kicad/utils/kicad2step/pcb/oce_utils.cpp

1509 lines
43 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016 Cirilo Bernardo <cirilo.bernardo@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm>
#include <cmath>
#include <sstream>
#include <string>
#include <utility>
#include <wx/filename.h>
#include <wx/log.h>
#include "oce_utils.h"
#include "kicadpad.h"
#include "streamwrapper.h"
#include <IGESCAFControl_Reader.hxx>
#include <IGESCAFControl_Writer.hxx>
#include <IGESControl_Controller.hxx>
#include <IGESData_GlobalSection.hxx>
#include <IGESData_IGESModel.hxx>
#include <Interface_Static.hxx>
#include <Quantity_Color.hxx>
#include <STEPCAFControl_Reader.hxx>
#include <STEPCAFControl_Writer.hxx>
#include <APIHeaderSection_MakeHeader.hxx>
#include <TCollection_ExtendedString.hxx>
#include <TDataStd_Name.hxx>
#include <TDF_LabelSequence.hxx>
#include <TDF_ChildIterator.hxx>
#include <TopExp_Explorer.hxx>
#include <XCAFDoc_DocumentTool.hxx>
#include <XCAFDoc_ColorTool.hxx>
#include <BRep_Tool.hxx>
#include <BRepMesh_IncrementalMesh.hxx>
#include <BRepBuilderAPI.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_Transform.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepPrimAPI_MakePrism.hxx>
#include <BRepPrimAPI_MakeCylinder.hxx>
#include <BRepAlgoAPI_Cut.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Wire.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Compound.hxx>
#include <TopoDS_Builder.hxx>
#include <gp_Ax2.hxx>
#include <gp_Circ.hxx>
#include <gp_Dir.hxx>
#include <gp_Pnt.hxx>
#define USER_PREC (1e-4)
#define USER_ANGLE_PREC (1e-6)
// minimum PCB thickness in mm (2 microns assumes a very thin polyimide film)
#define THICKNESS_MIN (0.002)
// default PCB thickness in mm
#define THICKNESS_DEFAULT (1.6)
// nominal offset from the board
#define BOARD_OFFSET (0.05 )
// min. length**2 below which 2 points are considered coincident
#define MIN_LENGTH2 (0.0001)
static void getEndPoints( const KICADCURVE& aCurve, double& spx0, double& spy0,
double& epx0, double& epy0 )
{
if( CURVE_ARC == aCurve.m_form )
{
spx0 = aCurve.m_end.x;
spy0 = aCurve.m_end.y;
epx0 = aCurve.m_ep.x;
epy0 = aCurve.m_ep.y;
return;
}
// assume a line
spx0 = aCurve.m_start.x;
spy0 = aCurve.m_start.y;
epx0 = aCurve.m_end.x;
epy0 = aCurve.m_end.y;
return;
}
static void getCurveEndPoint( const KICADCURVE& aCurve, DOUBLET& aEndPoint )
{
if( CURVE_CIRCLE == aCurve.m_form )
return; // circles are closed loops and have no end point
if( CURVE_ARC == aCurve.m_form )
{
aEndPoint.x = aCurve.m_ep.x;
aEndPoint.y = aCurve.m_ep.y;
return;
}
// assume a line
aEndPoint.x = aCurve.m_end.x;
aEndPoint.y = aCurve.m_end.y;
return;
}
static void reverseCurve( KICADCURVE& aCurve )
{
if( CURVE_NONE == aCurve.m_form || CURVE_CIRCLE == aCurve.m_form )
return;
if( CURVE_LINE == aCurve.m_form )
{
std::swap( aCurve.m_start, aCurve.m_end );
return;
}
std::swap( aCurve.m_end, aCurve.m_ep );
std::swap( aCurve.m_endangle, aCurve.m_startangle );
aCurve.m_angle = -aCurve.m_angle;
return;
}
// supported file types
enum FormatType
{
FMT_NONE = 0,
FMT_STEP = 1,
FMT_IGES = 2,
FMT_EMN = 3,
FMT_IDF = 4,
FMT_WRL = 5, // .wrl files are replaced with MCAD equivalent
};
FormatType fileType( const char* aFileName )
{
wxFileName lfile( wxString::FromUTF8Unchecked( aFileName ) );
if( !lfile.FileExists() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * no such file: '" << aFileName << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return FMT_NONE;
}
wxString ext = lfile.GetExt();
if( ext.Lower() == "wrl" )
return FMT_WRL;
if( ext == "idf" || ext == "IDF" )
return FMT_IDF; // component outline
else if( ext == "emn" || ext == "EMN" )
return FMT_EMN; // PCB assembly
OPEN_ISTREAM( ifile, aFileName );
if( ifile.fail() )
return FMT_NONE;
char iline[82];
memset( iline, 0, 82 );
ifile.getline( iline, 82 );
CLOSE_STREAM( ifile );
iline[81] = 0; // ensure NULL termination when string is too long
// check for STEP in Part 21 format
// (this can give false positives since Part 21 is not exclusively STEP)
if( !strncmp( iline, "ISO-10303-21;", 13 ) )
return FMT_STEP;
std::string fstr = iline;
// check for STEP in XML format
// (this can give both false positive and false negatives)
if( fstr.find( "urn:oid:1.0.10303." ) != std::string::npos )
return FMT_STEP;
// Note: this is a very simple test which can yield false positives; the only
// sure method for determining if a file *not* an IGES model is to attempt
// to load it.
