kicad/thirdparty/sentry-native/external/crashpad/snapshot/fuchsia/process_reader_fuchsia.cc

376 lines
13 KiB
C++

// Copyright 2018 The Crashpad Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/fuchsia/process_reader_fuchsia.h"
#include <lib/zx/thread.h>
#include <link.h>
#include <zircon/syscalls.h>
#include "base/fuchsia/fuchsia_logging.h"
#include "base/logging.h"
#include "util/fuchsia/koid_utilities.h"
namespace crashpad {
namespace {
// Based on the thread's SP and the process's memory map, attempts to figure out
// the stack regions for the thread. Fuchsia's C ABI specifies
// https://fuchsia.googlesource.com/zircon/+/master/docs/safestack.md so the
// callstack and locals-that-have-their-address-taken are in two different
// stacks.
void GetStackRegions(
const zx_thread_state_general_regs_t& regs,
const MemoryMapFuchsia& memory_map,
std::vector<CheckedRange<zx_vaddr_t, size_t>>* stack_regions) {
stack_regions->clear();
uint64_t sp;
#if defined(ARCH_CPU_X86_64)
sp = regs.rsp;
#elif defined(ARCH_CPU_ARM64)
sp = regs.sp;
#else
#error Port
#endif
// TODO(fxbug.dev/74897): make this work for stack overflows, e.g., by looking
// up using the initial stack pointer (sp) when the thread was created. Right
// now, it gets the stack by getting the mapping that contains the current sp.
// But in the case of stack overflows, the current sp is by definition outside
// of the stack so the mapping returned is not the stack and fails the type
// check, at least on arm64.
zx_info_maps_t range_with_sp;
if (!memory_map.FindMappingForAddress(sp, &range_with_sp)) {
LOG(ERROR) << "stack pointer not found in mapping";
return;
}
if (range_with_sp.type != ZX_INFO_MAPS_TYPE_MAPPING) {
LOG(ERROR) << "stack range has unexpected type " << range_with_sp.type
<< ", stack overflow? Aborting";
return;
}
if (range_with_sp.u.mapping.mmu_flags & ZX_VM_PERM_EXECUTE) {
LOG(ERROR)
<< "stack range is unexpectedly marked executable, continuing anyway";
}
// The stack covers [range_with_sp.base, range_with_sp.base +
// range_with_sp.size). The stack pointer (sp) can be anywhere in that range.
// It starts at the end of the range (range_with_sp.base + range_with_sp.size)
// and goes downwards until range_with_sp.base. Capture the part of the stack
// that is currently used: [sp, range_with_sp.base + range_with_sp.size).
// Capture up to kExtraCaptureSize additional bytes of stack, but only if
// present in the region that was already found.
constexpr uint64_t kExtraCaptureSize = 128;
const uint64_t start_address =
std::max(sp >= kExtraCaptureSize ? sp - kExtraCaptureSize : sp,
range_with_sp.base);
const size_t region_size =
range_with_sp.size - (start_address - range_with_sp.base);
// Because most Fuchsia processes use safestack, it is very unlikely that a
// stack this large would be valid. Even if it were, avoid creating
// unreasonably large dumps by artificially limiting the captured amount.
constexpr uint64_t kMaxStackCapture = 1048576u;
LOG_IF(ERROR, region_size > kMaxStackCapture)
<< "clamping unexpectedly large stack capture of " << region_size;
const size_t clamped_region_size = std::min(region_size, kMaxStackCapture);
stack_regions->push_back(
CheckedRange<zx_vaddr_t, size_t>(start_address, clamped_region_size));
// TODO(scottmg): https://crashpad.chromium.org/bug/196, once the retrievable
// registers include FS and similar for ARM, retrieve the region for the
// unsafe part of the stack too.
