbNoConn++ );
}
if( net->GetNetCode() <= 0 ) // dummy netlist (no connection)
continue;
msg = wxT( "SIGNAL \"" ) + escapeString( net->GetNetname() ) + wxT( "\"" );
fputs( TO_UTF8( msg ), m_file );
fputs( "\n", m_file );
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( pad->GetNetCode() != net->GetNetCode() )
continue;
msg.Printf( wxT( "NODE \"%s\" \"%s\"" ),
escapeString( footprint->GetReference() ),
escapeString( pad->GetNumber() ) );
fputs( TO_UTF8( msg ), m_file );
fputs( "\n", m_file );
}
}
}
}
fputs( "$ENDSIGNALS\n\n", m_file );
}
bool GENCAD_EXPORTER::CreateHeaderInfoData()
{
wxString msg;
fputs( "$HEADER\n", m_file );
fputs( "GENCAD 1.4\n", m_file );
// Please note: GenCAD syntax requires quoted strings if they can contain spaces
msg.Printf( wxT( "USER \"KiCad %s\"\n" ), GetBuildVersion() );
fputs( TO_UTF8( msg ), m_file );
msg = wxT( "DRAWING \"" ) + m_board->GetFileName() + wxT( "\"\n" );
fputs( TO_UTF8( msg ), m_file );
wxString rev = ExpandTextVars( m_board->GetTitleBlock().GetRevision(), m_board->GetProject() );
wxString date = ExpandTextVars( m_board->GetTitleBlock().GetDate(), m_board->GetProject() );
msg = wxT( "REVISION \"" ) + rev + wxT( " " ) + date + wxT( "\"\n" );
fputs( TO_UTF8( msg ), m_file );
fputs( "UNITS INCH\n", m_file );
// giving 0 as the argument to Map{X,Y}To returns the scaled origin point
msg.Printf( wxT( "ORIGIN %g %g\n" ),
m_storeOriginCoords ? MapXTo( 0 ) : 0,
m_storeOriginCoords ? MapYTo( 0 ) : 0 );
fputs( TO_UTF8( msg ), m_file );
fputs( "INTERTRACK 0\n", m_file );
fputs( "$ENDHEADER\n\n", m_file );
return true;
}
void GENCAD_EXPORTER::CreateRoutesSection()
{
/* Creates the section ROUTES
* that handles tracks, vias
* TODO: add zones
* section:
* $ROUTE
* ...
* $ENROUTE
* Track segments must be sorted by nets
*/
int vianum = 1;
int old_netcode, old_width, old_layer;
LSET master_layermask = m_board->GetDesignSettings().GetEnabledLayers();
int cu_count = m_board->GetCopperLayerCount();
TRACKS tracks( m_board->Tracks() );
std::sort( tracks.begin(), tracks.end(),
[]( const PCB_TRACK* a, const PCB_TRACK* b )
{
if( a->GetNetCode() == b->GetNetCode() )
{
if( a->GetWidth() == b->GetWidth() )
return ( a->GetLayer() < b->GetLayer() );
return ( a->GetWidth() < b->GetWidth() );
}
return ( a->GetNetCode() < b->GetNetCode() );
} );
fputs( "$ROUTES\n", m_file );
old_netcode = -1; old_width = -1; old_layer = -1;
for( PCB_TRACK* track : tracks )
{
if( old_netcode != track->GetNetCode() )
{
old_netcode = track->GetNetCode();
NETINFO_ITEM* net = track->GetNet();
wxString netname;
if( net && (net->GetNetname() != wxEmptyString) )
netname = net->GetNetname();
else
netname = wxT( "_noname_" );
fprintf( m_file, "ROUTE \"%s\"\n", TO_UTF8( escapeString( netname ) ) );
}
if( old_width != track->GetWidth() )
{
old_width = track->GetWidth();
fprintf( m_file, "TRACK TRACK%d\n", track->GetWidth() );
}
if( track->Type() == PCB_TRACE_T )
{
if( old_layer != track->GetLayer() )
{
old_layer = track->GetLayer();
fprintf( m_file, "LAYER %s\n",
GenCADLayerName( cu_count, track->GetLayer() ).c_str() );
}
fprintf( m_file, "LINE %g %g %g %g\n",
MapXTo( track->GetStart().x ), MapYTo( track->GetStart().y ),
