kicad/eeschema/sch_sheet_path.h

431 lines
16 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file sch_sheet_path.h
* @brief Definition of the SCH_SHEET_PATH and SCH_SHEET_LIST classes for Eeschema.
*/
#ifndef CLASS_DRAWSHEET_PATH_H
#define CLASS_DRAWSHEET_PATH_H
#include <base_struct.h>
#include <map>
/** Info about complex hierarchies handling:
* A hierarchical schematic uses sheets (hierarchical sheets) included in a
* given sheet. Each sheet corresponds to a schematic drawing handled by a
* SCH_SCREEN structure. A SCH_SCREEN structure contains drawings, and have
* a filename to write it's data. Also a SCH_SCREEN display a sheet number
* and the name of the sheet.
*
* In simple (and flat) hierarchies a sheet is linked to a SCH_SCREEN,
* and a SCH_SCREEN is used by only one hierarchical sheet.
*
* In complex hierarchies the same SCH_SCREEN (and its data) is shared between
* more than one sheet. Therefore subsheets (like subsheets in a SCH_SCREEN
* shared by many sheets) can be also shared. So the same SCH_SCREEN must
* handle different components references and parts selection depending on
* which sheet is currently selected, and how a given subsheet is selected.
* 2 sheets share the same SCH_SCREEN (the same drawings) if they have the
* same filename.
*
* In KiCad each component and sheet receives (when created) an unique
* identification called Time Stamp. So each sheet has 2 ids: its time stamp
* (that cannot change) and its name ( that can be edited and therefore is
* not reliable for strong identification). KiCad uses Time Stamp ( a unique
* 32 bit id), to identify sheets in hierarchies.
* A given sheet in a hierarchy is fully labeled by its path (or sheet path)
* that is the list of time stamp found to access it through the hierarchy
* the root sheet is /. All other sheets have a path like /1234ABCD or
* /4567FEDC/AA2233DD/. This path can be displayed as human readable sheet
* name like: / or /sheet1/include_sheet/ or /sheet2/include_sheet/
*
* So to know for a given SCH_SCREEN (a given schematic drawings) we must:
* 1) Handle all references possibilities.
* 2) When acceded by a given selected sheet, display (update) the
* corresponding references and sheet path
*
* The class SCH_SHEET_PATH handles paths used to access a sheet. The class
* SCH_SHEET_LIST allows one to handle the full (or partial) list of sheets and
* their paths in a complex hierarchy. The class EDA_ScreenList allows one
* to handle the list of SCH_SCREEN. It is useful to clear or save data,
* but is not suitable to handle the full complex hierarchy possibilities
* (usable in flat and simple hierarchies).
*/
class wxFindReplaceData;
class SCH_SHEET;
class SCH_SCREEN;
class SCH_MARKER;
class SCH_ITEM;
class SCH_REFERENCE_LIST;
/**
* Type SCH_MULTI_UNIT_REFERENCE_MAP
* is used to create a map of reference designators for multi-unit parts.
*/
typedef std::map<wxString, SCH_REFERENCE_LIST> SCH_MULTI_UNIT_REFERENCE_MAP;
/**
* SCH_SHEET_PATH
*
* handles access to a stack of flattened #SCH_SHEET objects by way of a path for
* creating a flattened schematic hierarchy.
*
* <p>
* The #SCH_SHEET objects are stored in a list from first (usually the root sheet) to a
* given sheet in last position. The _last_ sheet is usually the sheet we want to select
* or reach (which is what the function Last() returns). Others sheets constitute the
* "path" from the first to the last sheet.
* </p>
*/
class SCH_SHEET_PATH
{
protected:
std::vector< SCH_SHEET* > m_sheets;
size_t m_current_hash;
int m_pageNumber; /// Page numbers are maintained by the sheet load order.
