kicad/pcbnew/router/pns_utils.cpp

525 lines
16 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pns_utils.h"
#include "pns_line.h"
#include "pns_via.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
#include <geometry/shape_arc.h>
#include <geometry/shape_segment.h>
#include <math/box2.h>
#include <cmath>
namespace PNS {
const SHAPE_LINE_CHAIN OctagonalHull( const VECTOR2I& aP0, const VECTOR2I& aSize,
int aClearance, int aChamfer )
{
SHAPE_LINE_CHAIN s;
s.SetClosed( true );
s.Append( aP0.x - aClearance, aP0.y - aClearance + aChamfer );
if( aChamfer )
s.Append( aP0.x - aClearance + aChamfer, aP0.y - aClearance );
s.Append( aP0.x + aSize.x + aClearance - aChamfer, aP0.y - aClearance );
if( aChamfer )
s.Append( aP0.x + aSize.x + aClearance, aP0.y - aClearance + aChamfer );
s.Append( aP0.x + aSize.x + aClearance, aP0.y + aSize.y + aClearance - aChamfer );
if( aChamfer )
s.Append( aP0.x + aSize.x + aClearance - aChamfer, aP0.y + aSize.y + aClearance );
s.Append( aP0.x - aClearance + aChamfer, aP0.y + aSize.y + aClearance );
if( aChamfer )
s.Append( aP0.x - aClearance, aP0.y + aSize.y + aClearance - aChamfer );
return s;
}
const SHAPE_LINE_CHAIN ArcHull( const SHAPE_ARC& aSeg, int aClearance, int aWalkaroundThickness )
{
int d = aSeg.GetWidth() / 2 + aClearance + aWalkaroundThickness / 2
+ SHAPE_ARC::DefaultAccuracyForPCB();
int x = (int) ( 2.0 / ( 1.0 + M_SQRT2 ) * d ) / 2;
auto line = aSeg.ConvertToPolyline();
SHAPE_LINE_CHAIN s;
s.SetClosed( true );
std::vector<VECTOR2I> reverse_line;
auto seg = line.Segment( 0 );
VECTOR2I dir = seg.B - seg.A;
VECTOR2I p0 = -dir.Perpendicular().Resize( d );
VECTOR2I ds = -dir.Perpendicular().Resize( x );
VECTOR2I pd = dir.Resize( x );
VECTOR2I dp = dir.Resize( d );
// Append the first curve
s.Append( seg.A + p0 - pd );
s.Append( seg.A - dp + ds );
s.Append( seg.A - dp - ds );
s.Append( seg.A - p0 - pd );
for( int i = 1; i < line.SegmentCount(); i++ )
{
// calculate a vertex normal (average of segment normals)
auto pp =
( line.CSegment( i - 1 ).B - line.CSegment( i - 1 ).A ).Perpendicular().Resize( d );
auto pp2 = ( line.CSegment( i ).B - line.CSegment( i ).A ).Perpendicular().Resize( d );
auto sa_out = line.CSegment( i - 1 ), sa_in = line.CSegment( i - 1 );
auto sb_out = line.CSegment( i ), sb_in = line.CSegment( i );
sa_out.A += pp;
sa_out.B += pp;
sb_out.A += pp2;
sb_out.B += pp2;
sa_in.A -= pp;
sa_in.B -= pp;
sb_in.A -= pp2;
sb_in.B -= pp2;
auto ip_out = sa_out.IntersectLines( sb_out );
auto ip_in = sa_in.IntersectLines( sb_in );
seg = line.CSegment( i );
auto lead = ( pp + pp2 ) / 2;
s.Append( *ip_out );
reverse_line.push_back( *ip_in );
}
seg = line.CSegment( -1 );
dir = seg.B - seg.A;
p0 = -dir.Perpendicular().Resize( d );
ds = -dir.Perpendicular().Resize( x );
pd = dir.Resize( x );
dp = dir.Resize( d );
s.Append( seg.B - p0 + pd );
s.Append( seg.B + dp - ds );
s.Append( seg.B + dp + ds );
s.Append( seg.B + p0 + pd );
for( int i = reverse_line.size() - 1; i >= 0; i-- )
s.Append( reverse_line[i] );
