kicad/pcbnew/drc/drc_test_provider_physical_...

807 lines
29 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2021-2022 KiCad Developers.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <common.h>
#include <macros.h>
#include <board_design_settings.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_track.h>
#include <pcb_shape.h>
#include <zone.h>
#include <advanced_config.h>
#include <geometry/seg.h>
#include <geometry/shape_segment.h>
#include <drc/drc_engine.h>
#include <drc/drc_rtree.h>
#include <drc/drc_item.h>
#include <drc/drc_rule.h>
#include <drc/drc_test_provider_clearance_base.h>
/*
Physical clearance tests.
Errors generated:
- DRCE_PHYSICAL_CLEARANCE
- DRCE_PHYSICAL_HOLE_CLEARANCE
*/
class DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE : public DRC_TEST_PROVIDER_CLEARANCE_BASE
{
public:
DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE () :
DRC_TEST_PROVIDER_CLEARANCE_BASE()
{
}
virtual ~DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
return wxT( "physical_clearance" );
};
virtual const wxString GetDescription() const override
{
return wxT( "Tests item clearances irrespective of nets" );
}
private:
bool testItemAgainstItem( BOARD_ITEM* item, SHAPE* itemShape, PCB_LAYER_ID layer,
BOARD_ITEM* other );
void testItemAgainstZones( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer );
void testShapeLineChain( const SHAPE_LINE_CHAIN& aOutline, int aLineWidth, PCB_LAYER_ID aLayer,
BOARD_ITEM* aParentItem, DRC_CONSTRAINT& aConstraint );
void testZoneLayer( ZONE* aZone, PCB_LAYER_ID aLayer, DRC_CONSTRAINT& aConstraint );
private:
DRC_RTREE m_itemTree;
};
bool DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE::Run()
{
m_board = m_drcEngine->GetBoard();
m_itemTree.clear();
int errorMax = m_board->GetDesignSettings().m_MaxError;
if( m_board->m_DRCMaxPhysicalClearance <= 0 )
{
reportAux( wxT( "No physical clearance constraints found. Tests not run." ) );
return true; // continue with other tests
}
reportAux( wxT( "Largest physical clearance : %d nm" ), m_board->m_DRCMaxPhysicalClearance );
// This is the number of tests between 2 calls to the progress bar
size_t delta = 100;
size_t count = 0;
size_t ii = 0;
if( !reportPhase( _( "Gathering physical items..." ) ) )
return false; // DRC cancelled
static const std::vector<KICAD_T> itemTypes = {
PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T,
PCB_FOOTPRINT_T,
PCB_PAD_T,
PCB_SHAPE_T, PCB_FP_SHAPE_T,
PCB_TEXT_T, PCB_FP_TEXT_T, PCB_TEXTBOX_T, PCB_FP_TEXTBOX_T,
PCB_DIMENSION_T
};
static const LSET courtyards( 2, F_CrtYd, B_CrtYd );
forEachGeometryItem( itemTypes, LSET::AllLayersMask(),
[&]( BOARD_ITEM* item ) -> bool
{
++count;
return true;
} );
forEachGeometryItem( itemTypes, LSET::AllLayersMask(),
[&]( BOARD_ITEM* item ) -> bool
{
if( !reportProgress( ii++, count, delta ) )
return false;
LSET layers = item->GetLayerSet();
// Special-case holes and edge-cuts which pierce all physical layers
if( item->HasHole() )
{
layers |= LSET::PhysicalLayersMask() | courtyards;
}
else if( item->Type() == PCB_FOOTPRINT_T )
{
layers = courtyards;
}
else if( item->IsOnLayer( Edge_Cuts ) )
{
layers |= LSET::PhysicalLayersMask() | courtyards;
}
for( PCB_LAYER_ID layer : layers.Seq() )
m_itemTree.Insert( item, layer, m_board->m_DRCMaxPhysicalClearance );
return true;
} );
std::map< std::pair<BOARD_ITEM*, BOARD_ITEM*>, int> checkedPairs;
ii = 0;
if( !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE )
|| !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE ) )
{
if( !reportPhase( _( "Checking physical clearances..." ) ) )
return false; // DRC cancelled
forEachGeometryItem( itemTypes, LSET::AllLayersMask(),