if( iline[72] == 'S' && ( iline[80] == 0 || iline[80] == 13 || iline[80] == 10 ) )
return FMT_IGES;
return FMT_NONE;
}
PCBMODEL::PCBMODEL()
{
m_app = XCAFApp_Application::GetApplication();
m_app->NewDocument( "MDTV-XCAF", m_doc );
m_assy = XCAFDoc_DocumentTool::ShapeTool ( m_doc->Main() );
m_assy_label = m_assy->NewShape();
m_hasPCB = false;
m_components = 0;
m_precision = USER_PREC;
m_angleprec = USER_ANGLE_PREC;
m_thickness = THICKNESS_DEFAULT;
m_minx = 1.0e10; // absurdly large number; any valid PCB X value will be smaller
m_mincurve = m_curves.end();
BRepBuilderAPI::Precision( 1.0e-6 );
return;
}
PCBMODEL::~PCBMODEL()
{
m_doc->Close();
return;
}
// add an outline segment
bool PCBMODEL::AddOutlineSegment( KICADCURVE* aCurve )
{
if( NULL == aCurve || LAYER_EDGE != aCurve->m_layer || CURVE_NONE == aCurve->m_form )
return false;
if( CURVE_LINE == aCurve->m_form )
{
// reject zero - length lines
double dx = aCurve->m_end.x - aCurve->m_start.x;
double dy = aCurve->m_end.y - aCurve->m_start.y;
double distance = dx * dx + dy * dy;
if( distance < MIN_LENGTH2 )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * rejected a zero-length line\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
}
else
{
// ensure that the start (center) and end (start of arc) are not the same point
double dx = aCurve->m_end.x - aCurve->m_start.x;
double dy = aCurve->m_end.y - aCurve->m_start.y;
double rad = dx * dx + dy * dy;
if( rad < MIN_LENGTH2 )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * rejected a zero-radius arc or circle\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
// calculate the radius and, if applicable, end point
rad = sqrt( rad );
aCurve->m_radius = rad;
if( CURVE_ARC == aCurve->m_form )
{
aCurve->m_startangle = atan2( dy, dx );
if( aCurve->m_startangle < 0.0 )
aCurve->m_startangle += 2.0 * M_PI;
double eang = aCurve->m_startangle + aCurve->m_angle;
if( eang < 0.0 )
eang += 2.0 * M_PI;
if( aCurve->m_angle < 0.0 && eang > aCurve->m_startangle )
aCurve->m_startangle += 2.0 * M_PI;
else if( aCurve->m_angle >= 0.0 && eang < aCurve->m_startangle )
eang += 2.0 * M_PI;
aCurve->m_endangle = eang;
aCurve->m_ep.x = aCurve->m_start.x + rad * cos( eang );
aCurve->m_ep.y = aCurve->m_start.y + rad * sin( eang );
dx = aCurve->m_ep.x - aCurve->m_end.x;
dy = aCurve->m_ep.y - aCurve->m_end.y;
rad = dx * dx + dy * dy;
if( rad < MIN_LENGTH2 )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * rejected an arc with equivalent end points\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
}
}
m_curves.push_back( *aCurve );
// check if this curve has the current leftmost feature
switch( aCurve->m_form )
{
case CURVE_LINE:
if( aCurve->m_start.x < m_minx )
{
m_minx = aCurve->m_start.x;
m_mincurve = --(m_curves.end());
}
if( aCurve->m_end.x < m_minx )
{
m_minx = aCurve->m_end.x;
m_mincurve = --(m_curves.end());
}
break;
case CURVE_CIRCLE:
do
{
double dx = aCurve->m_start.x - aCurve->m_radius;
if( dx < m_minx )
{
m_minx = dx;
m_mincurve = --(m_curves.end());
}
} while( 0 );
break;
case CURVE_ARC:
do
{
double dx0 = aCurve->m_end.x - aCurve->m_start.x;
double dy0 = aCurve->m_end.y - aCurve->m_start.y;
int q0; // quadrant of start point
if( dx0 > 0.0 && dy0 >= 0.0 )
q0 = 1;
else if( dx0 <= 0.0 && dy0 > 0.0 )
q0 = 2;
else if( dx0 < 0.0 && dy0 <= 0.0 )
q0 = 3;
else
q0 = 4;
double dx1 = aCurve->m_ep.x - aCurve->m_start.x;
double dy1 = aCurve->m_ep.y - aCurve->m_start.y;
int q1; // quadrant of end point
if( dx1 > 0.0 && dy1 >= 0.0 )
q1 = 1;
else if( dx1 <= 0.0 && dy1 > 0.0 )
q1 = 2;
else if( dx1 < 0.0 && dy1 <= 0.0 )
q1 = 3;
else
q1 = 4;
// calculate x0, y0 for the start point on a CCW arc
double x0 = aCurve->m_end.x;
double x1 = aCurve->m_ep.x;
