kicad/thirdparty/sentry-native/external/libunwindstack-ndk/MapInfo.cpp

461 lines
14 KiB
C++

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <mutex>
#include <string>
#include <android-base/strings.h>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Maps.h>
#include "MemoryFileAtOffset.h"
#include "MemoryRange.h"
namespace unwindstack {
bool MapInfo::ElfFileNotReadable() {
const std::string& map_name = name();
return memory_backed_elf() && !map_name.empty() && map_name[0] != '[' &&
!android::base::StartsWith(map_name, "/memfd:");
}
std::shared_ptr<MapInfo> MapInfo::GetPrevRealMap() {
if (name().empty()) {
return nullptr;
}
for (auto prev = prev_map(); prev != nullptr; prev = prev->prev_map()) {
if (!prev->IsBlank()) {
if (prev->name() == name()) {
return prev;
}
return nullptr;
}
}
return nullptr;
}
std::shared_ptr<MapInfo> MapInfo::GetNextRealMap() {
if (name().empty()) {
return nullptr;
}
for (auto next = next_map(); next != nullptr; next = next->next_map()) {
if (!next->IsBlank()) {
if (next->name() == name()) {
return next;
}
return nullptr;
}
}
return nullptr;
}
bool MapInfo::InitFileMemoryFromPreviousReadOnlyMap(MemoryFileAtOffset* memory) {
// One last attempt, see if the previous map is read-only with the
// same name and stretches across this map.
auto prev_real_map = GetPrevRealMap();
if (prev_real_map == nullptr || prev_real_map->flags() != PROT_READ ||
prev_real_map->offset() >= offset()) {
return false;
}
uint64_t map_size = end() - prev_real_map->end();
if (!memory->Init(name(), prev_real_map->offset(), map_size)) {
return false;
}
uint64_t max_size;
if (!Elf::GetInfo(memory, &max_size) || max_size < map_size) {
return false;
}
if (!memory->Init(name(), prev_real_map->offset(), max_size)) {
return false;
}
set_elf_offset(offset() - prev_real_map->offset());
set_elf_start_offset(prev_real_map->offset());
return true;
}
Memory* MapInfo::GetFileMemory() {
// Fail on device maps.
if (flags() & MAPS_FLAGS_DEVICE_MAP) {
return nullptr;
}
std::unique_ptr<MemoryFileAtOffset> memory(new MemoryFileAtOffset);
if (offset() == 0) {
if (memory->Init(name(), 0)) {
return memory.release();
}
return nullptr;
}
// These are the possibilities when the offset is non-zero.
// - There is an elf file embedded in a file, and the offset is the
// the start of the elf in the file.
// - There is an elf file embedded in a file, and the offset is the
// the start of the executable part of the file. The actual start
// of the elf is in the read-only segment preceeding this map.
// - The whole file is an elf file, and the offset needs to be saved.
//
// Map in just the part of the file for the map. If this is not
// a valid elf, then reinit as if the whole file is an elf file.
// If the offset is a valid elf, then determine the size of the map
// and reinit to that size. This is needed because the dynamic linker
// only maps in a portion of the original elf, and never the symbol
// file data.
//
// For maps with MAPS_FLAGS_JIT_SYMFILE_MAP, the map range is for a JIT function,
// which can be smaller than elf header size. So make sure map_size is large enough
// to read elf header.
uint64_t map_size = std::max<uint64_t>(end() - start(), sizeof(ElfTypes64::Ehdr));
if (!memory->Init(name(), offset(), map_size)) {
return nullptr;
}
// Check if the start of this map is an embedded elf.
uint64_t max_size = 0;
if (Elf::GetInfo(memory.get(), &max_size)) {
set_elf_start_offset(offset());
if (max_size > map_size) {
if (memory->Init(name(), offset(), max_size)) {
return memory.release();
}
// Try to reinit using the default map_size.
if (memory->Init(name(), offset(), map_size)) {
return memory.release();
}
set_elf_start_offset(0);
return nullptr;
}
return memory.release();
}
// No elf at offset, try to init as if the whole file is an elf.
if (memory->Init(name(), 0) && Elf::IsValidElf(memory.get())) {
set_elf_offset(offset());
return memory.release();
}
// See if the map previous to this one contains a read-only map
// that represents the real start of the elf data.
if (InitFileMemoryFromPreviousReadOnlyMap(memory.get())) {
return memory.release();
}
// Failed to find elf at start of file or at read-only map, return
// file object from the current map.
