kicad/polygon/PolyLine.cpp

1455 lines
41 KiB
C++

// PolyLine.cpp ... implementation of CPolyLine class from FreePCB.
//
// implementation for kicad, using clipper polygon clipping library
// for transformations not handled (at least for Kicad) by boost::polygon
//
#include <cmath>
#include <vector>
#include <algorithm>
#include <fctsys.h>
#include <common.h> // KiROUND
#include <PolyLine.h>
#include <bezier_curves.h>
#include <polygon_test_point_inside.h>
#include <math_for_graphics.h>
#include <polygon_test_point_inside.h>
CPolyLine::CPolyLine()
{
m_hatchStyle = NO_HATCH;
m_hatchPitch = 0;
m_layer = LAYER_N_FRONT;
m_utility = 0;
}
CPolyLine::CPolyLine( const CPolyLine& aCPolyLine)
{
Copy( &aCPolyLine );
m_HatchLines = aCPolyLine.m_HatchLines; // vector <> copy
}
// destructor, removes display elements
//
CPolyLine::~CPolyLine()
{
UnHatch();
}
/* Removes corners which create a null segment edge
* (i.e. when 2 successive corners are at the same location)
* returns the count of removed corners.
*/
int CPolyLine::RemoveNullSegments()
{
int removed = 0;
unsigned startcountour = 0;
for( unsigned icnt = 1; icnt < m_CornersList.GetCornersCount(); icnt ++ )
{
unsigned last = icnt-1;
if( m_CornersList[icnt].end_contour )
{
last = startcountour;
startcountour = icnt+1;
}
if( ( m_CornersList[last].x == m_CornersList[icnt].x ) &&
( m_CornersList[last].y == m_CornersList[icnt].y ) )
{
DeleteCorner( icnt );
icnt--;
removed ++;
}
if( m_CornersList[icnt].end_contour )
{
startcountour = icnt+1;
icnt++;
}
}
return removed;
}
/**
* Function NormalizeAreaOutlines
* Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s)
* @param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine
* needed by the normalization
* @return the polygon count (always >= 1, because there is at least one polygon)
* There are new polygons only if the polygon count is > 1
*/
#include "clipper.hpp"
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList )
{
ClipperLib::Polygon raw_polygon;
ClipperLib::Polygons normalized_polygons;
unsigned corners_count = m_CornersList.GetCornersCount();
KI_POLYGON_SET polysholes;
KI_POLYGON_WITH_HOLES mainpoly;
std::vector<KI_POLY_POINT> cornerslist;
KI_POLYGON_WITH_HOLES_SET all_contours;
KI_POLYGON poly_tmp;
// Normalize first contour
unsigned ic = 0;
while( ic < corners_count )
{
const CPolyPt& corner = m_CornersList[ic++];
raw_polygon.push_back( ClipperLib::IntPoint( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
ClipperLib::SimplifyPolygon( raw_polygon, normalized_polygons );
// enter main outline
for( unsigned ii = 0; ii < normalized_polygons.size(); ii++ )
{
ClipperLib::Polygon& polygon = normalized_polygons[ii];
cornerslist.clear();
for( unsigned jj = 0; jj < polygon.size(); jj++ )
cornerslist.push_back( KI_POLY_POINT( KiROUND( polygon[jj].X ),
KiROUND( polygon[jj].Y ) ) );
mainpoly.set( cornerslist.begin(), cornerslist.end() );
all_contours.push_back( mainpoly );
}
// Enter holes
while( ic < corners_count )
{
cornerslist.clear();
raw_polygon.clear();
normalized_polygons.clear();
// Normalize current hole and add it to hole list
while( ic < corners_count )
{
const CPolyPt& corner = m_CornersList[ic++];
raw_polygon.push_back( ClipperLib::IntPoint( corner.x, corner.y ) );
if( corner.end_contour )
{
ClipperLib::SimplifyPolygon( raw_polygon, normalized_polygons );
for( unsigned ii = 0; ii < normalized_polygons.size(); ii++ )
{
ClipperLib::Polygon& polygon = normalized_polygons[ii];
cornerslist.clear();
for( unsigned jj = 0; jj < polygon.size(); jj++ )
cornerslist.push_back( KI_POLY_POINT( KiROUND( polygon[jj].X ),
KiROUND( polygon[jj].Y ) ) );
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
polysholes.push_back( poly_tmp );
}
break;
}
}
}
all_contours -= polysholes;
// copy polygon with holes to destination
RemoveAllContours();
#define outlines all_contours
for( unsigned ii = 0; ii < outlines.size(); ii++ )