[&]( BOARD_ITEM* item ) -> bool
{
if( !reportProgress( ii++, count, delta ) )
return false;
LSET layers = item->GetLayerSet();
if( item->Type() == PCB_FOOTPRINT_T )
layers = courtyards;
for( PCB_LAYER_ID layer : layers.Seq() )
{
std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape( layer );
m_itemTree.QueryColliding( item, layer, layer,
// Filter:
[&]( BOARD_ITEM* other ) -> bool
{
BOARD_ITEM* a = item;
BOARD_ITEM* b = other;
// store canonical order so we don't collide in both
// directions (a:b and b:a)
if( static_cast<void*>( a ) > static_cast<void*>( b ) )
std::swap( a, b );
if( checkedPairs.count( { a, b } ) )
{
return false;
}
else
{
checkedPairs[ { a, b } ] = 1;
return true;
}
},
// Visitor:
[&]( BOARD_ITEM* other ) -> bool
{
return testItemAgainstItem( item, itemShape.get(), layer,
other );
},
m_board->m_DRCMaxPhysicalClearance );
testItemAgainstZones( item, layer );
}
return true;
} );
}
count = 0;
ii = 0;
forEachGeometryItem( { PCB_ZONE_T, PCB_FP_ZONE_T, PCB_SHAPE_T, PCB_FP_SHAPE_T },
LSET::AllCuMask(),
[&]( BOARD_ITEM* item ) -> bool
{
ZONE* zone = dynamic_cast<ZONE*>( item );
if( zone && zone->GetIsRuleArea() )
return true; // Continue with other items
count += ( item->GetLayerSet() & LSET::AllCuMask() ).count();
return true;
} );
forEachGeometryItem( { PCB_ZONE_T, PCB_FP_ZONE_T, PCB_SHAPE_T, PCB_FP_SHAPE_T },
LSET::AllCuMask(),
[&]( BOARD_ITEM* item ) -> bool
{
PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( item );
ZONE* zone = dynamic_cast<ZONE*>( item );
if( zone && zone->GetIsRuleArea() )
return true; // Continue with other items
for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() )
{
if( IsCopperLayer( layer ) )
{
if( !reportProgress( ii++, count, delta ) )
return false;
DRC_CONSTRAINT c = m_drcEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT,
item, nullptr, layer );
if( shape )
{
switch( shape->GetShape() )
{
case SHAPE_T::POLY:
testShapeLineChain( shape->GetPolyShape().Outline( 0 ),
shape->GetWidth(), layer, item, c );
break;
case SHAPE_T::BEZIER:
{
SHAPE_LINE_CHAIN asPoly;
shape->RebuildBezierToSegmentsPointsList( shape->GetWidth() );
for( const VECTOR2I& pt : shape->GetBezierPoints() )
asPoly.Append( pt );
testShapeLineChain( asPoly, shape->GetWidth(), layer, item, c );
break;
}
case SHAPE_T::ARC:
{
SHAPE_LINE_CHAIN asPoly;
VECTOR2I center = shape->GetCenter();
EDA_ANGLE angle = -shape->GetArcAngle();
double r = shape->GetRadius();
int steps = GetArcToSegmentCount( r, errorMax, angle );
asPoly.Append( shape->GetStart() );
for( int step = 1; step <= steps; ++step )
{
EDA_ANGLE rotation = ( angle * step ) / steps;
VECTOR2I pt = shape->GetStart();
RotatePoint( pt, center, rotation );
asPoly.Append( pt );
}
testShapeLineChain( asPoly, shape->GetWidth(), layer, item, c );
break;
}
case SHAPE_T::RECT:
{
SHAPE_LINE_CHAIN asPoly;
std::vector<VECTOR2I> pts = shape->GetRectCorners();
asPoly.Append( pts[0] );
asPoly.Append( pts[1] );
asPoly.Append( pts[2] );
asPoly.Append( pts[3] );
asPoly.SetClosed( true );
testShapeLineChain( asPoly, shape->GetWidth(), layer, item, c );
break;
}
default:
UNIMPLEMENTED_FOR( shape->SHAPE_T_asString() );
}
}
if( zone )
testZoneLayer( static_cast<ZONE*>( item ), layer, c );
}
if( m_drcEngine->IsCancelled() )
return false;
}
return !m_drcEngine->IsCancelled();
} );
reportRuleStatistics();
return !m_drcEngine->IsCancelled();
}
void DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE::testShapeLineChain( const SHAPE_LINE_CHAIN& aOutline,
int aLineWidth, PCB_LAYER_ID aLayer,
BOARD_ITEM* aParentItem,
DRC_CONSTRAINT& aConstraint )
{
// We don't want to collide with neighboring segments forming a curve until the concavity
// approaches 180 degrees.