if( aCurve->m_angle < 0.0 )
{
std::swap( q0, q1 );
std::swap( x0, x1 );
}
double minx;
if( ( q0 <= 2 && q1 >= 3 ) || ( q0 >= 3 && x0 > x1 ) )
minx = aCurve->m_start.x - aCurve->m_radius;
else
minx = std::min( x0, x1 );
if( minx < m_minx )
{
m_minx = minx;
m_mincurve = --(m_curves.end());
}
} while( 0 );
break;
default:
// unexpected curve type
do
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * unsupported curve type: '" << aCurve->m_form << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
} while( 0 );
return false;
}
return true;
}
// add a pad hole or slot
bool PCBMODEL::AddPadHole( KICADPAD* aPad )
{
if( NULL == aPad || !aPad->IsThruHole() )
return false;
if( !aPad->m_drill.oval )
{
TopoDS_Shape s = BRepPrimAPI_MakeCylinder( aPad->m_drill.size.x * 0.5,
m_thickness * 2.0 ).Shape();
gp_Trsf shift;
shift.SetTranslation( gp_Vec( aPad->m_position.x, aPad->m_position.y, -m_thickness * 0.5 ) );
BRepBuilderAPI_Transform hole( s, shift );
m_cutouts.push_back( hole.Shape() );
return true;
}
// slotted hole
double angle_offset = 0.0;
double rad; // radius of the slot
double hlen; // half length of the slot
if( aPad->m_drill.size.x < aPad->m_drill.size.y )
{
angle_offset = M_PI_2;
rad = aPad->m_drill.size.x * 0.5;
hlen = aPad->m_drill.size.y * 0.5 - rad;
}
else
{
rad = aPad->m_drill.size.y * 0.5;
hlen = aPad->m_drill.size.x * 0.5 - rad;
}
DOUBLET c0( -hlen, 0.0 );
DOUBLET c1( hlen, 0.0 );
DOUBLET p0( -hlen, rad );
DOUBLET p1( -hlen, -rad );
DOUBLET p2( hlen, -rad );
DOUBLET p3( hlen, rad );
angle_offset += aPad->m_rotation;
double dlim = (double)std::numeric_limits< float >::epsilon();
if( angle_offset < -dlim || angle_offset > dlim )
{
double vsin = sin( angle_offset );
double vcos = cos( angle_offset );
double x = c0.x * vcos - c0.y * vsin;
double y = c0.x * vsin + c0.y * vcos;
c0.x = x;
c0.y = y;
x = c1.x * vcos - c1.y * vsin;
y = c1.x * vsin + c1.y * vcos;
c1.x = x;
c1.y = y;
x = p0.x * vcos - p0.y * vsin;
y = p0.x * vsin + p0.y * vcos;
p0.x = x;
p0.y = y;
x = p1.x * vcos - p1.y * vsin;
y = p1.x * vsin + p1.y * vcos;
p1.x = x;
p1.y = y;
x = p2.x * vcos - p2.y * vsin;
y = p2.x * vsin + p2.y * vcos;
p2.x = x;
p2.y = y;
x = p3.x * vcos - p3.y * vsin;
y = p3.x * vsin + p3.y * vcos;
p3.x = x;
p3.y = y;
}
c0.x += aPad->m_position.x;
c0.y += aPad->m_position.y;
c1.x += aPad->m_position.x;
c1.y += aPad->m_position.y;
p0.x += aPad->m_position.x;
p0.y += aPad->m_position.y;
p1.x += aPad->m_position.x;
p1.y += aPad->m_position.y;
p2.x += aPad->m_position.x;
p2.y += aPad->m_position.y;
p3.x += aPad->m_position.x;
p3.y += aPad->m_position.y;
OUTLINE oln;
KICADCURVE crv0, crv1, crv2, crv3;
// crv0 = arc
crv0.m_start = c0;
crv0.m_end = p0;
crv0.m_ep = p1;
crv0.m_angle = M_PI;
crv0.m_radius = rad;
crv0.m_form = CURVE_ARC;
// crv1 = line
crv1.m_start = p1;
crv1.m_end = p2;
crv1.m_form = CURVE_LINE;
// crv2 = arc
crv2.m_start = c1;
crv2.m_end = p2;
crv2.m_ep = p3;
crv2.m_angle = M_PI;
crv2.m_radius = rad;
crv2.m_form = CURVE_ARC;
// crv3 = line
crv3.m_start = p3;
crv3.m_end = p0;
crv3.m_form = CURVE_LINE;
oln.AddSegment( crv0 );
oln.AddSegment( crv1 );
oln.AddSegment( crv2 );
oln.AddSegment( crv3 );
TopoDS_Shape slot;
if( oln.MakeShape( slot, m_thickness ) )
{
if( !slot.IsNull() )
m_cutouts.push_back( slot );
return true;
}
return false;
}
// add a component at the given position and orientation
bool PCBMODEL::AddComponent( const std::string& aFileName, const std::string& aRefDes,
bool aBottom, DOUBLET aPosition, double aRotation,
TRIPLET aOffset, TRIPLET aOrientation )
{
if( aFileName.empty() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * no model defined for component '" << aRefDes << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