{
CPolyLine* polyline = this;
if( ii > 0 )
{
polyline = new CPolyLine;
polyline->ImportSettings( this );
aNewPolygonList->push_back( polyline );
}
KI_POLYGON_WITH_HOLES& curr_poly = outlines[ii];
KI_POLYGON_WITH_HOLES::iterator_type corner = curr_poly.begin();
// enter main contour
while( corner != curr_poly.end() )
{
polyline->AppendCorner( corner->x(), corner->y() );
corner++;
}
polyline->CloseLastContour();
// add holes (set of polygons)
KI_POLYGON_WITH_HOLES::iterator_holes_type hole = curr_poly.begin_holes();
while( hole != curr_poly.end_holes() )
{
KI_POLYGON::iterator_type hole_corner = hole->begin();
// create area with external contour: Recreate only area edges, NOT holes
while( hole_corner != hole->end() )
{
polyline->AppendCorner( hole_corner->x(), hole_corner->y() );
hole_corner++;
}
polyline->CloseLastContour();
hole++;
}
polyline->RemoveNullSegments();
}
return outlines.size();
}
/**
* Function ImportSettings
* Copy settings (layer, hatch styles) from aPoly
*/
void CPolyLine::ImportSettings( const CPolyLine * aPoly )
{
SetLayer( aPoly->GetLayer() );
SetHatchStyle( aPoly->GetHatchStyle() );
SetHatchPitch( aPoly->GetHatchPitch() );
}
/* initialize a contour
* set layer, hatch style, and starting point
*/
void CPolyLine::Start( LAYER_NUM layer, int x, int y, int hatch )
{
m_layer = layer;
SetHatchStyle( (enum HATCH_STYLE) hatch );
CPolyPt poly_pt( x, y );
poly_pt.end_contour = false;
m_CornersList.Append( poly_pt );
}
// add a corner to unclosed polyline
//
void CPolyLine::AppendCorner( int x, int y )
{
UnHatch();
CPolyPt poly_pt( x, y );
poly_pt.end_contour = false;
// add entries for new corner
m_CornersList.Append( poly_pt );
}
// move corner of polyline
//
void CPolyLine::MoveCorner( int ic, int x, int y )
{
UnHatch();
m_CornersList[ic].x = x;
m_CornersList[ic].y = y;
Hatch();
}
// delete corner and adjust arrays
//
void CPolyLine::DeleteCorner( int ic )
{
UnHatch();
int icont = GetContour( ic );
int iend = GetContourEnd( icont );
bool closed = icont < GetContoursCount() - 1 || GetClosed();
if( !closed )
{
// open contour, must be last contour
m_CornersList.DeleteCorner( ic );
}
else
{
// closed contour
m_CornersList.DeleteCorner( ic );
if( ic == iend )
m_CornersList[ic - 1].end_contour = true;
}
if( closed && GetContourSize( icont ) < 3 )
{
// delete the entire contour
RemoveContour( icont );
}
}
/******************************************/
void CPolyLine::RemoveContour( int icont )
/******************************************/
/**
* Function RemoveContour
* @param icont = contour number to remove
* remove a contour only if there is more than 1 contour
*/
{
UnHatch();
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
int polycount = GetContoursCount();
if( icont == 0 && polycount == 1 )
{
// remove the only contour
wxASSERT( 0 );
}
else
{
// remove closed contour
for( int ic = iend; ic>=istart; ic-- )
{
m_CornersList.DeleteCorner( ic );
}
}
Hatch();
}
CPolyLine* CPolyLine::Chamfer( unsigned int aDistance )
{
CPolyLine* newPoly = new CPolyLine;
if( !aDistance )
{
newPoly->Copy( this );
return newPoly;
}
int polycount = GetContoursCount();
for( int contour = 0; contour < polycount; contour++ )
{
unsigned int startIndex = GetContourStart( contour );
unsigned int endIndex = GetContourEnd( contour );
for( unsigned int index = startIndex; index <= endIndex; index++ )
{
int x1, y1, nx, ny;
long long xa, ya, xb, yb;
x1 = m_CornersList[index].x;
y1 = m_CornersList[index].y;
if( index == startIndex )
{
xa = m_CornersList[endIndex].x - x1;
ya = m_CornersList[endIndex].y - y1;
}
else
{
xa = m_CornersList[index - 1].x - x1;
ya = m_CornersList[index - 1].y - y1;
}
if( index == endIndex )
{
xb = m_CornersList[startIndex].x - x1;
yb = m_CornersList[startIndex].y - y1;
}
else
{
xb = m_CornersList[index + 1].x - x1;
yb = m_CornersList[index + 1].y - y1;
}
unsigned int lena = KiROUND( hypot( xa, ya ) );
