kicad/include/boost/polygon/isotropy.hpp

543 lines
18 KiB
C++

/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_ISOTROPY_HPP
#define BOOST_POLYGON_ISOTROPY_HPP
//external
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <vector>
#include <deque>
#include <map>
#include <set>
#include <list>
//#include <iostream>
#include <algorithm>
#include <limits>
#include <iterator>
#include <string>
#ifndef BOOST_POLYGON_NO_DEPS
#include <boost/config.hpp>
#ifdef BOOST_MSVC
#define BOOST_POLYGON_MSVC
#endif
#ifdef BOOST_INTEL
#define BOOST_POLYGON_ICC
#endif
#ifdef BOOST_HAS_LONG_LONG
#define BOOST_POLYGON_USE_LONG_LONG
typedef boost::long_long_type polygon_long_long_type;
typedef boost::ulong_long_type polygon_ulong_long_type;
//typedef long long polygon_long_long_type;
//typedef unsigned long long polygon_ulong_long_type;
#endif
#include <boost/mpl/size_t.hpp>
#include <boost/mpl/protect.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/or.hpp>
#else
#ifdef WIN32
#define BOOST_POLYGON_MSVC
#endif
#ifdef __ICC
#define BOOST_POLYGON_ICC
#endif
#define BOOST_POLYGON_USE_LONG_LONG
typedef long long polygon_long_long_type;
typedef unsigned long long polygon_ulong_long_type;
namespace boost {
template <bool B, class T = void>
struct enable_if_c {
typedef T type;
};
template <class T>
struct enable_if_c<false, T> {};
template <class Cond, class T = void>
struct enable_if : public enable_if_c<Cond::value, T> {};
template <bool B, class T>
struct lazy_enable_if_c {
typedef typename T::type type;
};
template <class T>
struct lazy_enable_if_c<false, T> {};
template <class Cond, class T>
struct lazy_enable_if : public lazy_enable_if_c<Cond::value, T> {};
template <bool B, class T = void>
struct disable_if_c {
typedef T type;
};
template <class T>
struct disable_if_c<true, T> {};
template <class Cond, class T = void>
struct disable_if : public disable_if_c<Cond::value, T> {};
template <bool B, class T>
struct lazy_disable_if_c {
typedef typename T::type type;
};
template <class T>
struct lazy_disable_if_c<true, T> {};
template <class Cond, class T>
struct lazy_disable_if : public lazy_disable_if_c<Cond::value, T> {};
}
#endif
namespace boost { namespace polygon{
enum GEOMETRY_CONCEPT_ID {
COORDINATE_CONCEPT,
INTERVAL_CONCEPT,
POINT_CONCEPT,
POINT_3D_CONCEPT,
RECTANGLE_CONCEPT,
POLYGON_90_CONCEPT,
POLYGON_90_WITH_HOLES_CONCEPT,
POLYGON_45_CONCEPT,
POLYGON_45_WITH_HOLES_CONCEPT,
POLYGON_CONCEPT,
POLYGON_WITH_HOLES_CONCEPT,
POLYGON_90_SET_CONCEPT,
POLYGON_45_SET_CONCEPT,
POLYGON_SET_CONCEPT
};
struct undefined_concept {};
template <typename T>
struct geometry_concept { typedef undefined_concept type; };
template <typename GCT, typename T>
struct view_of {};
template <typename T1, typename T2>
view_of<T1, T2> view_as(const T2& obj) { return view_of<T1, T2>(obj); }
template <typename T>
struct coordinate_traits {};
template <typename T>
struct high_precision_type {
typedef long double type;
};
template <typename T>
T convert_high_precision_type(const typename high_precision_type<T>::type& v) {
return T(v);
}
template <>
struct coordinate_traits<int> {
typedef int coordinate_type;
typedef long double area_type;
#ifdef BOOST_POLYGON_USE_LONG_LONG
typedef polygon_long_long_type manhattan_area_type;
typedef polygon_ulong_long_type unsigned_area_type;
typedef polygon_long_long_type coordinate_difference;
#else
typedef long manhattan_area_type;
typedef unsigned long unsigned_area_type;
typedef long coordinate_difference;
#endif
typedef long double coordinate_distance;
};
#ifdef BOOST_POLYGON_USE_LONG_LONG
template <>
struct coordinate_traits<polygon_long_long_type> {
typedef polygon_long_long_type coordinate_type;
typedef long double area_type;
typedef polygon_long_long_type manhattan_area_type;
typedef polygon_ulong_long_type unsigned_area_type;
typedef polygon_long_long_type coordinate_difference;
typedef long double coordinate_distance;
};
#endif
template <>
struct coordinate_traits<float> {
typedef float coordinate_type;
typedef float area_type;
typedef float manhattan_area_type;
typedef float unsigned_area_type;
typedef float coordinate_difference;
typedef float coordinate_distance;
};
template <>
struct coordinate_traits<double> {
typedef double coordinate_type;
typedef double area_type;
typedef double manhattan_area_type;
typedef double unsigned_area_type;
typedef double coordinate_difference;