// first retrieve a label
TDF_Label lmodel;
if( !getModelLabel( aFileName, lmodel ) )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * no model for filename '" << aFileName << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
// calculate the Location transform
TopLoc_Location toploc;
if( !getModelLocation( aBottom, aPosition, aRotation, aOffset, aOrientation, toploc ) )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * no location data for filename '" << aFileName << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
// add the located sub-assembly
TDF_Label llabel = m_assy->AddComponent( m_assy_label, lmodel, toploc );
if( llabel.IsNull() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * could not add component with filename '" << aFileName << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
// attach the RefDes name
TCollection_ExtendedString refdes( aRefDes.c_str() );
TDataStd_Name::Set( llabel, refdes );
return true;
}
void PCBMODEL::SetPCBThickness( double aThickness )
{
if( aThickness < 0.0 )
m_thickness = THICKNESS_DEFAULT;
else if( aThickness < THICKNESS_MIN )
m_thickness = THICKNESS_MIN;
else
m_thickness = aThickness;
return;
}
// create the PCB (board only) model using the current outlines and drill holes
bool PCBMODEL::CreatePCB()
{
if( m_hasPCB )
{
if( m_pcb_label.IsNull() )
return false;
return true;
}
if( m_curves.empty() || m_mincurve == m_curves.end() )
{
m_hasPCB = true;
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * no valid board outline\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
m_hasPCB = true; // whether or not operations fail we note that CreatePCB has been invoked
TopoDS_Shape board;
OUTLINE oln; // loop to assemble (represents PCB outline and cutouts)
oln.AddSegment( *m_mincurve );
m_curves.erase( m_mincurve );
while( !m_curves.empty() )
{
if( oln.IsClosed() )
{
if( board.IsNull() )
{
if( !oln.MakeShape( board, m_thickness ) )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * could not create board extrusion\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
}
else
{
TopoDS_Shape hole;
if( oln.MakeShape( hole, m_thickness ) )
{
m_cutouts.push_back( hole );
}
else
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * could not create board cutout\n";
wxLogMessage( "%s", ostr.str().c_str() );
}
}
oln.Clear();
if( !m_curves.empty() )
{
oln.AddSegment( m_curves.front() );
m_curves.pop_front();
}
continue;
}
std::list< KICADCURVE >::iterator sC = m_curves.begin();
std::list< KICADCURVE >::iterator eC = m_curves.end();
while( sC != eC )
{
if( oln.AddSegment( *sC ) )
{
m_curves.erase( sC );
break;
}
++sC;
}
if( sC == eC && !oln.m_curves.empty() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * could not close outline (dropping outline data with " << oln.m_curves.size() << " segments)\n";
wxLogMessage( "%s", ostr.str().c_str() );
oln.Clear();
if( !m_curves.empty() )
{
oln.AddSegment( m_curves.front() );
m_curves.pop_front();
}
}
}
if( oln.IsClosed() )
{
if( board.IsNull() )
{
if( !oln.MakeShape( board, m_thickness ) )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * could not create board extrusion\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
}
else
{
TopoDS_Shape hole;
if( oln.MakeShape( hole, m_thickness ) )
{
m_cutouts.push_back( hole );
}
else
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * could not create board cutout\n";
wxLogMessage( "%s", ostr.str().c_str() );
}
}
}
// subtract cutouts (if any)
for( auto i : m_cutouts )
board = BRepAlgoAPI_Cut( board, i );
// push the board to the data structure
m_pcb_label = m_assy->AddComponent( m_assy_label, board );
if( m_pcb_label.IsNull() )
return false;
// color the PCB