unsigned int lenb = KiROUND( hypot( xb, yb ) );
unsigned int distance = aDistance;
// Chamfer one half of an edge at most
if( 0.5 * lena < distance )
distance = int( 0.5 * lena );
if( 0.5 * lenb < distance )
distance = int( 0.5 * lenb );
nx = KiROUND( (distance * xa) / hypot( xa, ya ) );
ny = KiROUND( (distance * ya) / hypot( xa, ya ) );
if( index == startIndex )
newPoly->Start( GetLayer(), x1 + nx, y1 + ny, GetHatchStyle() );
else
newPoly->AppendCorner( x1 + nx, y1 + ny );
nx = KiROUND( (distance * xb) / hypot( xb, yb ) );
ny = KiROUND( (distance * yb) / hypot( xb, yb ) );
newPoly->AppendCorner( x1 + nx, y1 + ny );
}
newPoly->CloseLastContour();
}
return newPoly;
}
CPolyLine* CPolyLine::Fillet( unsigned int aRadius, unsigned int aSegments )
{
CPolyLine* newPoly = new CPolyLine;
if( !aRadius )
{
newPoly->Copy( this );
return newPoly;
}
int polycount = GetContoursCount();
for( int contour = 0; contour < polycount; contour++ )
{
unsigned int startIndex = GetContourStart( contour );
unsigned int endIndex = GetContourEnd( contour );
for( unsigned int index = startIndex; index <= endIndex; index++ )
{
int x1, y1; // Current vertex
long long xa, ya; // Previous vertex
long long xb, yb; // Next vertex
double nx, ny;
x1 = m_CornersList[index].x;
y1 = m_CornersList[index].y;
if( index == startIndex )
{
xa = m_CornersList[endIndex].x - x1;
ya = m_CornersList[endIndex].y - y1;
}
else
{
xa = m_CornersList[index - 1].x - x1;
ya = m_CornersList[index - 1].y - y1;
}
if( index == endIndex )
{
xb = m_CornersList[startIndex].x - x1;
yb = m_CornersList[startIndex].y - y1;
}
else
{
xb = m_CornersList[index + 1].x - x1;
yb = m_CornersList[index + 1].y - y1;
}
double lena = hypot( xa, ya );
double lenb = hypot( xb, yb );
double cosine = ( xa * xb + ya * yb ) / ( lena * lenb );
double radius = aRadius;
double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 );
// Limit rounding distance to one half of an edge
if( 0.5 * lena * denom < radius )
radius = 0.5 * lena * denom;
if( 0.5 * lenb * denom < radius )
radius = 0.5 * lenb * denom;
// Calculate fillet arc absolute center point (xc, yx)
double k = radius / sqrt( .5 * ( 1 - cosine ) );
double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) +
( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) );
double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab;
double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab;
// Calculate arc start and end vectors
k = radius / sqrt( 2 / ( 1 + cosine ) - 1 );
double xs = x1 + k * xa / lena - xc;
double ys = y1 + k * ya / lena - yc;
double xe = x1 + k * xb / lenb - xc;
double ye = y1 + k * yb / lenb - yc;
// Cosine of arc angle
double argument = ( xs * xe + ys * ye ) / ( radius * radius );
if( argument < -1 ) // Just in case...
argument = -1;
else if( argument > 1 )
argument = 1;
double arcAngle = acos( argument );
// Calculate the number of segments
double tempSegments = (double) aSegments * ( arcAngle / ( 2 * M_PI ) );
if( tempSegments - (int) tempSegments > 0 )
tempSegments++;
unsigned int segments = (unsigned int) tempSegments;
double deltaAngle = arcAngle / segments;
double startAngle = atan2( -ys, xs );
// Flip arc for inner corners
if( xa * yb - ya * xb <= 0 )
deltaAngle *= -1;
nx = xc + xs;
ny = yc + ys;
if( index == startIndex )
newPoly->Start( GetLayer(), KiROUND( nx ), KiROUND( ny ), GetHatchStyle() );
else
newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) );
for( unsigned int j = 0; j < segments; j++ )
{
nx = xc + cos( startAngle + (j + 1) * deltaAngle ) * radius;
ny = yc - sin( startAngle + (j + 1) * deltaAngle ) * radius;
newPoly->AppendCorner( KiROUND( nx ), KiROUND( ny ) );
}
}
newPoly->CloseLastContour();
}
return newPoly;
}
/******************************************/
void CPolyLine::RemoveAllContours( void )
/******************************************/
/**
* function RemoveAllContours
* removes all corners from the list.