typedef double coordinate_distance;
};
template <typename T>
struct scaling_policy {
template <typename T2>
static inline T round(T2 t2) {
return (T)std::floor(t2+0.5);
}
static inline T round(T t2) {
return t2;
}
};
struct coordinate_concept {};
template <>
struct geometry_concept<int> { typedef coordinate_concept type; };
#ifdef BOOST_POLYGON_USE_LONG_LONG
template <>
struct geometry_concept<polygon_long_long_type> { typedef coordinate_concept type; };
#endif
template <>
struct geometry_concept<float> { typedef coordinate_concept type; };
template <>
struct geometry_concept<double> { typedef coordinate_concept type; };
#ifndef BOOST_POLYGON_NO_DEPS
struct gtl_no : mpl::bool_<false> {};
struct gtl_yes : mpl::bool_<true> {};
template <typename T, typename T2>
struct gtl_and : mpl::and_<T, T2> {};
template <typename T, typename T2, typename T3>
struct gtl_and_3 : mpl::and_<T, T2, T3> {};
template <typename T, typename T2, typename T3, typename T4>
struct gtl_and_4 : mpl::and_<T, T2, T3, T4> {};
// template <typename T, typename T2>
// struct gtl_or : mpl::or_<T, T2> {};
// template <typename T, typename T2, typename T3>
// struct gtl_or_3 : mpl::or_<T, T2, T3> {};
// template <typename T, typename T2, typename T3, typename T4>
// struct gtl_or_4 : mpl::or_<T, T2, T3, T4> {};
#else
struct gtl_no { static const bool value = false; };
struct gtl_yes { typedef gtl_yes type;
static const bool value = true; };
template <bool T, bool T2>
struct gtl_and_c { typedef gtl_no type; };
template <>
struct gtl_and_c<true, true> { typedef gtl_yes type; };
template <typename T, typename T2>
struct gtl_and : gtl_and_c<T::value, T2::value> {};
template <typename T, typename T2, typename T3>
struct gtl_and_3 { typedef typename gtl_and<
T, typename gtl_and<T2, T3>::type>::type type; };
template <typename T, typename T2, typename T3, typename T4>
struct gtl_and_4 { typedef typename gtl_and_3<
T, T2, typename gtl_and<T3, T4>::type>::type type; };
#endif
template <typename T, typename T2>
struct gtl_or { typedef gtl_yes type; };
template <typename T>
struct gtl_or<T, T> { typedef T type; };
template <typename T, typename T2, typename T3>
struct gtl_or_3 { typedef typename gtl_or<
T, typename gtl_or<T2, T3>::type>::type type; };
template <typename T, typename T2, typename T3, typename T4>
struct gtl_or_4 { typedef typename gtl_or<
T, typename gtl_or_3<T2, T3, T4>::type>::type type; };
template <typename T>
struct gtl_not { typedef gtl_no type; };
template <>
struct gtl_not<gtl_no> { typedef gtl_yes type; };
template <typename T>
struct gtl_if {
#ifdef WIN32
typedef gtl_no type;
#endif
};
template <>
struct gtl_if<gtl_yes> { typedef gtl_yes type; };
template <typename T, typename T2>
struct gtl_same_type { typedef gtl_no type; };
template <typename T>
struct gtl_same_type<T, T> { typedef gtl_yes type; };
template <typename T, typename T2>
struct gtl_different_type { typedef typename gtl_not<typename gtl_same_type<T, T2>::type>::type type; };
struct manhattan_domain {};
struct forty_five_domain {};
struct general_domain {};
template <typename T>
struct geometry_domain { typedef general_domain type; };
template <typename domain_type, typename coordinate_type>
struct area_type_by_domain { typedef typename coordinate_traits<coordinate_type>::area_type type; };
template <typename coordinate_type>
struct area_type_by_domain<manhattan_domain, coordinate_type> {
typedef typename coordinate_traits<coordinate_type>::manhattan_area_type type; };
struct y_c_edist : gtl_yes {};
template <typename coordinate_type_1, typename coordinate_type_2>
typename enable_if<
typename gtl_and_3<y_c_edist, typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type,
typename gtl_same_type<typename geometry_concept<coordinate_type_1>::type, coordinate_concept>::type>::type,
typename coordinate_traits<coordinate_type_1>::coordinate_difference>::type
euclidean_distance(const coordinate_type_1& lvalue, const coordinate_type_2& rvalue) {
typedef typename coordinate_traits<coordinate_type_1>::coordinate_difference Unit;
return (lvalue < rvalue) ? (Unit)rvalue - (Unit)lvalue : (Unit)lvalue - (Unit)rvalue;
}
// predicated_swap swaps a and b if pred is true
// predicated_swap is guarenteed to behave the same as
// if(pred){
// T tmp = a;
// a = b;
// b = tmp;
// }
// but will not generate a branch instruction.
