352 lines
9.8 KiB
C++
352 lines
9.8 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2018 KiCad Developers, see AUTHORS.TXT for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#ifndef GEOM_TEST_UTILS_H
|
|
#define GEOM_TEST_UTILS_H
|
|
|
|
#include <cmath>
|
|
|
|
#include <geometry/seg.h>
|
|
#include <geometry/shape_line_chain.h>
|
|
#include <geometry/shape_poly_set.h>
|
|
|
|
#include <qa_utils/numeric.h>
|
|
#include <qa_utils/wx_utils/unit_test_utils.h>
|
|
|
|
/**
|
|
* @brief Utility functions for testing geometry functions.
|
|
*/
|
|
namespace GEOM_TEST
|
|
{
|
|
|
|
/**
|
|
* @brief Geometric quadrants, from top-right, anti-clockwise
|
|
*
|
|
* ^ y
|
|
* |
|
|
* Q2 | Q1
|
|
* -------> x
|
|
* Q3 | Q4
|
|
*/
|
|
enum class QUADRANT {
|
|
Q1, Q2, Q3, Q4
|
|
};
|
|
|
|
/*
|
|
* @brief Check value in Quadrant 1 (x and y both >= 0)
|
|
*/
|
|
template<typename T>
|
|
bool IsInQuadrant( const VECTOR2<T>& aPoint, QUADRANT aQuadrant )
|
|
{
|
|
bool isInQuad = false;
|
|
|
|
switch( aQuadrant )
|
|
{
|
|
case QUADRANT::Q1:
|
|
isInQuad = aPoint.x >= 0 && aPoint.y >= 0;
|
|
break;
|
|
case QUADRANT::Q2:
|
|
isInQuad = aPoint.x <= 0 && aPoint.y >= 0;
|
|
break;
|
|
case QUADRANT::Q3:
|
|
isInQuad = aPoint.x <= 0 && aPoint.y <= 0;
|
|
break;
|
|
case QUADRANT::Q4:
|
|
isInQuad = aPoint.x >= 0 && aPoint.y <= 0;
|
|
break;
|
|
}
|
|
|
|
return isInQuad;
|
|
}
|
|
|
|
/*
|
|
* @Brief Check if both ends of a segment are in Quadrant 1
|
|
*/
|
|
inline bool SegmentCompletelyInQuadrant( const SEG& aSeg, QUADRANT aQuadrant )
|
|
{
|
|
return IsInQuadrant( aSeg.A, aQuadrant)
|
|
&& IsInQuadrant( aSeg.B, aQuadrant );
|
|
}
|
|
|
|
/*
|
|
* @brief Check if at least one end of the segment is in Quadrant 1
|
|
*/
|
|
inline bool SegmentEndsInQuadrant( const SEG& aSeg, QUADRANT aQuadrant )
|
|
{
|
|
return IsInQuadrant( aSeg.A, aQuadrant )
|
|
|| IsInQuadrant( aSeg.B, aQuadrant );
|
|
}
|
|
|
|
/*
|
|
* @brief Check if a segment is entirely within a certain radius of a point.
|
|
*/
|
|
inline bool SegmentCompletelyWithinRadius( const SEG& aSeg, const VECTOR2I& aPt, const int aRadius )
|
|
{
|
|
// This is true iff both ends of the segment are within the radius
|
|
return ( ( aSeg.A - aPt ).EuclideanNorm() < aRadius )
|
|
&& ( ( aSeg.B - aPt ).EuclideanNorm() < aRadius );
|
|
}
|
|
|
|
/**
|
|
* Check that two points are the given distance apart, within the given tolerance.