* Others params are not changed
*/
{
m_CornersList.RemoveAllContours();
}
/**
* Function InsertCorner
* insert a new corner between two existing corners
* @param ic = index for the insertion point: the corner is inserted AFTER ic
* @param x, y = coordinates corner to insert
*/
void CPolyLine::InsertCorner( int ic, int x, int y )
{
UnHatch();
if( (unsigned) (ic) >= m_CornersList.GetCornersCount() )
{
m_CornersList.Append( CPolyPt( x, y ) );
}
else
{
m_CornersList.InsertCorner(ic, CPolyPt( x, y ) );
}
if( (unsigned) (ic + 1) < m_CornersList.GetCornersCount() )
{
if( m_CornersList[ic].end_contour )
{
m_CornersList[ic + 1].end_contour = true;
m_CornersList[ic].end_contour = false;
}
}
Hatch();
}
// undraw polyline by removing all graphic elements from display list
//
void CPolyLine::UnHatch()
{
m_HatchLines.clear();
}
int CPolyLine::GetEndContour( int ic )
{
return m_CornersList[ic].end_contour;
}
CRect CPolyLine::GetBounds()
{
CRect r = GetCornerBounds();
return r;
}
CRect CPolyLine::GetCornerBounds()
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
for( unsigned i = 0; i< m_CornersList.GetCornersCount(); i++ )
{
r.left = std::min( r.left, m_CornersList[i].x );
r.right = std::max( r.right, m_CornersList[i].x );
r.bottom = std::min( r.bottom, m_CornersList[i].y );
r.top = std::max( r.top, m_CornersList[i].y );
}
return r;
}
CRect CPolyLine::GetCornerBounds( int icont )
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int i = istart; i<=iend; i++ )
{
r.left = std::min( r.left, m_CornersList[i].x );
r.right = std::max( r.right, m_CornersList[i].x );
r.bottom = std::min( r.bottom, m_CornersList[i].y );
r.top = std::max( r.top, m_CornersList[i].y );
}
return r;
}
int CPolyLine::GetContoursCount()
{
int ncont = 0;
if( !m_CornersList.GetCornersCount() )
return 0;
for( unsigned ic = 0; ic < m_CornersList.GetCornersCount(); ic++ )
if( m_CornersList[ic].end_contour )
ncont++;
if( !m_CornersList[m_CornersList.GetCornersCount() - 1].end_contour )
ncont++;
return ncont;
}
int CPolyLine::GetContour( int ic )
{
int ncont = 0;
for( int i = 0; i<ic; i++ )
{
if( m_CornersList[i].end_contour )
ncont++;
}
return ncont;
}
int CPolyLine::GetContourStart( int icont )
{
if( icont == 0 )
return 0;
int ncont = 0;
for( unsigned i = 0; i<m_CornersList.GetCornersCount(); i++ )
{
if( m_CornersList[i].end_contour )
{
ncont++;
if( ncont == icont )
return i + 1;
}
}
wxASSERT( 0 );
return 0;
}
int CPolyLine::GetContourEnd( int icont )
{
if( icont < 0 )
return 0;
if( icont == GetContoursCount() - 1 )
return m_CornersList.GetCornersCount() - 1;
int ncont = 0;
for( unsigned i = 0; i<m_CornersList.GetCornersCount(); i++ )
{
if( m_CornersList[i].end_contour )
{
if( ncont == icont )
return i;
ncont++;
}
}
wxASSERT( 0 );
return 0;
}
int CPolyLine::GetContourSize( int icont )
{
return GetContourEnd( icont ) - GetContourStart( icont ) + 1;
}
int CPolyLine::GetClosed()
{
if( m_CornersList.GetCornersCount() == 0 )
return 0;
else
return m_CornersList[m_CornersList.GetCornersCount() - 1].end_contour;
}
// Creates hatch lines inside the outline of the complex polygon
//
// sort function used in ::Hatch to sort points by descending wxPoint.x values
bool sort_ends_by_descending_X( const wxPoint& ref, const wxPoint& tst )
{
return tst.x < ref.x;
}
void CPolyLine::Hatch()
{
m_HatchLines.clear();
if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 )
return;
if( !GetClosed() ) // If not closed, the poly is beeing created and not finalised. Not not hatch
return;
// define range for hatch lines
int min_x = m_CornersList[0].x;