// make sure the hull outline is always clockwise
// make sure the hull outline is always clockwise
if( s.CSegment( 0 ).Side( line.Segment( 0 ).A ) < 0 )
return s.Reverse();
else
return s;
}
static bool IsSegment45Degree( const SEG& aS )
{
VECTOR2I dir( aS.B - aS.A );
if( std::abs( dir.x ) <= 1 )
return true;
if( std::abs( dir.y ) <= 1 )
return true;
int delta = std::abs(dir.x) - std::abs(dir.y);
if( delta >= -1 && delta <= 1)
return true;
return false;
}
template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
const SHAPE_LINE_CHAIN SegmentHull ( const SHAPE_SEGMENT& aSeg, int aClearance,
int aWalkaroundThickness )
{
const int kinkThreshold = aClearance / 10;
int cl = aClearance + aWalkaroundThickness / 2;
double d = (double)aSeg.GetWidth() / 2.0 + cl;
double x = 2.0 / ( 1.0 + M_SQRT2 ) * d;
int dr = KiROUND( d );
int xr = KiROUND( x );
int xr2 = KiROUND( x / 2.0 );
const VECTOR2I a = aSeg.GetSeg().A;
VECTOR2I b = aSeg.GetSeg().B;
int len = aSeg.GetSeg().Length();
int w = b.x - a.x;
int h = b.y - a.y;
/*
auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
if( len < kinkThreshold )
{
PNS_DBG( dbg, AddShape, &aSeg, CYAN, 10000, wxString::Format( "kinky-seg 45 %d l %d dx %d dy %d", !!IsSegment45Degree( aSeg.GetSeg() ), len, w, h ) );
}
*/
if( a != b )
{
if ( !IsSegment45Degree( aSeg.GetSeg() ) )
{
if ( len <= kinkThreshold && len > 0 )
{
int ll = std::max( std::abs( w ), std::abs( h ) );
b = a + VECTOR2I( sgn( w ) * ll, sgn( h ) * ll );
}
}
else
{
if( len <= kinkThreshold )
{
int delta45 = std::abs( std::abs(w) - std::abs(h) );
if( std::abs(w) <= 1 ) // almost vertical
{
w = 0;
cl ++;
}
else if ( std::abs(h) <= 1 ) // almost horizontal
{
h = 0;
cl ++;
}
else if ( delta45 <= 2 ) // almost 45 degree
{
int newW = sgn( w ) * std::max( std::abs(w), std::abs( h ) );
int newH = sgn( h ) * std::max( std::abs(w), std::abs( h ) );
w = newW;
h = newH;
cl += 2;
//PNS_DBG( dbg, AddShape, &aSeg, CYAN, 10000, wxString::Format( "almostkinky45 45 %d l %d dx %d dy %d", !!IsSegment45Degree( aSeg.GetSeg() ), len, w, h ) );
}
b.x = a.x + w;
b.y = a.y + h;
}
}
}
if( a == b )
{
int xx2 = KiROUND( 2.0 * ( 1.0 - M_SQRT1_2 ) * d );
auto ohull = OctagonalHull( a - VECTOR2I( aSeg.GetWidth() / 2, aSeg.GetWidth() / 2 ),
VECTOR2I( aSeg.GetWidth(), aSeg.GetWidth() ),
cl,
xx2 );
return ohull;
}
VECTOR2I dir = b - a;
VECTOR2I p0 = dir.Perpendicular().Resize( dr );
VECTOR2I ds = dir.Perpendicular().Resize( xr2 );
VECTOR2I pd = dir.Resize( xr2 );
VECTOR2I dp = dir.Resize( dr );
SHAPE_LINE_CHAIN s;
s.SetClosed( true );
s.Append( b + p0 + pd );
s.Append( b + dp + ds );
s.Append( b + dp - ds );
s.Append( b - p0 + pd );
s.Append( a - p0 - pd );
s.Append( a - dp - ds );
s.Append( a - dp + ds );
s.Append( a + p0 - pd );
// make sure the hull outline is always clockwise
if( s.CSegment( 0 ).Side( a ) < 0 )
return s.Reverse();
else
return s;
}
static void MoveDiagonal( SEG& aDiagonal, const SHAPE_LINE_CHAIN& aVertices, int aClearance )
{
int dist;