MapXTo( track->GetEnd().x ), MapYTo( track->GetEnd().y ) );
}
if( track->Type() == PCB_VIA_T )
{
const PCB_VIA* via = static_cast<const PCB_VIA*>(track);
LSET vset = via->GetLayerSet() & master_layermask;
fprintf( m_file, "VIA VIA%d.%d.%s %g %g ALL %g via%d\n",
via->GetWidth(), via->GetDrillValue(),
fmt_mask( vset ).c_str(),
MapXTo( via->GetStart().x ), MapYTo( via->GetStart().y ),
via->GetDrillValue() / SCALE_FACTOR, vianum++ );
}
}
fputs( "$ENDROUTES\n\n", m_file );
}
void GENCAD_EXPORTER::CreateDevicesSection()
{
/* Creates the section $DEVICES
* This is a list of footprints properties
* ( Shapes are in section $SHAPE )
*/
std::set<wxString> emitted;
fputs( "$DEVICES\n", m_file );
// componentShapes (as a std::map<>) does not give the same order for items between 2 runs.
// This is annoying when one want to compare 2 similar files.
// Therefore we store the strings in a wxArrayString, and after created, strings will be sorted.
// This is not perfect, because the selected footprint used to create the DEVICE section is
// not always the same between runs, but this is much better than no sort
wxArrayString data;
for( const auto& componentShape : componentShapes )
{
const wxString& shapeName = shapeNames[componentShape.second];
bool newDevice;
std::tie( std::ignore, newDevice ) = emitted.insert( shapeName );
if( !newDevice ) // do not repeat device definitions
continue;
const FOOTPRINT* footprint = componentShape.first;
wxString txt;
txt.Printf( "\nDEVICE \"DEV_%s\"\n", escapeString( shapeName ) );
txt += wxString::Format( "PART \"%s\"\n", escapeString( footprint->GetValue() ) );
txt += wxString::Format( "PACKAGE \"%s\"\n", escapeString( footprint->GetFPID().Format() ) );
data.Add( txt );
}
data.Sort();
for( wxString& item : data )
fprintf( m_file, "%s", TO_UTF8( item ) );
fputs( "$ENDDEVICES\n\n", m_file );
}
void GENCAD_EXPORTER::CreateBoardSection( )
{
// Creates the section $BOARD.
// We output here only the board perimeter
fputs( "$BOARD\n", m_file );
// Extract the board edges
SHAPE_POLY_SET outline;
m_board->GetBoardPolygonOutlines( outline );
for( auto seg1 = outline.IterateSegmentsWithHoles(); seg1; seg1++ )
{
SEG seg = *seg1;
fprintf( m_file, "LINE %g %g %g %g\n",
MapXTo( seg.A.x ), MapYTo( seg.A.y ),
MapXTo( seg.B.x ), MapYTo( seg.B.y ) );
}
fputs( "$ENDBOARD\n\n", m_file );
}
/* Creates the section "$TRACKS"
* This sections give the list of widths (tools) used in tracks and vias
* format:
* $TRACK
* TRACK <name> <width>
* $ENDTRACK
*
* Each tool name is build like this: "TRACK" + track width.
* For instance for a width = 120 : name = "TRACK120".
*/
void GENCAD_EXPORTER::CreateTracksInfoData()
{
// Find thickness used for traces
std::set<int> trackinfo;
for( PCB_TRACK* track : m_board->Tracks() )
trackinfo.insert( track->GetWidth() );
// Write data
fputs( "$TRACKS\n", m_file );
for( int size : trackinfo )
fprintf( m_file, "TRACK TRACK%d %g\n", size, size / SCALE_FACTOR );
fputs( "$ENDTRACKS\n\n", m_file );
}
/* Creates the shape of a footprint (section SHAPE)
* The shape is always given "normal" (Orient 0, not mirrored)
* It's almost guaranteed that the silk layer will be imported wrong but
* the shape also contains the pads!