int max_x = m_CornersList[0].x;
int min_y = m_CornersList[0].y;
int max_y = m_CornersList[0].y;
for( unsigned ic = 1; ic < m_CornersList.GetCornersCount(); ic++ )
{
if( m_CornersList[ic].x < min_x )
min_x = m_CornersList[ic].x;
if( m_CornersList[ic].x > max_x )
max_x = m_CornersList[ic].x;
if( m_CornersList[ic].y < min_y )
min_y = m_CornersList[ic].y;
if( m_CornersList[ic].y > max_y )
max_y = m_CornersList[ic].y;
}
// Calculate spacing betwwen 2 hatch lines
int spacing;
if( m_hatchStyle == DIAGONAL_EDGE )
spacing = m_hatchPitch;
else
spacing = m_hatchPitch * 2;
// set the "length" of hatch lines (the lenght on horizontal axis)
double hatch_line_len = m_hatchPitch;
// To have a better look, give a slope depending on the layer
LAYER_NUM layer = GetLayer();
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = KiROUND( max_y - slope * min_x );
min_a = KiROUND( min_y - slope * max_x );
}
else
{
max_a = KiROUND( max_y - slope * max_x );
min_a = KiROUND( min_y - slope * min_x );
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// now calculate and draw hatch lines
int nc = m_CornersList.GetCornersCount();
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the compexity of the zone outline
static std::vector <wxPoint> pointbuffer;
pointbuffer.clear();
pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing )
{
// get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
int i_start_contour = 0;
for( int ic = 0; ic<nc; ic++ )
{
double x, y, x2, y2;
int ok;
if( m_CornersList[ic].end_contour ||
( ic == (int) (m_CornersList.GetCornersCount() - 1) ) )
{
ok = FindLineSegmentIntersection( a, slope,
m_CornersList[ic].x, m_CornersList[ic].y,
m_CornersList[i_start_contour].x,
m_CornersList[i_start_contour].y,
&x, &y, &x2, &y2 );
i_start_contour = ic + 1;
}
else
{
ok = FindLineSegmentIntersection( a, slope,
m_CornersList[ic].x, m_CornersList[ic].y,
m_CornersList[ic + 1].x, m_CornersList[ic + 1].y,
&x, &y, &x2, &y2 );
}
if( ok )
{
wxPoint point( KiROUND( x ), KiROUND( y ) );
pointbuffer.push_back( point );
}
if( ok == 2 )
{
wxPoint point( KiROUND( x2 ), KiROUND( y2 ) );
pointbuffer.push_back( point );
}
if( pointbuffer.size() >= MAXPTS ) // overflow
{
wxASSERT( 0 );
break;
}
}
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 )
continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sort_ends_by_descending_X );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 )
{
double dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line len
// else push 2 small lines
if( m_hatchStyle == DIAGONAL_FULL || fabs( dx ) < 2 * hatch_line_len )
{
m_HatchLines.push_back( CSegment( pointbuffer[ip], pointbuffer[ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
double slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
double x1 = pointbuffer[ip].x + dx;
double x2 = pointbuffer[ip + 1].x - dx;
double y1 = pointbuffer[ip].y + dx * slope;
double y2 = pointbuffer[ip + 1].y - dx * slope;
m_HatchLines.push_back( CSegment( pointbuffer[ip].x,
pointbuffer[ip].y,
KiROUND( x1 ), KiROUND( y1 ) ) );
m_HatchLines.push_back( CSegment( pointbuffer[ip + 1].x,
pointbuffer[ip + 1].y,
KiROUND( x2 ), KiROUND( y2 ) ) );
}
}
}
}
// test to see if a point is inside polyline
//
bool CPolyLine::TestPointInside( int px, int py )
{
if( !GetClosed() )
{
wxASSERT( 0 );
}
// Test all polygons.
// Since the first is the main outline, and other are holes,
// if the tested point is inside only one contour, it is inside the whole polygon
// (in fact inside the main outline, and outside all holes).