public:
SCH_SHEET_PATH();
/// Forwarded method from std::vector
SCH_SHEET* at( size_t aIndex ) const { return m_sheets.at( aIndex ); }
/// Forwarded method from std::vector
void clear()
{
m_sheets.clear();
Rehash();
}
/// Forwarded method from std::vector
bool empty() const { return m_sheets.empty(); }
/// Forwarded method from std::vector
void pop_back()
{
m_sheets.pop_back();
Rehash();
}
/// Forwarded method from std::vector
void push_back( SCH_SHEET* aSheet )
{
m_sheets.push_back( aSheet );
Rehash();
}
/// Forwarded method from std::vector
size_t size() const { return m_sheets.size(); }
void Rehash();
size_t GetCurrentHash() const { return m_current_hash; }
void SetPageNumber( int aPageNumber ) { m_pageNumber = aPageNumber; }
int GetPageNumber() const { return m_pageNumber; }
const SCH_SHEET* GetSheet( unsigned aIndex ) const
{
SCH_SHEET* retv = NULL;
if( aIndex < size() )
retv = at( aIndex );
return const_cast< SCH_SHEET* >( retv );
}
/**
* Function Cmp
* Compare if this is the same sheet path as aSheetPathToTest
* @param aSheetPathToTest = sheet path to compare
* @return 1 if this sheet path has more sheets than aSheetPathToTest,
* -1 if this sheet path has fewer sheets than aSheetPathToTest,
* or 0 if same
*/
int Cmp( const SCH_SHEET_PATH& aSheetPathToTest ) const;
/**
* Function Last
* returns a pointer to the last sheet of the list
* One can see the others sheet as the "path" to reach this last sheet
*/
SCH_SHEET* Last() const;
/**
* Function LastScreen
* @return the SCH_SCREEN relative to the last sheet in list
*/
SCH_SCREEN* LastScreen();
///> @copydoc SCH_SHEET_PATH::LastScreen()
SCH_SCREEN* LastScreen() const;
/**
* Function Path
* the path uses the time stamps which do not changes even when editing
* sheet parameters
* a path is something like / (root) or /34005677 or /34005677/00AE4523
*/
wxString Path() const;
/**
* Function PathHumanReadable
* returns the sheet path in a human readable form, i.e. as a path made
* from sheet names. The the "normal" path instead uses the time
* stamps in the path. (Time stamps do not change even when editing
* sheet parameters).
*/
wxString PathHumanReadable() const;
/**
* @return a PathName for the root sheet (like "/" or "<root>"
* @param aUseShortName: true to return "/", false to return a longer name
*/
static wxString GetRootPathName( bool aUseShortName = true );
/**
* Function UpdateAllScreenReferences
* updates the reference and the m_Multi parameter (part selection) for all
* components on a screen depending on the actual sheet path.
* Mandatory in complex hierarchies because sheets use the same screen
* (basic schematic)
* but with different references and part selections according to the
* displayed sheet
*/
void UpdateAllScreenReferences();
/**
* Function GetComponents
* adds a SCH_REFERENCE() object to \a aReferences for each component in the sheet.
*
* @param aReferences List of references to populate.
* @param aIncludePowerSymbols : false to only get normal components.
* @param aForceIncludeOrphanComponents : true to include components having no symbol found in lib.
* ( orphan components)
* The normal option is false, and set to true only to build the full list of components.
*/
void GetComponents( SCH_REFERENCE_LIST& aReferences, bool aIncludePowerSymbols = true,
bool aForceIncludeOrphanComponents = false );
/**
* Function GetMultiUnitComponents
* adds a SCH_REFERENCE_LIST object to \a aRefList for each same-reference set of
* multi-unit parts in the sheet. The map key for each element will be the
* reference designator.
*
* @param aRefList Map of reference designators to reference lists
* @param aIncludePowerSymbols : false to only get normal components.
*/
void GetMultiUnitComponents( SCH_MULTI_UNIT_REFERENCE_MAP &aRefList,
bool aIncludePowerSymbols = true );
/**
* Function SetFootprintField
* searches last sheet in the path for a component with \a aReference and set the footprint
* field to \a aFootPrint if found.
*
* @param aReference The reference designator of the component.
* @param aFootPrint The value to set the footprint field.
* @param aSetVisible The value to set the field visibility flag.
* @return true if \a aReference was found otherwise false.
*/
bool SetComponentFootprint( const wxString& aReference, const wxString& aFootPrint,
bool aSetVisible );
/**
* Function TestForRecursion
*
* test the SCH_SHEET_PATH file names to check adding the sheet stored in the file
* \a aSrcFileName to the sheet stored in file \a aDestFileName will cause a sheet
* path recursion.
*
* @param aSrcFileName is the source file name of the sheet add to \a aDestFileName.
* @param aDestFileName is the file name of the destination sheet for \a aSrcFileName.
* @return true if \a aFileName will cause recursion in the sheet path. Otherwise false.
*/
bool TestForRecursion( const wxString& aSrcFileName, const wxString& aDestFileName ) const;
bool operator==( const SCH_SHEET_PATH& d1 ) const;
bool operator!=( const SCH_SHEET_PATH& d1 ) const { return !( *this == d1 ) ; }
bool operator<( const SCH_SHEET_PATH& d1 ) const { return m_sheets < d1.m_sheets; }
};
namespace std
{
template<> struct hash<SCH_SHEET_PATH>
{
size_t operator()( const SCH_SHEET_PATH& path ) const;
};
}
typedef std::vector< SCH_SHEET_PATH > SCH_SHEET_PATHS;
typedef SCH_SHEET_PATHS::iterator SCH_SHEET_PATHS_ITER;
/**
* SCH_SHEET_LIST
*
* handles a list of #SCH_SHEET_PATH objects in a flattened hierarchy.