double angleTolerance = DEG2RAD( 180.0 - ADVANCED_CFG::GetCfg().m_SliverAngleTolerance );
int epsilon = m_board->GetDesignSettings().GetDRCEpsilon();
int count = aOutline.SegmentCount();
int clearance = aConstraint.GetValue().Min();
if( aConstraint.GetSeverity() == RPT_SEVERITY_IGNORE || clearance - epsilon <= 0 )
return;
// Trigonometry is not cheap; cache seg angles
std::vector<double> angles;
angles.reserve( count );
auto angleDiff =
[]( double a, double b ) -> double
{
if( a > b )
std::swap( a, b );
double diff = b - a;
if( diff > M_PI )
return 2 * M_PI - diff;
else
return diff;
};
for( int ii = 0; ii < count; ++ii )
{
const SEG& seg = aOutline.CSegment( ii );
// NB: don't store angles of really short segments (which could point anywhere)
if( seg.SquaredLength() > SEG::Square( epsilon * 2 ) )
{
angles.push_back( EDA_ANGLE( seg.B - seg.A ).AsRadians() );
}
else if( ii > 0 )
{
angles.push_back( angles.back() );
}
else
{
for( int jj = 1; jj < count; ++jj )
{
const SEG& following = aOutline.CSegment( jj );
if( following.SquaredLength() > SEG::Square( epsilon * 2 ) || jj == count - 1 )
{
angles.push_back( EDA_ANGLE( following.B - following.A ).AsRadians() );
break;
}
}
}
}
// Find collisions before reporting so that we can condense them into fewer reports.
std::vector< std::pair<VECTOR2I, int> > collisions;
for( int ii = 0; ii < count; ++ii )
{
const SEG seg = aOutline.CSegment( ii );
double segAngle = angles[ ii ];
// Exclude segments on either side of us until we reach the angle tolerance
int firstCandidate = ii + 1;
int lastCandidate = count - 1;
while( firstCandidate < count )
{
if( angleDiff( segAngle, angles[ firstCandidate ] ) < angleTolerance )
firstCandidate++;
else
break;
}
if( aOutline.IsClosed() )
{
if( ii > 0 )
lastCandidate = ii - 1;
while( lastCandidate != std::min( firstCandidate, count - 1 ) )
{
if( angleDiff( segAngle, angles[ lastCandidate ] ) < angleTolerance )
lastCandidate = ( lastCandidate == 0 ) ? count - 1 : lastCandidate - 1;
else
break;
}
}
// Now run the collision between seg and each candidate seg in the candidate range.