*/
void GENCAD_EXPORTER::FootprintWriteShape( FOOTPRINT* aFootprint, const wxString& aShapeName )
{
/* creates header: */
fprintf( m_file, "\nSHAPE \"%s\"\n", TO_UTF8( escapeString( aShapeName ) ) );
if( aFootprint->GetAttributes() & FP_THROUGH_HOLE )
fprintf( m_file, "INSERT TH\n" );
else
fprintf( m_file, "INSERT SMD\n" );
// Silk outline; wildly interpreted by various importers:
// CAM350 read it right but only closed shapes
// ProntoPlace double-flip it (at least the pads are correct)
// GerberTool usually get it right...
for( BOARD_ITEM* item : aFootprint->GraphicalItems() )
{
if( item->Type() == PCB_SHAPE_T
&& ( item->GetLayer() == F_SilkS || item->GetLayer() == B_SilkS ) )
{
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( item );
VECTOR2I start = shape->GetStart() - aFootprint->GetPosition();
VECTOR2I end = shape->GetEnd() - aFootprint->GetPosition();
VECTOR2I center = shape->GetCenter() - aFootprint->GetPosition();
RotatePoint( start, -aFootprint->GetOrientation() );
RotatePoint( end, -aFootprint->GetOrientation() );
RotatePoint( center, -aFootprint->GetOrientation() );
switch( shape->GetShape() )
{
case SHAPE_T::SEGMENT:
fprintf( m_file, "LINE %g %g %g %g\n",
start.x / SCALE_FACTOR,
-start.y / SCALE_FACTOR,
end.x / SCALE_FACTOR,
-end.y / SCALE_FACTOR );
break;
case SHAPE_T::RECTANGLE:
fprintf( m_file, "LINE %g %g %g %g\n",
start.x / SCALE_FACTOR,
-start.y / SCALE_FACTOR,
end.x / SCALE_FACTOR,
-end.y / SCALE_FACTOR );
fprintf( m_file, "LINE %g %g %g %g\n",
end.x / SCALE_FACTOR,
-start.y / SCALE_FACTOR,
end.x / SCALE_FACTOR,
-end.y / SCALE_FACTOR );
fprintf( m_file, "LINE %g %g %g %g\n",
end.x / SCALE_FACTOR,
-end.y / SCALE_FACTOR,
start.x / SCALE_FACTOR,
-end.y / SCALE_FACTOR );
fprintf( m_file, "LINE %g %g %g %g\n",
start.x / SCALE_FACTOR,
-end.y / SCALE_FACTOR,
start.x / SCALE_FACTOR,
-start.y / SCALE_FACTOR );
break;
case SHAPE_T::CIRCLE:
{
int radius = KiROUND( end.Distance( start ) );
fprintf( m_file, "CIRCLE %g %g %g\n",
start.x / SCALE_FACTOR,
-start.y / SCALE_FACTOR,
radius / SCALE_FACTOR );
break;
}
case SHAPE_T::ARC:
if( shape->GetArcAngle() > ANGLE_0 )
std::swap( start, end );
fprintf( m_file, "ARC %g %g %g %g %g %g\n",
start.x / SCALE_FACTOR,
-start.y / SCALE_FACTOR,
end.x / SCALE_FACTOR,
-end.y / SCALE_FACTOR,
center.x / SCALE_FACTOR,
-center.y / SCALE_FACTOR );
break;
case SHAPE_T::POLY:
// Not exported (TODO)
break;
default:
wxFAIL_MSG( wxString::Format( wxT( "Shape type %d invalid." ), item->Type() ) );
break;
}
}
}
}