*
* #SCH_SHEET objects are not unique, there can be many sheets with the same filename and
* that share the same #SCH_SCREEN reference. Each The schematic file (#SCH_SCREEN) may
* be shared between these sheets and component references are specific to a sheet path.
* When a sheet is entered, component references and sheet page number are updated.
*/
class SCH_SHEET_LIST : public SCH_SHEET_PATHS
{
private:
bool m_isRootSheet;
SCH_SHEET_PATH m_currentSheetPath;
public:
/**
* Constructor
* build a flattened list of SCH_SHEET_PATH objects from \a aSheet.
*
* If aSheet == NULL, then this is an empty hierarchy which the user can populate.
*/
SCH_SHEET_LIST( SCH_SHEET* aSheet = NULL );
~SCH_SHEET_LIST() {}
/**
* Function IsModified
* checks the entire hierarchy for any modifications.
* @return True if the hierarchy is modified otherwise false.
*/
bool IsModified();
void ClearModifyStatus();
/**
* Function AnnotatePowerSymbols
* Silently annotates the not yet annotated power symbols of the entire hierarchy
* of the sheet path list.
* It is called before creating a netlist, to annotate power symbols, without prompting
* the user about not annotated or duplicate for these symbols, if only these symbols
* need annotation ( a very frequent case ).
*/
void AnnotatePowerSymbols();
/**
* Function GetComponents
* adds a SCH_REFERENCE() object to \a aReferences for each component in the list
* of sheets.
*
* @param aReferences List of references to populate.
* @param aIncludePowerSymbols Set to false to only get normal components.
* @param aForceIncludeOrphanComponents : true to include components having no symbol found in lib.
* ( orphan components)
* The normal option is false, and set to true only to build the full list of components.
*/
void GetComponents( SCH_REFERENCE_LIST& aReferences, bool aIncludePowerSymbols = true,
bool aForceIncludeOrphanComponents = false );
/**
* Function GetMultiUnitComponents
* adds a SCH_REFERENCE_LIST object to \a aRefList for each same-reference set of
* multi-unit parts in the list of sheets. The map key for each element will be the
* reference designator.
*
* @param aRefList Map of reference designators to reference lists
* @param aIncludePowerSymbols Set to false to only get normal components.
*/
void GetMultiUnitComponents( SCH_MULTI_UNIT_REFERENCE_MAP &aRefList,
bool aIncludePowerSymbols = true );
/**
* Function SetFootprintField
* searches all the sheets for a component with \a aReference and set the footprint
* field to \a aFootPrint if found.
*
* @param aReference The reference designator of the component.
* @param aFootPrint The value to set the footprint field.
* @param aSetVisible The value to set the field visibility flag.
* @return True if \a aReference was found otherwise false.
*/
bool SetComponentFootprint( const wxString& aReference, const wxString& aFootPrint,
bool aSetVisible );
/**
* Function IsComplexHierarchy
* searches all of the sheets for duplicate files names which indicates a complex
* hierarchy.
*
* @return true if the #SCH_SHEET_LIST is a complex hierarchy.
*/
bool IsComplexHierarchy() const;
/**
* Function TestForRecursion
*
* test every SCH_SHEET_PATH in the SCH_SHEET_LIST to verify if adding the sheets stored
* in \a aSrcSheetHierarchy to the sheet stored in \a aDestFileName will cause recursion.
*
* @param aSrcSheetHierarchy is the SCH_SHEET_LIST of the source sheet add to \a aDestFileName.
* @param aDestFileName is the file name of the destination sheet for \a aSrcFileName.
* @return true if \a aFileName will cause recursion in the sheet path. Otherwise false.
*/
bool TestForRecursion( const SCH_SHEET_LIST& aSrcSheetHierarchy,
const wxString& aDestFileName ) const;
/**
* Function FindSheetForScreen
*
* returns the first sheetPath (not necessarily the only one) using a particular screen
*/
SCH_SHEET_PATH* FindSheetForScreen( SCH_SCREEN* aScreen );
/**
* Function BuildSheetList
* builds the list of sheets and their sheet path from \a aSheet.
* If \a aSheet is the root sheet, the full sheet path and sheet list are built.
*
* @param aSheet is the starting sheet from which the list is built, or NULL
* indicating that g_RootSheet should be used.
* @throw std::bad_alloc if the memory for the sheet path list could not be allocated.
*/
void BuildSheetList( SCH_SHEET* aSheet );
};
#endif // CLASS_DRAWSHEET_PATH_H