// if inside 2 contours (the main outline + an hole), it is outside the poly.
int polycount = GetContoursCount();
bool inside = false;
for( int icont = 0; icont < polycount; icont++ )
{
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
// test point inside the current polygon
if( TestPointInsidePolygon( m_CornersList, istart, iend, px, py ) )
inside = not inside;
}
return inside;
}
// copy data from another CPolyLine, but don't draw it
void CPolyLine::Copy( const CPolyLine* src )
{
UnHatch();
m_layer = src->m_layer;
m_hatchStyle = src->m_hatchStyle;
m_hatchPitch = src->m_hatchPitch;
m_CornersList.RemoveAllContours();
m_CornersList.Append( src->m_CornersList );
}
/*
* return true if the corner aCornerIdx is on a hole inside the main outline
* and false if it is on the main outline
*/
bool CPolyLine::IsCutoutContour( int aCornerIdx )
{
int ncont = GetContour( aCornerIdx );
if( ncont == 0 ) // the first contour is the main outline, not an hole
return false;
return true;
}
void CPolyLine::MoveOrigin( int x_off, int y_off )
{
UnHatch();
for( int ic = 0; ic < GetCornersCount(); ic++ )
{
SetX( ic, GetX( ic ) + x_off );
SetY( ic, GetY( ic ) + y_off );
}
Hatch();
}
/*
* AppendArc:
* adds segments to current contour to approximate the given arc
*/
void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num )
{
// get radius
double radius = ::Distance( xi, yi, xf, yf );
// get angles of start pint and end point
double th_i = atan2( (double) (yi - yc), (double) (xi - xc) );
double th_f = atan2( (double) (yf - yc), (double) (xf - xc) );
double th_d = (th_f - th_i) / (num - 1);
double theta = th_i;
// generate arc
for( int ic = 0; ic < num; ic++ )
{
int x = xc + KiROUND( radius * cos( theta ) );
int y = yc + KiROUND( radius * sin( theta ) );
AppendCorner( x, y );
theta += th_d;
}
CloseLastContour();
}
// Bezier Support
void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3 )
{
std::vector<wxPoint> bezier_points;
bezier_points = Bezier2Poly( x1, y1, x2, y2, x3, y3 );
for( unsigned int i = 0; i < bezier_points.size(); i++ )
AppendCorner( bezier_points[i].x, bezier_points[i].y );
}
void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 )
{
std::vector<wxPoint> bezier_points;
bezier_points = Bezier2Poly( x1, y1, x2, y2, x3, y3, x4, y4 );
for( unsigned int i = 0; i < bezier_points.size(); i++ )
AppendCorner( bezier_points[i].x, bezier_points[i].y );
}
/*
* Function Distance
* Calculates the distance between a segment and a polygon (with holes):
* param aStart is the starting point of the segment.
* param aEnd is the ending point of the segment.
* param aWidth is the width of the segment.
* return distance between the segment and outline.
* 0 if segment intersects or is inside
*/
int CPolyLine::Distance( wxPoint aStart, wxPoint aEnd, int aWidth )
{
// We calculate the min dist between the segment and each outline segment
// However, if the segment to test is inside the outline, and does not cross
// any edge, it can be seen outside the polygon.
// Therefore test if a segment end is inside ( testing only one end is enough )
if( TestPointInside( aStart.x, aStart.y ) )
return 0;
int distance = INT_MAX;
int polycount = GetContoursCount();
for( int icont = 0; icont < polycount; icont++ )
{
int ic_start = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
// now test spacing between area outline and segment
for( int ic2 = ic_start; ic2 <= ic_end; ic2++ )
{
int bx1 = GetX( ic2 );
int by1 = GetY( ic2 );
int bx2, by2;
if( ic2 == ic_end )
{
bx2 = GetX( ic_start );
by2 = GetY( ic_start );
}
else
{
bx2 = GetX( ic2 + 1 );
by2 = GetY( ic2 + 1 );
}
int d = GetClearanceBetweenSegments( bx1, by1, bx2, by2, 0,
aStart.x, aStart.y, aEnd.x, aEnd.y,
aWidth,
1, // min clearance, should be > 0
NULL, NULL );
if( distance > d )
distance = d;
if( distance <= 0 )
return 0;
}
}
return distance;
}
/*
* Function Distance
* Calculates the distance between a point and polygon (with holes):
* param aPoint is the coordinate of the point.
* return distance between the point and outline.