// predicated_swap always creates a temp copy of a, but does not
// create more than one temp copy of an input.
// predicated_swap can be used to optimize away branch instructions in C++
template <class T>
inline bool predicated_swap(const bool& pred,
T& a,
T& b) {
const T tmp = a;
const T* input[2] = {&b, &tmp};
a = *input[!pred];
b = *input[pred];
return pred;
}
enum direction_1d_enum { LOW = 0, HIGH = 1,
LEFT = 0, RIGHT = 1,
CLOCKWISE = 0, COUNTERCLOCKWISE = 1,
REVERSE = 0, FORWARD = 1,
NEGATIVE = 0, POSITIVE = 1 };
enum orientation_2d_enum { HORIZONTAL = 0, VERTICAL = 1 };
enum direction_2d_enum { WEST = 0, EAST = 1, SOUTH = 2, NORTH = 3 };
enum orientation_3d_enum { PROXIMAL = 2 };
enum direction_3d_enum { DOWN = 4, UP = 5 };
enum winding_direction {
clockwise_winding = 0,
counterclockwise_winding = 1,
unknown_winding = 2
};
class direction_2d;
class direction_3d;
class orientation_2d;
class direction_1d {
private:
unsigned int val_;
explicit direction_1d(int d);
public:
inline direction_1d() : val_(LOW) {}
inline direction_1d(const direction_1d& that) : val_(that.val_) {}
inline direction_1d(const direction_1d_enum val) : val_(val) {}
explicit inline direction_1d(const direction_2d& that);
explicit inline direction_1d(const direction_3d& that);
inline direction_1d& operator = (const direction_1d& d) {
val_ = d.val_; return * this; }
inline bool operator==(direction_1d d) const { return (val_ == d.val_); }
inline bool operator!=(direction_1d d) const { return !((*this) == d); }
inline unsigned int to_int(void) const { return val_; }
inline direction_1d& backward() { val_ ^= 1; return *this; }
inline int get_sign() const { return val_ * 2 - 1; }
};
class direction_2d;
class orientation_2d {
private:
unsigned int val_;
explicit inline orientation_2d(int o);
public:
inline orientation_2d() : val_(HORIZONTAL) {}
inline orientation_2d(const orientation_2d& ori) : val_(ori.val_) {}
inline orientation_2d(const orientation_2d_enum val) : val_(val) {}
explicit inline orientation_2d(const direction_2d& that);
inline orientation_2d& operator=(const orientation_2d& ori) {
val_ = ori.val_; return * this; }
inline bool operator==(orientation_2d that) const { return (val_ == that.val_); }
inline bool operator!=(orientation_2d that) const { return (val_ != that.val_); }
inline unsigned int to_int() const { return (val_); }
inline void turn_90() { val_ = val_^ 1; }
inline orientation_2d get_perpendicular() const {
orientation_2d retval = *this;
retval.turn_90();
return retval;
}
inline direction_2d get_direction(direction_1d dir) const;
};
class direction_2d {
private:
int val_;
public:
inline direction_2d() : val_(WEST) {}
inline direction_2d(const direction_2d& that) : val_(that.val_) {}
inline direction_2d(const direction_2d_enum val) : val_(val) {}
inline direction_2d& operator=(const direction_2d& d) {
val_ = d.val_;
return * this;
}
inline ~direction_2d() { }
inline bool operator==(direction_2d d) const { return (val_ == d.val_); }
inline bool operator!=(direction_2d d) const { return !((*this) == d); }
inline bool operator< (direction_2d d) const { return (val_ < d.val_); }
inline bool operator<=(direction_2d d) const { return (val_ <= d.val_); }
inline bool operator> (direction_2d d) const { return (val_ > d.val_); }
inline bool operator>=(direction_2d d) const { return (val_ >= d.val_); }
// Casting to int
inline unsigned int to_int(void) const { return val_; }
inline direction_2d backward() const {
// flip the LSB, toggles 0 - 1 and 2 - 3
return direction_2d(direction_2d_enum(val_ ^ 1));