}
} // namespace
ProcessReaderFuchsia::Module::Module() = default;
ProcessReaderFuchsia::Module::~Module() = default;
ProcessReaderFuchsia::Thread::Thread() = default;
ProcessReaderFuchsia::Thread::~Thread() = default;
ProcessReaderFuchsia::ProcessReaderFuchsia() = default;
ProcessReaderFuchsia::~ProcessReaderFuchsia() = default;
bool ProcessReaderFuchsia::Initialize(const zx::process& process) {
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
process_ = zx::unowned_process(process);
process_memory_.reset(new ProcessMemoryFuchsia());
process_memory_->Initialize(*process_);
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
const std::vector<ProcessReaderFuchsia::Module>&
ProcessReaderFuchsia::Modules() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!initialized_modules_) {
InitializeModules();
}
return modules_;
}
const std::vector<ProcessReaderFuchsia::Thread>&
ProcessReaderFuchsia::Threads() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!initialized_threads_) {
InitializeThreads();
}
return threads_;
}
const MemoryMapFuchsia* ProcessReaderFuchsia::MemoryMap() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!initialized_memory_map_) {
InitializeMemoryMap();
}
return memory_map_.get();
}
void ProcessReaderFuchsia::InitializeModules() {
DCHECK(!initialized_modules_);
DCHECK(modules_.empty());
initialized_modules_ = true;
// TODO(scottmg): <inspector/inspector.h> does some of this, but doesn't
// expose any of the data that's necessary to fill out a Module after it
// retrieves (some of) the data into internal structures. It may be worth
// trying to refactor/upstream some of this into Fuchsia.
// Starting from the ld.so's _dl_debug_addr, read the link_map structure and
// walk the list to fill out modules_.
uintptr_t debug_address;
zx_status_t status = process_->get_property(
ZX_PROP_PROCESS_DEBUG_ADDR, &debug_address, sizeof(debug_address));
if (status != ZX_OK || debug_address == 0) {
LOG(ERROR) << "zx_object_get_property ZX_PROP_PROCESS_DEBUG_ADDR";
return;
}
constexpr auto k_r_debug_map_offset = offsetof(r_debug, r_map);
uintptr_t map;
if (!process_memory_->Read(
debug_address + k_r_debug_map_offset, sizeof(map), &map)) {
LOG(ERROR) << "read link_map";
return;
}
int i = 0;
constexpr int kMaxDso = 1000; // Stop after an unreasonably large number.
while (map != 0) {
if (++i >= kMaxDso) {
LOG(ERROR) << "possibly circular dso list, terminating";
return;
}
constexpr auto k_link_map_addr_offset = offsetof(link_map, l_addr);
zx_vaddr_t base;
if (!process_memory_->Read(
map + k_link_map_addr_offset, sizeof(base), &base)) {
LOG(ERROR) << "Read base";
// Could theoretically continue here, but realistically if any part of
// link_map fails to read, things are looking bad, so just abort.
break;
}
constexpr auto k_link_map_next_offset = offsetof(link_map, l_next);
zx_vaddr_t next;
if (!process_memory_->Read(
map + k_link_map_next_offset, sizeof(next), &next)) {
LOG(ERROR) << "Read next";
break;
}
constexpr auto k_link_map_name_offset = offsetof(link_map, l_name);
zx_vaddr_t name_address;
if (!process_memory_->Read(map + k_link_map_name_offset,
sizeof(name_address),
&name_address)) {
LOG(ERROR) << "Read name address";
break;
}
std::string dsoname;
if (!process_memory_->ReadCString(name_address, &dsoname)) {
// In this case, it could be reasonable to continue on to the next module
// as this data isn't strictly in the link_map.
LOG(ERROR) << "ReadCString name";
}
// Debug symbols are indexed by module name x build-id on the crash server.
// The module name in the indexed Breakpad files is set at build time. So
// Crashpad needs to use the same module name at run time for symbol
// resolution to work properly.
//
// TODO(fuchsia/DX-1234): once Crashpad switches to elf-search, the
// following overwrites won't be necessary as only shared libraries will
// have a soname at runtime, just like at build time.
//
// * For shared libraries, the soname is used as module name at build time,
// which is the dsoname here except for libzircon.so (because it is
// injected by the kernel, its load name is "<vDSO>" and Crashpad needs to
// replace it for symbol resolution to work properly).
if (dsoname == "<vDSO>") {
dsoname = "libzircon.so";
}
// * For executables and loadable modules, the dummy value "<_>" is used as
// module name at build time. This is because executable and loadable
// modules don't have a name on Fuchsia. So we need to use the same dummy
// value at build and run times.