* 0 if the point is inside
*/
int CPolyLine::Distance( const wxPoint& aPoint )
{
// We calculate the dist between the point and each outline segment
// If the point is inside the outline, the dist is 0.
if( TestPointInside( aPoint.x, aPoint.y ) )
return 0;
int distance = INT_MAX;
int polycount = GetContoursCount();
for( int icont = 0; icont < polycount; icont++ )
{
int ic_start = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
// now test spacing between area outline and segment
for( int ic2 = ic_start; ic2 <= ic_end; ic2++ )
{
int bx1 = GetX( ic2 );
int by1 = GetY( ic2 );
int bx2, by2;
if( ic2 == ic_end )
{
bx2 = GetX( ic_start );
by2 = GetY( ic_start );
}
else
{
bx2 = GetX( ic2 + 1 );
by2 = GetY( ic2 + 1 );
}
int d = KiROUND( GetPointToLineSegmentDistance( aPoint.x, aPoint.y,
bx1, by1, bx2, by2 ) );
if( distance > d )
distance = d;
if( distance <= 0 )
return 0;
}
}
return distance;
}
/*
* Copy the contours to a KI_POLYGON_WITH_HOLES
* The first contour is the main outline, others are holes
*/
void CPOLYGONS_LIST::ExportTo( KI_POLYGON_WITH_HOLES& aPolygoneWithHole )
{
unsigned corners_count = m_cornersList.size();
std::vector<KI_POLY_POINT> cornerslist;
KI_POLYGON poly;
// Enter main outline: this is the first contour
unsigned ic = 0;
while( ic < corners_count )
{
const CPolyPt& corner = GetCorner( ic++ );
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
aPolygoneWithHole.set( cornerslist.begin(), cornerslist.end() );
// Enter holes: they are next contours (when exist)
if( ic < corners_count )
{
KI_POLYGON_SET holePolyList;
while( ic < corners_count )
{
cornerslist.clear();
while( ic < corners_count )
{
cornerslist.push_back( KI_POLY_POINT( GetX( ic ), GetY( ic ) ) );
if( IsEndContour( ic ) )
break;
}
bpl::set_points( poly, cornerslist.begin(), cornerslist.end() );
holePolyList.push_back( poly );
}
aPolygoneWithHole.set_holes( holePolyList.begin(), holePolyList.end() );
}
}
/**
* Copy all contours to a KI_POLYGON_SET aPolygons
* Each contour is copied into a KI_POLYGON, and each KI_POLYGON
* is append to aPolygons
*/
void CPOLYGONS_LIST::ExportTo( KI_POLYGON_SET& aPolygons )
{
std::vector<KI_POLY_POINT> cornerslist;
unsigned corners_count = GetCornersCount();
// Count the number of polygons in aCornersBuffer
int polycount = 0;
for( unsigned ii = 0; ii < corners_count; ii++ )
{
if( IsEndContour( ii ) )
polycount++;
}
aPolygons.reserve( polycount );
for( unsigned icnt = 0; icnt < corners_count; )
{
KI_POLYGON poly;
cornerslist.clear();
unsigned ii;
for( ii = icnt; ii < corners_count; ii++ )
{
cornerslist.push_back( KI_POLY_POINT( GetX( ii ), GetY( ii ) ) );
if( IsEndContour( ii ) )
break;
}
bpl::set_points( poly, cornerslist.begin(), cornerslist.end() );
aPolygons.push_back( poly );
icnt = ii + 1;
}
}
/* Imports all polygons found in a KI_POLYGON_SET in list
*/
void CPOLYGONS_LIST::ImportFrom( KI_POLYGON_SET& aPolygons )
{
CPolyPt corner;
for( unsigned ii = 0; ii < aPolygons.size(); ii++ )
{
KI_POLYGON& poly = aPolygons[ii];
for( unsigned jj = 0; jj < poly.size(); jj++ )
{
KI_POLY_POINT point = *(poly.begin() + jj);
corner.x = point.x();
corner.y = point.y();
corner.end_contour = false;
AddCorner( corner );
}
CloseLastContour();
}
}
/**
* Function ConvertPolysListWithHolesToOnePolygon
* converts the outline contours aPolysListWithHoles with holes to one polygon
* with no holes (only one contour)
* holes are linked to main outlines by overlap segments, to give only one polygon
*
* @param aPolysListWithHoles = the list of corners of contours (haing holes
* @param aOnePolyList = a polygon with no holes
*/
void ConvertPolysListWithHolesToOnePolygon( const CPOLYGONS_LIST& aPolysListWithHoles,
CPOLYGONS_LIST& aOnePolyList )
{
unsigned corners_count = aPolysListWithHoles.GetCornersCount();
int polycount = 0;
for( unsigned ii = 0; ii < corners_count; ii++ )
{
if( aPolysListWithHoles.IsEndContour( ii ) )
polycount++;
}
// If polycount<= 1, there is no holes found, and therefore just copy the polygon.