Handle(XCAFDoc_ColorTool) color =
XCAFDoc_DocumentTool::ColorTool( m_doc->Main () );
Quantity_Color pcb_green( 0.06, 0.4, 0.06, Quantity_TOC_RGB );
color->SetColor( m_pcb_label, pcb_green, XCAFDoc_ColorSurf );
TopExp_Explorer topex;
topex.Init( m_assy->GetShape( m_pcb_label ), TopAbs_SOLID );
while( topex.More() )
{
color->SetColor( topex.Current(), pcb_green, XCAFDoc_ColorSurf );
topex.Next();
}
return true;
}
#ifdef SUPPORTS_IGES
// write the assembly model in IGES format
bool PCBMODEL::WriteIGES( const std::string& aFileName, bool aOverwrite )
{
if( m_pcb_label.IsNull() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * No valid PCB assembly; cannot create output file " << aFileName << "\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
wxFileName fn( aFileName );
IGESControl_Controller::Init();
IGESCAFControl_Writer writer;
writer.SetColorMode( Standard_True );
writer.SetNameMode( Standard_True );
IGESData_GlobalSection header = writer.Model()->GlobalSection();
header.SetFileName( new TCollection_HAsciiString( fn.GetFullName().ToUTF8() ) );
header.SetSendName( new TCollection_HAsciiString( "KiCad electronic assembly" ) );
header.SetAuthorName( new TCollection_HAsciiString( Interface_Static::CVal( "write.iges.header.author" ) ) );
header.SetCompanyName( new TCollection_HAsciiString( Interface_Static::CVal( "write.iges.header.company" ) ) );
writer.Model()->SetGlobalSection( header );
if( Standard_False == writer.Perform( m_doc, aFileName.c_str() ) )
return false;
return true;
}
#endif
// write the assembly model in STEP format
bool PCBMODEL::WriteSTEP( const std::string& aFileName, bool aOverwrite )
{
if( m_pcb_label.IsNull() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * No valid PCB assembly; cannot create output file " << aFileName << "\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
STEPCAFControl_Writer writer;
writer.SetColorMode( Standard_True );
writer.SetNameMode( Standard_True );
if( Standard_False == writer.Transfer( m_doc, STEPControl_AsIs ) )
return false;
APIHeaderSection_MakeHeader hdr( writer.ChangeWriter().Model() );
wxFileName fn( aFileName );
hdr.SetName( new TCollection_HAsciiString( fn.GetFullName().ToUTF8() ) );
// TODO: how to control and ensure consistency with IGES?
hdr.SetAuthorValue( 1, new TCollection_HAsciiString( "An Author" ) );
hdr.SetOrganizationValue( 1, new TCollection_HAsciiString( "A Company" ) );
hdr.SetOriginatingSystem( new TCollection_HAsciiString( "KiCad to STEP converter" ) );
hdr.SetDescriptionValue( 1, new TCollection_HAsciiString( "KiCad electronic assembly" ) );
if( Standard_False == writer.Write( aFileName.c_str() ) )
return false;
return true;
}
bool PCBMODEL::getModelLabel( const std::string aFileName, TDF_Label& aLabel )
{
MODEL_MAP::const_iterator mm = m_models.find( aFileName );
if( mm != m_models.end() )
{
aLabel = mm->second;
return true;
}
aLabel.Nullify();
Handle( TDocStd_Document ) doc;
m_app->NewDocument( "MDTV-XCAF", doc );
FormatType modelFmt = fileType( aFileName.c_str() );
switch( modelFmt )
{
case FMT_IGES:
if( !readIGES( doc, aFileName.c_str() ) )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * readIGES() failed on filename '" << aFileName << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
break;
case FMT_STEP:
if( !readSTEP( doc, aFileName.c_str() ) )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * readSTEP() failed on filename '" << aFileName << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
break;
case FMT_WRL:
/* WRL files are preferred for internal rendering,
* due to superior material properties, etc.
* However they are not suitable for MCAD export.
*
* If a .wrl file is specified, attempt to locate
* a replacement file for it.