if (memory->Init(name(), offset(), map_size)) {
return memory.release();
}
return nullptr;
}
Memory* MapInfo::CreateMemory(const std::shared_ptr<Memory>& process_memory) {
if (end() <= start()) {
return nullptr;
}
set_elf_offset(0);
// Fail on device maps.
if (flags() & MAPS_FLAGS_DEVICE_MAP) {
return nullptr;
}
// First try and use the file associated with the info.
if (!name().empty()) {
Memory* memory = GetFileMemory();
if (memory != nullptr) {
return memory;
}
}
if (process_memory == nullptr) {
return nullptr;
}
set_memory_backed_elf(true);
// Need to verify that this elf is valid. It's possible that
// only part of the elf file to be mapped into memory is in the executable
// map. In this case, there will be another read-only map that includes the
// first part of the elf file. This is done if the linker rosegment
// option is used.
std::unique_ptr<MemoryRange> memory(new MemoryRange(process_memory, start(), end() - start(), 0));
if (Elf::IsValidElf(memory.get())) {
set_elf_start_offset(offset());
auto next_real_map = GetNextRealMap();
// Might need to peek at the next map to create a memory object that
// includes that map too.
if (offset() != 0 || next_real_map == nullptr || offset() >= next_real_map->offset()) {
return memory.release();
}
// There is a possibility that the elf object has already been created
// in the next map. Since this should be a very uncommon path, just
// redo the work. If this happens, the elf for this map will eventually
// be discarded.
MemoryRanges* ranges = new MemoryRanges;
ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), 0));
ranges->Insert(new MemoryRange(process_memory, next_real_map->start(),
next_real_map->end() - next_real_map->start(),
next_real_map->offset() - offset()));
return ranges;
}
auto prev_real_map = GetPrevRealMap();
// Find the read-only map by looking at the previous map. The linker
// doesn't guarantee that this invariant will always be true. However,
// if that changes, there is likely something else that will change and
// break something.
if (offset() == 0 || prev_real_map == nullptr || prev_real_map->offset() >= offset()) {
set_memory_backed_elf(false);
return nullptr;
}
// Make sure that relative pc values are corrected properly.
set_elf_offset(offset() - prev_real_map->offset());
// Use this as the elf start offset, otherwise, you always get offsets into
// the r-x section, which is not quite the right information.
set_elf_start_offset(prev_real_map->offset());
std::unique_ptr<MemoryRanges> ranges(new MemoryRanges);
if (!ranges->Insert(new MemoryRange(process_memory, prev_real_map->start(),
prev_real_map->end() - prev_real_map->start(), 0))) {
return nullptr;
}
if (!ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), elf_offset()))) {
return nullptr;
}
return ranges.release();
}
class ScopedElfCacheLock {
public:
ScopedElfCacheLock() {
if (Elf::CachingEnabled()) Elf::CacheLock();
}
~ScopedElfCacheLock() {
if (Elf::CachingEnabled()) Elf::CacheUnlock();
}
};
Elf* MapInfo::GetElf(const std::shared_ptr<Memory>& process_memory, ArchEnum expected_arch) {
// Make sure no other thread is trying to add the elf to this map.
std::lock_guard<std::mutex> guard(elf_mutex());
if (elf().get() != nullptr) {
return elf().get();
}
ScopedElfCacheLock elf_cache_lock;
if (Elf::CachingEnabled() && !name().empty()) {
if (Elf::CacheGet(this)) {
return elf().get();
}
}
elf().reset(new Elf(CreateMemory(process_memory)));
// If the init fails, keep the elf around as an invalid object so we
// don't try to reinit the object.
elf()->Init();
if (elf()->valid() && expected_arch != elf()->arch()) {
// Make the elf invalid, mismatch between arch and expected arch.
elf()->Invalidate();
}
if (!elf()->valid()) {
set_elf_start_offset(offset());
} else if (auto prev_real_map = GetPrevRealMap(); prev_real_map != nullptr &&
prev_real_map->flags() == PROT_READ &&
prev_real_map->offset() < offset()) {
// If there is a read-only map then a read-execute map that represents the
// same elf object, make sure the previous map is using the same elf
// object if it hasn't already been set. Locking this should not result
// in a deadlock as long as the invariant that the code only ever tries
// to lock the previous real map holds true.
std::lock_guard<std::mutex> guard(prev_real_map->elf_mutex());
if (prev_real_map->elf() == nullptr) {
// Need to verify if the map is the previous read-only map.
prev_real_map->set_elf(elf());
prev_real_map->set_memory_backed_elf(memory_backed_elf());
prev_real_map->set_elf_start_offset(elf_start_offset());
prev_real_map->set_elf_offset(prev_real_map->offset() - elf_start_offset());
} else if (prev_real_map->elf_start_offset() == elf_start_offset()) {
// Discard this elf, and use the elf from the previous map instead.