if( lastCandidate < ii )
lastCandidate = count - 1;
for( int jj = firstCandidate; jj <= lastCandidate; ++jj )
{
const SEG candidate = aOutline.CSegment( jj );
int actual;
if( seg.Collide( candidate, clearance + aLineWidth - epsilon, &actual ) )
{
VECTOR2I firstPoint = seg.NearestPoint( candidate );
VECTOR2I secondPoint = candidate.NearestPoint( seg );
VECTOR2I pos = ( firstPoint + secondPoint ) / 2;
if( !collisions.empty() &&
( pos - collisions.back().first ).EuclideanNorm() < clearance * 2 )
{
if( actual < collisions.back().second )
{
collisions.back().first = pos;
collisions.back().second = actual;
}
continue;
}
collisions.push_back( { pos, actual } );
}
}
}
for( std::pair<VECTOR2I, int> collision : collisions )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
wxString msg;
VECTOR2I pt = collision.first;
if( aParentItem->GetParentFootprint() )
pt += aParentItem->GetParentFootprint()->GetPosition();
msg.Printf( _( "Internal clearance violation (%s clearance %s; actual %s)" ),
aConstraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), collision.second ) );
drce->SetErrorMessage( msg );
drce->SetItems( aParentItem );
drce->SetViolatingRule( aConstraint.GetParentRule() );
reportViolation( drce, pt, aLayer );
}
}
void DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE::testZoneLayer( ZONE* aZone, PCB_LAYER_ID aLayer,
DRC_CONSTRAINT& aConstraint )
{
int epsilon = m_board->GetDesignSettings().GetDRCEpsilon();
int clearance = aConstraint.GetValue().Min();
if( aConstraint.GetSeverity() == RPT_SEVERITY_IGNORE || clearance - epsilon <= 0 )
return;
SHAPE_POLY_SET fill = aZone->GetFilledPolysList( aLayer )->CloneDropTriangulation();
// Turn fractured fill into outlines and holes
fill.Simplify( SHAPE_POLY_SET::PM_FAST );
for( int outlineIdx = 0; outlineIdx < fill.OutlineCount(); ++outlineIdx )
{
SHAPE_LINE_CHAIN* firstOutline = &fill.Outline( outlineIdx );
// Step one: outline to outline clearance violations
for( int ii = outlineIdx + 1; ii < fill.OutlineCount(); ++ii )
{
SHAPE_LINE_CHAIN* secondOutline = &fill.Outline( ii );
for( int jj = 0; jj < secondOutline->SegmentCount(); ++jj )
{
SEG secondSeg = secondOutline->Segment( jj );
int actual;
VECTOR2I pos;
if( firstOutline->Collide( secondSeg, clearance - epsilon, &actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
wxString msg;
msg.Printf( _( "(%s clearance %s; actual %s)" ),
aConstraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg );
drce->SetItems( aZone );
drce->SetViolatingRule( aConstraint.GetParentRule() );
reportViolation( drce, pos, aLayer );
}
}
if( m_drcEngine->IsCancelled() )
return;
}
// Step two: interior hole clearance violations
for( int holeIdx = 0; holeIdx < fill.HoleCount( outlineIdx ); ++holeIdx )
{
testShapeLineChain( fill.Hole( outlineIdx, holeIdx ), 0, aLayer, aZone, aConstraint );
if( m_drcEngine->IsCancelled() )
return;
}
}
}
bool DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE::testItemAgainstItem( BOARD_ITEM* item,
SHAPE* itemShape,
PCB_LAYER_ID layer,
BOARD_ITEM* other )
{
bool testClearance = !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE );
bool testHoles = !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE );
DRC_CONSTRAINT constraint;
int clearance = 0;
int actual;
VECTOR2I pos;
std::shared_ptr<SHAPE> otherShape = other->GetEffectiveShape( layer );
if( testClearance )
{
constraint = m_drcEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, item, other, layer );
clearance = constraint.GetValue().Min();
}
if( constraint.GetSeverity() != RPT_SEVERITY_IGNORE && clearance > 0 )
{
if( itemShape->Collide( otherShape.get(), clearance, &actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
wxString msg;
msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg );
drce->SetItems( item, other );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, pos, layer );
}
}
if( testHoles )
{
std::shared_ptr<SHAPE_SEGMENT> itemHoleShape;
std::shared_ptr<SHAPE_SEGMENT> otherHoleShape;
clearance = 0;
if( item->Type() == PCB_VIA_T )
{
if( item->GetLayerSet().Contains( layer ) )
itemHoleShape = item->GetEffectiveHoleShape();
}
else if( item->HasHole() )
{