*
* If a valid replacement file is found, the label
* for THAT file will be associated with the .wrl file
*
*/
{
wxFileName wrlName( aFileName );
wxString basePath = wrlName.GetPath();
wxString baseName = wrlName.GetName();
// List of alternate files to look for
// Given in order of preference
// (Break if match is found)
wxArrayString alts;
// Step files
alts.Add( "stp" );
alts.Add( "step" );
alts.Add( "STP" );
alts.Add( "STEP" );
alts.Add( "Stp" );
alts.Add( "Step" );
// IGES files
alts.Add( "iges" );
alts.Add( "IGES" );
alts.Add( "igs" );
alts.Add( "IGS" );
//TODO - Other alternative formats?
for( auto alt : alts )
{
wxFileName altFile( basePath, baseName + "." + alt );
if( altFile.IsOk() && altFile.FileExists() )
{
std::string altFileName = altFile.GetFullPath().ToStdString();
if( getModelLabel( altFileName, aLabel ) )
{
return true;
}
}
}
}
break;
// TODO: implement IDF and EMN converters
default:
return false;
}
aLabel = transferModel( doc, m_doc );
if( aLabel.IsNull() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * could not transfer model data from file '" << aFileName << "'\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
// attach the PART NAME ( base filename: note that in principle
// different models may have the same base filename )
wxFileName afile( aFileName.c_str() );
std::string pname( afile.GetName().ToUTF8() );
TCollection_ExtendedString partname( pname.c_str() );
TDataStd_Name::Set( aLabel, partname );
m_models.insert( MODEL_DATUM( aFileName, aLabel ) );
++m_components;
return true;
}
bool PCBMODEL::getModelLocation( bool aBottom, DOUBLET aPosition, double aRotation,
TRIPLET aOffset, TRIPLET aOrientation, TopLoc_Location& aLocation )
{
// Order of operations:
// a. aOrientation is applied -Z*-Y*-X
// b. aOffset is applied
// Top ? add thickness to the Z offset
// c. Bottom ? Rotate on X axis (in contrast to most ECAD which mirror on Y),
// then rotate on +Z
// Top ? rotate on -Z
// d. aPosition is applied
//
// Note: Y axis is inverted in KiCad
gp_Trsf lPos;
lPos.SetTranslation( gp_Vec( aPosition.x, -aPosition.y, 0.0 ) );
// Offset board thickness
aOffset.z += BOARD_OFFSET;
gp_Trsf lRot;
if( aBottom )
{
lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aRotation );
lPos.Multiply( lRot );
lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 1.0, 0.0, 0.0 ) ), M_PI );
lPos.Multiply( lRot );
}
else
{
aOffset.z += m_thickness;
lRot.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ), gp_Dir( 0.0, 0.0, 1.0 ) ), aRotation );
lPos.Multiply( lRot );
}
gp_Trsf lOff;
lOff.SetTranslation( gp_Vec( aOffset.x, aOffset.y, aOffset.z ) );
lPos.Multiply( lOff );
gp_Trsf lOrient;
lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ),
gp_Dir( 0.0, 0.0, 1.0 ) ), -aOrientation.z );
lPos.Multiply( lOrient );
lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ),
gp_Dir( 0.0, 1.0, 0.0 ) ), -aOrientation.y );
lPos.Multiply( lOrient );
lOrient.SetRotation( gp_Ax1( gp_Pnt( 0.0, 0.0, 0.0 ),
gp_Dir( 1.0, 0.0, 0.0 ) ), -aOrientation.x );
lPos.Multiply( lOrient );
aLocation = TopLoc_Location( lPos );
return true;
}
bool PCBMODEL::readIGES( Handle( TDocStd_Document )& doc, const char* fname )
{
IGESControl_Controller::Init();
IGESCAFControl_Reader reader;
IFSelect_ReturnStatus stat = reader.ReadFile( fname );
if( stat != IFSelect_RetDone )
return false;
// Enable user-defined shape precision
if( !Interface_Static::SetIVal( "read.precision.mode", 1 ) )
return false;
// Set the shape conversion precision to USER_PREC (default 0.0001 has too many triangles)
if( !Interface_Static::SetRVal( "read.precision.val", USER_PREC ) )
return false;
// set other translation options
reader.SetColorMode(true); // use model colors
reader.SetNameMode(false); // don't use IGES label names
reader.SetLayerMode(false); // ignore LAYER data
if ( !reader.Transfer( doc ) )
{
doc->Close();
return false;
}
// are there any shapes to translate?
if( reader.NbShapes() < 1 )
{
doc->Close();
return false;
}
return true;
}
bool PCBMODEL::readSTEP( Handle(TDocStd_Document)& doc, const char* fname )
{
STEPCAFControl_Reader reader;
IFSelect_ReturnStatus stat = reader.ReadFile( fname );
if( stat != IFSelect_RetDone )
return false;
// Enable user-defined shape precision
if( !Interface_Static::SetIVal( "read.precision.mode", 1 ) )
return false;
// Set the shape conversion precision to USER_PREC (default 0.0001 has too many triangles)
if( !Interface_Static::SetRVal( "read.precision.val", USER_PREC ) )
return false;
// set other translation options
reader.SetColorMode(true); // use model colors
reader.SetNameMode(false); // don't use label names
reader.SetLayerMode(false); // ignore LAYER data
if ( !reader.Transfer( doc ) )
{
doc->Close();
return false;
}
// are there any shapes to translate?