|
|
*
|
|
* @tparam T the dimension type
|
|
* @param aPtA the first point
|
|
* @param aPtB the second point
|
|
* @param aExpDist the expected distance
|
|
* @param aTol the permitted tolerance
|
|
*/
|
|
template <typename T>
|
|
bool IsPointAtDistance( const VECTOR2<T>& aPtA, const VECTOR2<T>& aPtB, T aExpDist, T aTol )
|
|
{
|
|
const int dist = ( aPtB - aPtA ).EuclideanNorm();
|
|
const bool ok = KI_TEST::IsWithin( dist, aExpDist, aTol );
|
|
|
|
if( !ok )
|
|
{
|
|
BOOST_TEST_INFO( "Points not at expected distance: distance is " << dist << ", expected "
|
|
<< aExpDist );
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
/**
|
|
* Predicate for checking a set of points is within a certain tolerance of
|
|
* a circle
|
|
* @param aPoints the points to check
|
|
* @param aCentre the circle centre
|
|
* @param aRad the circle radius
|
|
* @param aTolEnds the tolerance for the endpoint-centre distance
|
|
* @return true if predicate met
|
|
*/
|
|
template <typename T>
|
|
bool ArePointsNearCircle(
|
|
const std::vector<VECTOR2<T>>& aPoints, const VECTOR2<T>& aCentre, T aRad, T aTol )
|
|
{
|
|
bool ok = true;
|
|
|
|
for( unsigned i = 0; i < aPoints.size(); ++i )
|
|
{
|
|
if( !IsPointAtDistance( aPoints[i], aCentre, aRad, aTol ) )
|
|
{
|
|
BOOST_TEST_INFO( "Point " << i << " " << aPoints[i] << " is not within tolerance ("
|
|
<< aTol << ") of radius (" << aRad << ") from centre point "
|
|
<< aCentre );
|
|
ok = false;
|
|
}
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
/*
|
|
* @brief Check if two vectors are perpendicular
|
|
*
|
|
* @param a: vector A
|
|
* @param b: vector B
|
|
* @param aTolerance: the allowed deviation from PI/2 (e.g. when rounding)
|
|
*/
|
|
|
|
template<typename T>
|
|
bool ArePerpendicular( const VECTOR2<T>& a, const VECTOR2<T>& b, const EDA_ANGLE& aTolerance )
|
|
{
|
|
EDA_ANGLE angle = std::abs( EDA_ANGLE( a ) - EDA_ANGLE( b ) );
|
|
|
|
// Normalise: angles of 3*pi/2 are also perpendicular
|
|
if (angle > ANGLE_180)
|
|
angle -= ANGLE_180;
|
|
|
|
return KI_TEST::IsWithin( angle.AsRadians(), ANGLE_90.AsRadians(), aTolerance.AsRadians() );
|
|
}
|
|
|
|
/**
|
|
* @brief construct a square polygon of given size width and centre
|
|
*
|
|
* @param aSize: the side width (must be divisible by 2 if want to avoid rounding)
|
|
* @param aCentre: the centre of the square
|
|
*/
|
|
inline SHAPE_LINE_CHAIN MakeSquarePolyLine( int aSize, const VECTOR2I& aCentre )
|
|
{
|
|
SHAPE_LINE_CHAIN polyLine;
|
|
|
|
const VECTOR2I corner = aCentre + aSize / 2;
|
|
|
|
polyLine.Append( VECTOR2I( corner.x, corner.y ) );
|
|
polyLine.Append( VECTOR2I( -corner.x, corner.y ) ) ;
|
|
polyLine.Append( VECTOR2I( -corner.x, -corner.y ) );
|
|
polyLine.Append( VECTOR2I( corner.x, -corner.y ) );
|
|
|
|
polyLine.SetClosed( true );
|
|
|
|
return polyLine;
|
|
}
|
|
|
|
/*
|
|
* @brief Fillet every polygon in a set and return a new set
|
|
*/
|
|
inline SHAPE_POLY_SET FilletPolySet( SHAPE_POLY_SET& aPolySet, int aRadius, int aError )
|
|
{
|
|
SHAPE_POLY_SET filletedPolySet;
|
|
|
|
for ( int i = 0; i < aPolySet.OutlineCount(); ++i )
|
|
{
|
|
const auto filleted = aPolySet.FilletPolygon( aRadius, aError, i );
|
|
|
|
filletedPolySet.AddOutline( filleted[0] );
|
|
}
|
|
|
|
return filletedPolySet;
|
|
}
|
|
|
|
/**
|
|
* Verify that a SHAPE_LINE_CHAIN has been assembled correctly by ensuring that the