// Most executables have an empty dsoname. Loadable modules (and some rare
// executables) have a non-empty dsoname starting with a specific prefix,
// which Crashpas can use to identify loadable modules and clear the
// dsoname for them.
static constexpr const char kLoadableModuleLoadNamePrefix[] = "<VMO#";
// Pre-C++ 20 std::basic_string::starts_with
if (dsoname.compare(0,
strlen(kLoadableModuleLoadNamePrefix),
kLoadableModuleLoadNamePrefix) == 0) {
dsoname = "";
}
Module module;
if (dsoname.empty()) {
// This value must be kept in sync with what is used at build time to
// index symbols for executables and loadable modules.
// See fuchsia/DX-1193 for more details.
module.name = "<_>";
module.type = ModuleSnapshot::kModuleTypeExecutable;
} else {
module.name = dsoname;
// TODO(scottmg): Handle kModuleTypeDynamicLoader.
module.type = ModuleSnapshot::kModuleTypeSharedLibrary;
}
std::unique_ptr<ElfImageReader> reader(new ElfImageReader());
std::unique_ptr<ProcessMemoryRange> process_memory_range(
new ProcessMemoryRange());
// TODO(scottmg): Could this be limited range?
if (process_memory_range->Initialize(process_memory_.get(), true)) {
process_memory_ranges_.push_back(std::move(process_memory_range));
if (reader->Initialize(*process_memory_ranges_.back(), base)) {
module.reader = reader.get();
module_readers_.push_back(std::move(reader));
modules_.push_back(module);
}
}
map = next;
}
}
void ProcessReaderFuchsia::InitializeThreads() {
DCHECK(!initialized_threads_);
DCHECK(threads_.empty());
initialized_threads_ = true;
std::vector<zx_koid_t> thread_koids =
GetChildKoids(*process_, ZX_INFO_PROCESS_THREADS);
std::vector<zx::thread> thread_handles =
GetHandlesForThreadKoids(*process_, thread_koids);
DCHECK_EQ(thread_koids.size(), thread_handles.size());
for (size_t i = 0; i < thread_handles.size(); ++i) {
Thread thread;
thread.id = thread_koids[i];
if (thread_handles[i].is_valid()) {
char name[ZX_MAX_NAME_LEN] = {0};
zx_status_t status =
thread_handles[i].get_property(ZX_PROP_NAME, &name, sizeof(name));
if (status != ZX_OK) {
ZX_LOG(WARNING, status) << "zx_object_get_property ZX_PROP_NAME";
} else {
thread.name.assign(name);
}
zx_info_thread_t thread_info;
status = thread_handles[i].get_info(
ZX_INFO_THREAD, &thread_info, sizeof(thread_info), nullptr, nullptr);
if (status != ZX_OK) {
ZX_LOG(WARNING, status) << "zx_object_get_info ZX_INFO_THREAD";
} else {
thread.state = thread_info.state;
}
zx_thread_state_general_regs_t general_regs;
status = thread_handles[i].read_state(
ZX_THREAD_STATE_GENERAL_REGS, &general_regs, sizeof(general_regs));
if (status != ZX_OK) {
ZX_LOG(WARNING, status)
<< "zx_thread_read_state(ZX_THREAD_STATE_GENERAL_REGS)";
} else {
thread.general_registers = general_regs;
const MemoryMapFuchsia* memory_map = MemoryMap();
if (memory_map) {
// Attempt to retrive stack regions if a memory map was retrieved. In
// particular, this may be null when operating on the current process
// where the memory map will not be able to be retrieved.
GetStackRegions(general_regs, *memory_map, &thread.stack_regions);
}
}
zx_thread_state_vector_regs_t vector_regs;
status = thread_handles[i].read_state(
ZX_THREAD_STATE_VECTOR_REGS, &vector_regs, sizeof(vector_regs));
if (status != ZX_OK) {
ZX_LOG(WARNING, status)
<< "zx_thread_read_state(ZX_THREAD_STATE_VECTOR_REGS)";
} else {
thread.vector_registers = vector_regs;
}
}
threads_.push_back(thread);
}
}
void ProcessReaderFuchsia::InitializeMemoryMap() {
DCHECK(!initialized_memory_map_);
initialized_memory_map_ = true;
memory_map_.reset(new MemoryMapFuchsia);
if (!memory_map_->Initialize(*process_)) {
memory_map_.reset();
}
}
} // namespace crashpad