if( reader.NbRootsForTransfer() < 1 )
{
doc->Close();
return false;
}
return true;
}
TDF_Label PCBMODEL::transferModel( Handle( TDocStd_Document )& source,
Handle( TDocStd_Document )& dest )
{
// transfer data from Source into a top level component of Dest
// s_assy = shape tool for the source
Handle(XCAFDoc_ShapeTool) s_assy = XCAFDoc_DocumentTool::ShapeTool ( source->Main() );
// retrieve all free shapes within the assembly
TDF_LabelSequence frshapes;
s_assy->GetFreeShapes( frshapes );
// d_assy = shape tool for the destination
Handle(XCAFDoc_ShapeTool) d_assy = XCAFDoc_DocumentTool::ShapeTool ( dest->Main() );
// create a new shape within the destination and set the assembly tool to point to it
TDF_Label component = d_assy->NewShape();
int nshapes = frshapes.Length();
int id = 1;
Handle( XCAFDoc_ColorTool ) scolor = XCAFDoc_DocumentTool::ColorTool( source->Main() );
Handle( XCAFDoc_ColorTool ) dcolor = XCAFDoc_DocumentTool::ColorTool( dest->Main() );
TopExp_Explorer dtop;
TopExp_Explorer stop;
while( id <= nshapes )
{
TopoDS_Shape shape = s_assy->GetShape( frshapes.Value(id) );
if ( !shape.IsNull() )
{
TDF_Label niulab = d_assy->AddComponent( component, shape, Standard_False );
// check for per-surface colors
stop.Init( shape, TopAbs_FACE );
dtop.Init( d_assy->GetShape( niulab ), TopAbs_FACE );
while( stop.More() && dtop.More() )
{
Quantity_Color face_color;
TDF_Label tl;
// give priority to the base shape's color
if( s_assy->FindShape( stop.Current(), tl ) )
{
if( scolor->GetColor( tl, XCAFDoc_ColorSurf, face_color )
|| scolor->GetColor( tl, XCAFDoc_ColorGen, face_color )
|| scolor->GetColor( tl, XCAFDoc_ColorCurv, face_color ) )
{
dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorSurf );
}
}
else if( scolor->GetColor( stop.Current(), XCAFDoc_ColorSurf, face_color )
|| scolor->GetColor( stop.Current(), XCAFDoc_ColorGen, face_color )
|| scolor->GetColor( stop.Current(), XCAFDoc_ColorCurv, face_color ) )
{
dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorSurf );
}
stop.Next();
dtop.Next();
}
// check for per-solid colors
stop.Init( shape, TopAbs_SOLID );
dtop.Init( d_assy->GetShape( niulab ), TopAbs_SOLID, TopAbs_FACE );
while( stop.More() && dtop.More() )
{
Quantity_Color face_color;
TDF_Label tl;
// give priority to the base shape's color
if( s_assy->FindShape( stop.Current(), tl ) )
{
if( scolor->GetColor( tl, XCAFDoc_ColorSurf, face_color )
|| scolor->GetColor( tl, XCAFDoc_ColorGen, face_color )
|| scolor->GetColor( tl, XCAFDoc_ColorCurv, face_color ) )
{
dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorGen );
}
}
else if( scolor->GetColor( stop.Current(), XCAFDoc_ColorSurf, face_color )
|| scolor->GetColor( stop.Current(), XCAFDoc_ColorGen, face_color )
|| scolor->GetColor( stop.Current(), XCAFDoc_ColorCurv, face_color ) )
{
dcolor->SetColor( dtop.Current(), face_color, XCAFDoc_ColorSurf );
}
stop.Next();
dtop.Next();
}
}
++id;
};
return component;
}
OUTLINE::OUTLINE()
{
m_closed = false;
return;
}
OUTLINE::~OUTLINE()
{
return;
}
void OUTLINE::Clear()
{
m_closed = false;
m_curves.clear();
return;
}
bool OUTLINE::AddSegment( const KICADCURVE& aCurve )
{
if( m_closed )
return false;
if( m_curves.empty() )
{
m_curves.push_back( aCurve );
if( CURVE_CIRCLE == aCurve.m_form )
m_closed = true;
return true;
}
if( CURVE_CIRCLE == aCurve.m_form )
return false;
// get the end points of the first curve
double spx0, spy0;
double epx0, epy0;
getEndPoints( m_curves.front(), spx0, spy0, epx0, epy0 );
// get the end points of the free curve
double spx1, spy1;
double epx1, epy1;
getEndPoints( aCurve, spx1, spy1, epx1, epy1 );
// check if the curve attaches to the front
double dx, dy;
dx = epx1 - spx0;