}
// Returns a direction 90 degree left (LOW) or right(HIGH) to this one
inline direction_2d turn(direction_1d t) const {
return direction_2d(direction_2d_enum(val_ ^ 3 ^ (val_ >> 1) ^ t.to_int()));
}
// Returns a direction 90 degree left to this one
inline direction_2d left() const {return turn(HIGH);}
// Returns a direction 90 degree right to this one
inline direction_2d right() const {return turn(LOW);}
// N, E are positive, S, W are negative
inline bool is_positive() const {return (val_ & 1);}
inline bool is_negative() const {return !is_positive();}
inline int get_sign() const {return ((is_positive()) << 1) -1;}
};
direction_1d::direction_1d(const direction_2d& that) : val_(that.to_int() & 1) {}
orientation_2d::orientation_2d(const direction_2d& that) : val_(that.to_int() >> 1) {}
direction_2d orientation_2d::get_direction(direction_1d dir) const {
return direction_2d(direction_2d_enum((val_ << 1) + dir.to_int()));
}
class orientation_3d {
private:
unsigned int val_;
explicit inline orientation_3d(int o);
public:
inline orientation_3d() : val_((int)HORIZONTAL) {}
inline orientation_3d(const orientation_3d& ori) : val_(ori.val_) {}
inline orientation_3d(orientation_2d ori) : val_(ori.to_int()) {}
inline orientation_3d(const orientation_3d_enum val) : val_(val) {}
explicit inline orientation_3d(const direction_2d& that);
explicit inline orientation_3d(const direction_3d& that);
inline ~orientation_3d() { }
inline orientation_3d& operator=(const orientation_3d& ori) {
val_ = ori.val_; return * this; }
inline bool operator==(orientation_3d that) const { return (val_ == that.val_); }
inline bool operator!=(orientation_3d that) const { return (val_ != that.val_); }
inline unsigned int to_int() const { return (val_); }
inline direction_3d get_direction(direction_1d dir) const;
};
class direction_3d {
private:
int val_;
public:
inline direction_3d() : val_(WEST) {}
inline direction_3d(direction_2d that) : val_(that.to_int()) {}
inline direction_3d(const direction_3d& that) : val_(that.val_) {}
inline direction_3d(const direction_2d_enum val) : val_(val) {}
inline direction_3d(const direction_3d_enum val) : val_(val) {}
inline direction_3d& operator=(direction_3d d) {
val_ = d.val_;
return * this;
}
inline ~direction_3d() { }
inline bool operator==(direction_3d d) const { return (val_ == d.val_); }
inline bool operator!=(direction_3d d) const { return !((*this) == d); }
inline bool operator< (direction_3d d) const { return (val_ < d.val_); }
inline bool operator<=(direction_3d d) const { return (val_ <= d.val_); }
inline bool operator> (direction_3d d) const { return (val_ > d.val_); }
inline bool operator>=(direction_3d d) const { return (val_ >= d.val_); }
// Casting to int
inline unsigned int to_int(void) const { return val_; }
inline direction_3d backward() const {
// flip the LSB, toggles 0 - 1 and 2 - 3 and 4 - 5
return direction_2d(direction_2d_enum(val_ ^ 1));
}
// N, E, U are positive, S, W, D are negative
inline bool is_positive() const {return (val_ & 1);}
inline bool is_negative() const {return !is_positive();}
inline int get_sign() const {return ((is_positive()) << 1) -1;}
};
direction_1d::direction_1d(const direction_3d& that) : val_(that.to_int() & 1) {}
orientation_3d::orientation_3d(const direction_3d& that) : val_(that.to_int() >> 1) {}
orientation_3d::orientation_3d(const direction_2d& that) : val_(that.to_int() >> 1) {}
direction_3d orientation_3d::get_direction(direction_1d dir) const {
return direction_3d(direction_3d_enum((val_ << 1) + dir.to_int()));
}
}
}
#endif