|
|
* arc start and end points match points on the chain and that any points inside the arcs
|
|
* actually collide with the arc segments (with an error margin of 5000 IU)
|
|
*
|
|
* @param aChain to test
|
|
* @return true if outline is valid
|
|
*/
|
|
inline bool IsOutlineValid( const SHAPE_LINE_CHAIN& aChain )
|
|
{
|
|
ssize_t prevArcIdx = -1;
|
|
std::set<size_t> testedArcs;
|
|
|
|
for( int i = 0; i < aChain.PointCount(); i++ )
|
|
{
|
|
ssize_t arcIdx = aChain.ArcIndex( i );
|
|
|
|
if( arcIdx >= 0 )
|
|
{
|
|
// Point on arc, lets make sure it collides with the arc shape and we haven't
|
|
// previously seen the same arc index
|
|
|
|
if( prevArcIdx != arcIdx && testedArcs.count( arcIdx ) )
|
|
return false; // we've already seen this arc before, not contiguous
|
|
|
|
if( !aChain.Arc( arcIdx ).Collide( aChain.CPoint( i ),
|
|
SHAPE_ARC::DefaultAccuracyForPCB() ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
testedArcs.insert( arcIdx );
|
|
}
|
|
|
|
if( prevArcIdx != arcIdx )
|
|
{
|
|
// we have changed arc shapes, run a few extra tests
|
|
|
|
if( prevArcIdx >= 0 )
|
|
{
|
|
// prev point on arc, test that the last arc point on the chain
|
|
// matches the end point of the arc
|
|
VECTOR2I pointToTest = aChain.CPoint( i );
|
|
|
|
if( !aChain.IsSharedPt( i ) )
|
|
pointToTest = aChain.CPoint( i - 1 );
|
|
|
|
SHAPE_ARC lastArc = aChain.Arc( prevArcIdx );
|
|
|
|
if( lastArc.GetP1() != pointToTest )
|
|
return false;
|
|
}
|
|
|
|
if( arcIdx >= 0 )
|
|
{
|
|
// new arc, test that the start point of the arc matches the point on the chain
|
|
VECTOR2I pointToTest = aChain.CPoint( i );
|
|
SHAPE_ARC currentArc = aChain.Arc( arcIdx );
|
|
|
|
if( currentArc.GetP0() != pointToTest )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
prevArcIdx = arcIdx;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Verify that a SHAPE_POLY_SET has been assembled correctly by verifying each of the outlines
|
|
* and holes contained within
|
|
*
|
|
* @param aSet to test
|
|
* @return true if the poly set is valid
|
|
*/
|
|
inline bool IsPolySetValid( const SHAPE_POLY_SET& aSet )
|
|
{
|
|
for( int i = 0; i < aSet.OutlineCount(); i++ )
|
|
{
|
|
if( !IsOutlineValid( aSet.Outline( i ) ) )
|
|
return false;
|
|
|
|
for( int j = 0; j < aSet.HoleCount( i ); j++ )
|
|
{
|
|
if( !IsOutlineValid( aSet.CHole( i, j ) ) )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Check that two SEGs have the same end points, in either order
|
|
*
|
|
* That is to say SEG(A, B) == SEG(A, B), but also SEG(A, B) == SEG(B, A)
|
|
*/
|
|
inline bool SegmentsHaveSameEndPoints( const SEG& aSeg1, const SEG& aSeg2 )
|
|
{
|
|
return ( aSeg1.A == aSeg2.A && aSeg1.B == aSeg2.B )
|
|
|| ( aSeg1.A == aSeg2.B && aSeg1.B == aSeg2.A );
|
|
}
|
|
|
|
} // namespace GEOM_TEST
|
|
|
|
namespace BOOST_TEST_PRINT_NAMESPACE_OPEN
|
|
{
|
|
template <>
|
|
struct print_log_value<SHAPE_LINE_CHAIN>
|
|
{
|
|
inline void operator()( std::ostream& os, const SHAPE_LINE_CHAIN& c )
|
|
{
|
|
os << "SHAPE_LINE_CHAIN: " << c.PointCount() << " points: [\n";
|
|
|
|
for( int i = 0; i < c.PointCount(); ++i )
|
|
{
|
|
os << " " << i << ": " << c.CPoint( i ) << "\n";
|
|
}
|
|
|
|
os << "]";
|
|
}
|
|
};
|
|
|
|
}
|
|
BOOST_TEST_PRINT_NAMESPACE_CLOSE
|
|
|
|
|
|
#endif // GEOM_TEST_UTILS_H
|