aVertices.NearestPoint( aDiagonal, dist );
VECTOR2I moveBy = ( aDiagonal.A - aDiagonal.B ).Perpendicular().Resize( dist - aClearance );
aDiagonal.A += moveBy;
aDiagonal.B += moveBy;
}
const SHAPE_LINE_CHAIN ConvexHull( const SHAPE_SIMPLE& aConvex, int aClearance )
{
// this defines the horizontal and vertical lines in the hull octagon
BOX2I box = aConvex.BBox( aClearance );
box.Normalize();
SEG topline = SEG( VECTOR2I( box.GetX(), box.GetY() + box.GetHeight() ),
VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() + box.GetHeight() ) );
SEG rightline = SEG( VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() + box.GetHeight() ),
VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() ) );
SEG bottomline = SEG( VECTOR2I( box.GetX() + box.GetWidth(), box.GetY() ),
box.GetOrigin() );
SEG leftline = SEG( box.GetOrigin(), VECTOR2I( box.GetX(), box.GetY() + box.GetHeight() ) );
const SHAPE_LINE_CHAIN& vertices = aConvex.Vertices();
// top right diagonal
VECTOR2I corner = box.GetOrigin() + box.GetSize();
SEG toprightline = SEG( corner,
corner + VECTOR2I( box.GetHeight(), -box.GetHeight() ) );
MoveDiagonal( toprightline, vertices, aClearance );
// bottom right diagonal
corner = box.GetOrigin() + VECTOR2I( box.GetWidth(), 0 );
SEG bottomrightline = SEG( corner + VECTOR2I( box.GetHeight(), box.GetHeight() ),
corner );
MoveDiagonal( bottomrightline, vertices, aClearance );
// bottom left diagonal
corner = box.GetOrigin();
SEG bottomleftline = SEG( corner,
corner + VECTOR2I( -box.GetHeight(), box.GetHeight() ) );
MoveDiagonal( bottomleftline, vertices, aClearance );
// top left diagonal
corner = box.GetOrigin() + VECTOR2I( 0, box.GetHeight() );
SEG topleftline = SEG( corner + VECTOR2I( -box.GetHeight(), -box.GetHeight() ),
corner );
MoveDiagonal( topleftline, vertices, aClearance );
SHAPE_LINE_CHAIN octagon;
octagon.SetClosed( true );
octagon.Append( *leftline.IntersectLines( bottomleftline ) );
octagon.Append( *bottomline.IntersectLines( bottomleftline ) );
octagon.Append( *bottomline.IntersectLines( bottomrightline ) );
octagon.Append( *rightline.IntersectLines( bottomrightline ) );
octagon.Append( *rightline.IntersectLines( toprightline ) );
octagon.Append( *topline.IntersectLines( toprightline ) );
octagon.Append( *topline.IntersectLines( topleftline ) );
octagon.Append( *leftline.IntersectLines( topleftline ) );
return octagon;
}
SHAPE_RECT ApproximateSegmentAsRect( const SHAPE_SEGMENT& aSeg )
{
SHAPE_RECT r;
VECTOR2I delta( aSeg.GetWidth() / 2, aSeg.GetWidth() / 2 );
VECTOR2I p0( aSeg.GetSeg().A - delta );
VECTOR2I p1( aSeg.GetSeg().B + delta );
return SHAPE_RECT( std::min( p0.x, p1.x ), std::min( p0.y, p1.y ),
std::abs( p1.x - p0.x ), std::abs( p1.y - p0.y ) );
}
OPT_BOX2I ChangedArea( const ITEM* aItemA, const ITEM* aItemB )
{
if( aItemA->OfKind( ITEM::VIA_T ) && aItemB->OfKind( ITEM::VIA_T ) )
{
const VIA* va = static_cast<const VIA*>( aItemA );
const VIA* vb = static_cast<const VIA*>( aItemB );
return va->ChangedArea( vb );
}