if( polycount <= 1 )
{
aOnePolyList = aPolysListWithHoles;
return;
}
// Holes are found: convert them to only one polygon with overlap segments
KI_POLYGON_SET polysholes;
KI_POLYGON_SET mainpoly;
KI_POLYGON poly_tmp;
std::vector<KI_POLY_POINT> cornerslist;
corners_count = aPolysListWithHoles.GetCornersCount();
unsigned ic = 0;
// enter main outline
while( ic < corners_count )
{
const CPolyPt& corner = aPolysListWithHoles.GetCorner( ic++ );
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
mainpoly.push_back( poly_tmp );
while( ic < corners_count )
{
cornerslist.clear();
{
while( ic < corners_count )
{
const CPolyPt& corner = aPolysListWithHoles.GetCorner( ic++ );
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
polysholes.push_back( poly_tmp );
}
}
mainpoly -= polysholes;
// copy polygon with no holes to destination
// Because all holes are now linked to the main outline
// by overlapping segments, we should have only one polygon in list
wxASSERT( mainpoly.size() == 1 );
KI_POLYGON& poly_nohole = mainpoly[0];
CPolyPt corner( 0, 0, false );
for( unsigned jj = 0; jj < poly_nohole.size(); jj++ )
{
KI_POLY_POINT point = *(poly_nohole.begin() + jj);
corner.x = point.x();
corner.y = point.y();
corner.end_contour = false;
aOnePolyList.AddCorner( corner );
}
aOnePolyList.CloseLastContour();
}
/**
* Function IsPolygonSelfIntersecting
* Test a CPolyLine for self-intersection of vertex (all contours).
*
* @return :
* false if no intersecting sides
* true if intersecting sides
* When a CPolyLine is self intersectic, it need to be normalized.
* (converted to non intersecting polygons)
*/
bool CPolyLine::IsPolygonSelfIntersecting()
{
// first, check for sides intersecting other sides
int n_cont = GetContoursCount();
// make bounding rect for each contour
std::vector<CRect> cr;
cr.reserve( n_cont );
for( int icont = 0; icont<n_cont; icont++ )
cr.push_back( GetCornerBounds( icont ) );
for( int icont = 0; icont<n_cont; icont++ )
{
int is_start = GetContourStart( icont );
int is_end = GetContourEnd( icont );
for( int is = is_start; is<=is_end; is++ )
{
int is_prev = is - 1;
if( is_prev < is_start )
is_prev = is_end;
int is_next = is + 1;
if( is_next > is_end )
is_next = is_start;
int x1i = GetX( is );
int y1i = GetY( is );
int x1f = GetX( is_next );
int y1f = GetY( is_next );
// check for intersection with any other sides
for( int icont2 = icont; icont2<n_cont; icont2++ )
{
if( cr[icont].left > cr[icont2].right
|| cr[icont].bottom > cr[icont2].top
|| cr[icont2].left > cr[icont].right
|| cr[icont2].bottom > cr[icont].top )
{
// rectangles don't overlap, do nothing
}
else
{
int is2_start = GetContourStart( icont2 );
int is2_end = GetContourEnd( icont2 );
for( int is2 = is2_start; is2<=is2_end; is2++ )
{
int is2_prev = is2 - 1;
if( is2_prev < is2_start )
is2_prev = is2_end;
int is2_next = is2 + 1;
if( is2_next > is2_end )
is2_next = is2_start;
if( icont != icont2
|| ( is2 != is && is2 != is_prev && is2 != is_next &&
is != is2_prev && is != is2_next )
)
{
int x2i = GetX( is2 );
int y2i = GetY( is2 );
int x2f = GetX( is2_next );
int y2f = GetY( is2_next );
int ret = FindSegmentIntersections( x1i, y1i, x1f, y1f,
x2i, y2i, x2f, y2f );
if( ret )
{
// intersection between non-adjacent sides
return true;
}
}
}
}
}
}
}
return false;
}