dy = epy1 - spy0;
if( dx * dx + dy * dy < MIN_LENGTH2 )
{
m_curves.push_front( aCurve );
m_closed = testClosed( m_curves.front(), m_curves.back() );
return true;
}
else
{
dx = spx1 - spx0;
dy = spy1 - spy0;
if( dx * dx + dy * dy < MIN_LENGTH2 )
{
KICADCURVE curve = aCurve;
reverseCurve( curve );
m_curves.push_front( curve );
m_closed = testClosed( m_curves.front(), m_curves.back() );
return true;
}
}
// check if the curve attaches to the back
getEndPoints( m_curves.back(), spx0, spy0, epx0, epy0 );
dx = spx1 - epx0;
dy = spy1 - epy0;
if( dx * dx + dy * dy < MIN_LENGTH2 )
{
m_curves.push_back( aCurve );
m_closed = testClosed( m_curves.front(), m_curves.back() );
return true;
}
else
{
dx = epx1 - epx0;
dy = epy1 - epy0;
if( dx * dx + dy * dy < MIN_LENGTH2 )
{
KICADCURVE curve = aCurve;
reverseCurve( curve );
m_curves.push_back( curve );
m_closed = testClosed( m_curves.front(), m_curves.back() );
return true;
}
}
// this curve is not an end segment of the current loop
return false;
}
bool OUTLINE::MakeShape( TopoDS_Shape& aShape, double aThickness )
{
if( !aShape.IsNull() )
return false; // there is already data in the shape object
if( m_curves.empty() )
return true; // suceeded in doing nothing
if( !m_closed )
return false; // the loop is not closed
BRepBuilderAPI_MakeWire wire;
DOUBLET lastPoint;
getCurveEndPoint( m_curves.back(), lastPoint );
for( auto i : m_curves )
{
if( !addEdge( &wire, i, lastPoint ) )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * failed to add an edge\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
}
TopoDS_Face face = BRepBuilderAPI_MakeFace( wire );
aShape = BRepPrimAPI_MakePrism( face, gp_Vec( 0, 0, aThickness ) );
if( aShape.IsNull() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * failed to create a prismatic shape\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
return true;
}
bool OUTLINE::addEdge( BRepBuilderAPI_MakeWire* aWire, KICADCURVE& aCurve, DOUBLET& aLastPoint )
{
TopoDS_Edge edge;
DOUBLET endPoint;
getCurveEndPoint( aCurve, endPoint );
switch( aCurve.m_form )
{
case CURVE_LINE:
edge = BRepBuilderAPI_MakeEdge( gp_Pnt( aLastPoint.x, aLastPoint.y, 0.0 ),
gp_Pnt( endPoint.x, endPoint.y, 0.0 ) );
break;
case CURVE_ARC:
do
{
gp_Circ arc( gp_Ax2( gp_Pnt( aCurve.m_start.x, aCurve.m_start.y, 0.0 ),
gp_Dir( 0.0, 0.0, 1.0 ) ), aCurve.m_radius );
gp_Pnt sa( aLastPoint.x, aLastPoint.y, 0.0 );
gp_Pnt ea( endPoint.x, endPoint.y, 0.0 );
if( aCurve.m_angle < 0.0 )
edge = BRepBuilderAPI_MakeEdge( arc, ea, sa );
else
edge = BRepBuilderAPI_MakeEdge( arc, sa, ea );
} while( 0 );
break;
case CURVE_CIRCLE:
edge = BRepBuilderAPI_MakeEdge( gp_Circ( gp_Ax2( gp_Pnt( aCurve.m_start.x, aCurve.m_start.y, 0.0 ),
gp_Dir( 0.0, 0.0, 1.0 ) ), aCurve.m_radius ) );
break;
default:
do
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * unsupported curve type: " << aCurve.m_form << "\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
} while( 0 );
}
if( edge.IsNull() )
return false;
aLastPoint = endPoint;
aWire->Add( edge );
if( BRepBuilderAPI_DisconnectedWire == aWire->Error() )
{
std::ostringstream ostr;
#ifdef __WXDEBUG__
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
#endif /* __WXDEBUG */
ostr << " * failed to add curve\n";
wxLogMessage( "%s", ostr.str().c_str() );
return false;
}
return true;
}
bool OUTLINE::testClosed( KICADCURVE& aFrontCurve, KICADCURVE& aBackCurve )
{
double spx0, spy0, epx0, epy0;
getEndPoints( aFrontCurve, spx0, spy0, epx0, epy0 );
double spx1, spy1, epx1, epy1;
getEndPoints( aBackCurve, spx1, spy1, epx1, epy1 );
double dx = epx1 - spx0;
double dy = epy1 - spy0;
double r = dx * dx + dy * dy;
if( r < MIN_LENGTH2 )
return true;
return false;
}