else if( aItemA->OfKind( ITEM::LINE_T ) && aItemB->OfKind( ITEM::LINE_T ) )
{
const LINE* la = static_cast<const LINE*> ( aItemA );
const LINE* lb = static_cast<const LINE*> ( aItemB );
return la->ChangedArea( lb );
}
return OPT_BOX2I();
}
OPT_BOX2I ChangedArea( const LINE& aLineA, const LINE& aLineB )
{
return aLineA.ChangedArea( &aLineB );
}
void HullIntersection( const SHAPE_LINE_CHAIN& hull, const SHAPE_LINE_CHAIN& line,
SHAPE_LINE_CHAIN::INTERSECTIONS& ips )
{
SHAPE_LINE_CHAIN::INTERSECTIONS ips_raw;
if( line.PointCount() < 2 )
return;
hull.Intersect( line, ips_raw );
for( auto& p : ips_raw )
{
SHAPE_LINE_CHAIN::INTERSECTION ipp;
SEG d1[2];
VECTOR2I d2[2];
int d1_idx = 0, d2_idx = 0;
ipp = p;
ipp.valid = false;
if( !p.is_corner_our && !p.is_corner_their )
{
ipp.valid = true;
ips.push_back( ipp );
continue;
}
if( p.index_our >= hull.SegmentCount() )
p.index_our -= hull.SegmentCount();
if( p.is_corner_our )
{
d1[0] = hull.CSegment( p.index_our );
d1[1] = hull.CSegment( p.index_our - 1 );
d1_idx = 2;
}
else
{
d1[0] = hull.CSegment( p.index_our );
d1_idx = 1;
}
if( p.is_corner_their )
{
if( p.index_their > 0 )
{
d2[d2_idx++] = line.CSegment( p.index_their - 1 ).A;
}
if( p.index_their < line.PointCount() - 1 )
{
d2[d2_idx++] = line.CSegment( p.index_their ).B;
}
}
else
{
d2[d2_idx++] = line.CSegment( p.index_their ).A;
d2[d2_idx++] = line.CSegment( p.index_their ).B;
}
for( int i = 0; i < d1_idx; i++ )
{
for( int j = 0; j < d2_idx; j++ )
{
if( d1[i].Side( d2[j] ) > 0 )
{
ipp.valid = true;
}
}
}
#ifdef TOM_EXTRA_DEBUG
printf("p %d %d hi %d their %d co %d ct %d ipv %d\n", p.p.x, p.p.y, p.index_our, p.index_their, p.is_corner_our?1:0, p.is_corner_their?1:0, ipp.valid ?1:0);
printf("d1 %d d2 %d\n", d1_idx, d2_idx );
#endif
if( ipp.valid )
{
ips.push_back( ipp );
}
}
}
const SHAPE_LINE_CHAIN BuildHullForPrimitiveShape( const SHAPE* aShape, int aClearance,
int aWalkaroundThickness )
{
int cl = aClearance + ( aWalkaroundThickness + 1 )/ 2;
switch( aShape->Type() )
{
case SH_RECT:
{
const SHAPE_RECT* rect = static_cast<const SHAPE_RECT*>( aShape );
return OctagonalHull( rect->GetPosition(),
rect->GetSize(),
cl,
0 );
}
case SH_CIRCLE:
{
const SHAPE_CIRCLE* circle = static_cast<const SHAPE_CIRCLE*>( aShape );
int r = circle->GetRadius();
return OctagonalHull( circle->GetCenter() - VECTOR2I( r, r ),
VECTOR2I( 2 * r, 2 * r ),
cl,
2.0 * ( 1.0 - M_SQRT1_2 ) * ( r + cl ) );
}
case SH_SEGMENT:
{
const SHAPE_SEGMENT* seg = static_cast<const SHAPE_SEGMENT*>( aShape );
return SegmentHull( *seg, aClearance, aWalkaroundThickness );
}
case SH_ARC:
{
const SHAPE_ARC* arc = static_cast<const SHAPE_ARC*>( aShape );
return ArcHull( *arc, aClearance, aWalkaroundThickness );
}
case SH_SIMPLE:
{
const SHAPE_SIMPLE* convex = static_cast<const SHAPE_SIMPLE*>( aShape );
return ConvexHull( *convex, cl );
}
default:
{
wxFAIL_MSG( wxString::Format( wxT( "Unsupported hull shape: %d (%s)." ),
aShape->Type(),
SHAPE_TYPE_asString( aShape->Type() ) ) );
break;
}
}
return SHAPE_LINE_CHAIN();
}
}