itemHoleShape = item->GetEffectiveHoleShape();
}
if( other->Type() == PCB_VIA_T )
{
if( other->GetLayerSet().Contains( layer ) )
otherHoleShape = other->GetEffectiveHoleShape();
}
else if( other->HasHole() )
{
otherHoleShape = other->GetEffectiveHoleShape();
}
if( itemHoleShape || otherHoleShape )
{
constraint = m_drcEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, other, item,
layer );
clearance = constraint.GetValue().Min();
}
if( constraint.GetSeverity() != RPT_SEVERITY_IGNORE && clearance > 0 )
{
if( itemHoleShape && itemHoleShape->Collide( otherShape.get(), clearance, &actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
wxString msg;
msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg );
drce->SetItems( item, other );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, pos, layer );
}
if( otherHoleShape && otherHoleShape->Collide( itemShape, clearance, &actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
wxString msg;
msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg );
drce->SetItems( item, other );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, pos, layer );
}
}
}
return !m_drcEngine->IsCancelled();
}
void DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE::testItemAgainstZones( BOARD_ITEM* aItem,
PCB_LAYER_ID aLayer )
{
for( ZONE* zone : m_board->m_DRCZones )
{
if( !zone->GetLayerSet().test( aLayer ) )
continue;
if( aItem->GetBoundingBox().Intersects( zone->GetCachedBoundingBox() ) )
{
bool testClearance = !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE );
bool testHoles = !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE );
if( !testClearance && !testHoles )
return;
DRC_RTREE* zoneTree = m_board->m_CopperZoneRTreeCache[ zone ].get();
EDA_RECT itemBBox = aItem->GetBoundingBox();
DRC_CONSTRAINT constraint;
bool colliding;
int clearance = -1;
int actual;
VECTOR2I pos;
if( testClearance )
{
constraint = m_drcEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, aItem, zone,
aLayer );
clearance = constraint.GetValue().Min();
}
if( constraint.GetSeverity() != RPT_SEVERITY_IGNORE && clearance > 0 )
{
std::shared_ptr<SHAPE> itemShape = aItem->GetEffectiveShape( aLayer );
if( aItem->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( aItem );
if( !pad->FlashLayer( aLayer ) )
{
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
std::shared_ptr<SHAPE_SEGMENT> hole = pad->GetEffectiveHoleShape();
int size = hole->GetWidth();
// Note: drill size represents finish size, which means the actual hole
// size is the plating thickness larger.
if( pad->GetAttribute() == PAD_ATTRIB::PTH )
size += m_board->GetDesignSettings().GetHolePlatingThickness();
itemShape = std::make_shared<SHAPE_SEGMENT>( hole->GetSeg(), size );
}
}
if( zoneTree )
{
colliding = zoneTree->QueryColliding( itemBBox, itemShape.get(), aLayer,
clearance, &actual, &pos );
}
else
{
colliding = zone->Outline()->Collide( itemShape.get(), clearance, &actual,
&pos );
}
if( colliding )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
wxString msg;
msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg );
drce->SetItems( aItem, zone );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, pos, aLayer );
}
}
if( testHoles )
{
std::shared_ptr<SHAPE_SEGMENT> holeShape;
if( aItem->Type() == PCB_VIA_T )
{
if( aItem->GetLayerSet().Contains( aLayer ) )
holeShape = aItem->GetEffectiveHoleShape();
}
else if( aItem->HasHole() )
{
holeShape = aItem->GetEffectiveHoleShape();
}
if( holeShape )
{
constraint = m_drcEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT, aItem,
zone, aLayer );
clearance = constraint.GetValue().Min();
if( constraint.GetSeverity() != RPT_SEVERITY_IGNORE
&& clearance > 0
&& zoneTree->QueryColliding( itemBBox, holeShape.get(), aLayer,
clearance, &actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
wxString msg;
msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + msg );
drce->SetItems( aItem, zone );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, pos, aLayer );
}
}
}
}
if( m_drcEngine->IsCancelled() )
return;
}
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<DRC_TEST_PROVIDER_PHYSICAL_CLEARANCE> dummy;
}