set_elf(prev_real_map->elf());
}
}
// Cache the elf only after all of the above checks since we might
// discard the original elf we created.
if (Elf::CachingEnabled()) {
Elf::CacheAdd(this);
}
return elf().get();
}
bool MapInfo::GetFunctionName(uint64_t addr, SharedString* name, uint64_t* func_offset) {
{
// Make sure no other thread is trying to update this elf object.
std::lock_guard<std::mutex> guard(elf_mutex());
if (elf() == nullptr) {
return false;
}
}
// No longer need the lock, once the elf object is created, it is not deleted
// until this object is deleted.
return elf()->GetFunctionName(addr, name, func_offset);
}
uint64_t MapInfo::GetLoadBias() {
uint64_t cur_load_bias = load_bias().load();
if (cur_load_bias != UINT64_MAX) {
return cur_load_bias;
}
Elf* elf_obj = GetElfObj();
if (elf_obj == nullptr) {
return UINT64_MAX;
}
if (elf_obj->valid()) {
cur_load_bias = elf_obj->GetLoadBias();
set_load_bias(cur_load_bias);
return cur_load_bias;
}
set_load_bias(0);
return 0;
}
uint64_t MapInfo::GetLoadBias(const std::shared_ptr<Memory>& process_memory) {
uint64_t cur_load_bias = GetLoadBias();
if (cur_load_bias != UINT64_MAX) {
return cur_load_bias;
}
// Call lightweight static function that will only read enough of the
// elf data to get the load bias.
std::unique_ptr<Memory> memory(CreateMemory(process_memory));
cur_load_bias = Elf::GetLoadBias(memory.get());
set_load_bias(cur_load_bias);
return cur_load_bias;
}
MapInfo::~MapInfo() {
ElfFields* elf_fields = elf_fields_.load();
if (elf_fields != nullptr) {
delete elf_fields->build_id_.load();
delete elf_fields;
}
}
std::string MapInfo::GetFullName() {
Elf* elf_obj = GetElfObj();
if (elf_obj == nullptr || elf_start_offset() == 0 || name().empty()) {
return name();
}
std::string soname = elf_obj->GetSoname();
if (soname.empty()) {
return name();
}
std::string full_name(name());
full_name += '!';
full_name += soname;
return full_name;
}
SharedString MapInfo::GetBuildID() {
SharedString* id = build_id().load();
if (id != nullptr) {
return *id;
}
// No need to lock, at worst if multiple threads do this at the same
// time it should be detected and only one thread should win and
// save the data.
std::string result;
Elf* elf_obj = GetElfObj();
if (elf_obj != nullptr) {
result = elf_obj->GetBuildID();
} else {
// This will only work if we can get the file associated with this memory.
// If this is only available in memory, then the section name information
// is not present and we will not be able to find the build id info.
std::unique_ptr<Memory> memory(GetFileMemory());
if (memory != nullptr) {
result = Elf::GetBuildID(memory.get());
}
}
return SetBuildID(std::move(result));
}
SharedString MapInfo::SetBuildID(std::string&& new_build_id) {
std::unique_ptr<SharedString> new_build_id_ptr(new SharedString(std::move(new_build_id)));
SharedString* expected_id = nullptr;
// Strong version since we need to reliably return the stored pointer.
if (build_id().compare_exchange_strong(expected_id, new_build_id_ptr.get())) {
// Value saved, so make sure the memory is not freed.
return *new_build_id_ptr.release();
} else {
// The expected value is set to the stored value on failure.
return *expected_id;
}
}
MapInfo::ElfFields& MapInfo::GetElfFields() {
ElfFields* elf_fields = elf_fields_.load(std::memory_order_acquire);
if (elf_fields != nullptr) {
return *elf_fields;
}
// Allocate and initialize the field in thread-safe way.
std::unique_ptr<ElfFields> desired(new ElfFields());
ElfFields* expected = nullptr;
// Strong version is reliable. Weak version might randomly return false.
if (elf_fields_.compare_exchange_strong(expected, desired.get())) {
return *desired.release(); // Success: we transferred the pointer ownership to the field.
} else {
return *expected; // Failure: 'expected' is updated to the value set by the other thread.
}
}
std::string MapInfo::GetPrintableBuildID() {
std::string raw_build_id = GetBuildID();
return Elf::GetPrintableBuildID(raw_build_id);
}
} // namespace unwindstack