kicad/common/gal/opengl/antialiasing.cpp

580 lines
17 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2016-2021 Kicad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <gal/opengl/antialiasing.h>
#include <gal/opengl/opengl_compositor.h>
#include <gal/opengl/utils.h>
#include <gal/color4d.h>
#include <memory>
#include <tuple>
#include "gl_builtin_shaders.h"
#include "SmaaAreaTex.h"
#include "SmaaSearchTex.h"
using namespace KIGFX;
// =========================
// ANTIALIASING_NONE
// =========================
ANTIALIASING_NONE::ANTIALIASING_NONE( OPENGL_COMPOSITOR* aCompositor ) :
compositor( aCompositor )
{
}
bool ANTIALIASING_NONE::Init()
{
// Nothing to initialize
return true;
}
VECTOR2U ANTIALIASING_NONE::GetInternalBufferSize()
{
return compositor->GetScreenSize();
}
void ANTIALIASING_NONE::DrawBuffer( GLuint buffer )
{
compositor->DrawBuffer( buffer, OPENGL_COMPOSITOR::DIRECT_RENDERING );
}
void ANTIALIASING_NONE::Present()
{
// Nothing to present, draw_buffer already drew to the screen
}
void ANTIALIASING_NONE::OnLostBuffers()
{
// Nothing to do
}
void ANTIALIASING_NONE::Begin()
{
// Nothing to do
}
unsigned int ANTIALIASING_NONE::CreateBuffer()
{
return compositor->CreateBuffer( compositor->GetScreenSize() );
}
namespace
{
void draw_fullscreen_primitive()
{
glMatrixMode( GL_MODELVIEW );
glPushMatrix();
glLoadIdentity();
glMatrixMode( GL_PROJECTION );
glPushMatrix();
glLoadIdentity();
glBegin( GL_TRIANGLES );
glTexCoord2f( 0.0f, 1.0f );
glVertex2f( -1.0f, 1.0f );
glTexCoord2f( 0.0f, 0.0f );
glVertex2f( -1.0f, -1.0f );
glTexCoord2f( 1.0f, 1.0f );
glVertex2f( 1.0f, 1.0f );
glTexCoord2f( 1.0f, 1.0f );
glVertex2f( 1.0f, 1.0f );
glTexCoord2f( 0.0f, 0.0f );
glVertex2f( -1.0f, -1.0f );
glTexCoord2f( 1.0f, 0.0f );
glVertex2f( 1.0f, -1.0f );
glEnd();
glPopMatrix();
glMatrixMode( GL_MODELVIEW );
glPopMatrix();
}
} // namespace
// =========================
// ANTIALIASING_SUPERSAMPLING
// =========================
ANTIALIASING_SUPERSAMPLING::ANTIALIASING_SUPERSAMPLING( OPENGL_COMPOSITOR* aCompositor,
SUPERSAMPLING_MODE aMode ) :
compositor( aCompositor ),
mode( aMode ), ssaaMainBuffer( 0 ), areBuffersCreated( false ), areShadersCreated( false )
{
}
bool ANTIALIASING_SUPERSAMPLING::Init()
{
if( mode == SUPERSAMPLING_MODE::X4 && !areShadersCreated )
{
x4_shader = std::make_unique<SHADER>();
x4_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_VERTEX,
BUILTIN_SHADERS::ssaa_x4_vertex_shader );
x4_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_FRAGMENT,
BUILTIN_SHADERS::ssaa_x4_fragment_shader );
x4_shader->Link();
checkGlError( "linking supersampling x4 shader" );
GLint source_parameter = x4_shader->AddParameter( "source" );
checkGlError( "getting pass 1 colorTex" );
x4_shader->Use();
checkGlError( "using pass 1 shader" );
x4_shader->SetParameter( source_parameter, 0 );
checkGlError( "setting colorTex uniform" );
x4_shader->Deactivate();
checkGlError( "deactivating pass 2 shader" );
areShadersCreated = true;
}
if( areShadersCreated && mode != SUPERSAMPLING_MODE::X4 )
{
x4_shader.reset();
areShadersCreated = false;
}
if( !areBuffersCreated )
{
ssaaMainBuffer = compositor->CreateBuffer();
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
areBuffersCreated = true;
}
return true;
}
VECTOR2U ANTIALIASING_SUPERSAMPLING::GetInternalBufferSize()
{
unsigned int factor = ( mode == SUPERSAMPLING_MODE::X2 ) ? 2 : 4;
return compositor->GetScreenSize() * factor;
}
void ANTIALIASING_SUPERSAMPLING::Begin()
{
compositor->SetBuffer( ssaaMainBuffer );
compositor->ClearBuffer( COLOR4D::BLACK );
}
void ANTIALIASING_SUPERSAMPLING::DrawBuffer( GLuint aBuffer )
{
compositor->DrawBuffer( aBuffer, ssaaMainBuffer );
}
void ANTIALIASING_SUPERSAMPLING::Present()
{
glDisable( GL_BLEND );
glDisable( GL_DEPTH_TEST );
glActiveTexture( GL_TEXTURE0 );
glBindTexture( GL_TEXTURE_2D, compositor->GetBufferTexture( ssaaMainBuffer ) );
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
if( mode == SUPERSAMPLING_MODE::X4 )
{
x4_shader->Use();
checkGlError( "activating supersampling x4 shader" );
}
draw_fullscreen_primitive();
if( mode == SUPERSAMPLING_MODE::X4 )
{
x4_shader->Deactivate();
checkGlError( "deactivating supersampling x4 shader" );
}
}
void ANTIALIASING_SUPERSAMPLING::OnLostBuffers()
{
areBuffersCreated = false;
}
unsigned int ANTIALIASING_SUPERSAMPLING::CreateBuffer()
{
return compositor->CreateBuffer( GetInternalBufferSize() );
}
// ===============================
// ANTIALIASING_SMAA
// ===============================
ANTIALIASING_SMAA::ANTIALIASING_SMAA( OPENGL_COMPOSITOR* aCompositor, SMAA_QUALITY aQuality ) :
areBuffersInitialized( false ),
shadersLoaded( false ),
quality( aQuality ),
compositor( aCompositor )
{
smaaBaseBuffer = 0;
smaaEdgesBuffer = 0;
smaaBlendBuffer = 0;
smaaAreaTex = 0;
smaaSearchTex = 0;
pass_1_metrics = 0;
pass_2_metrics = 0;
pass_3_metrics = 0;
}
VECTOR2U ANTIALIASING_SMAA::GetInternalBufferSize()
{
return compositor->GetScreenSize();
}
void ANTIALIASING_SMAA::loadShaders()
{
// Load constant textures
glEnable( GL_TEXTURE_2D );
glActiveTexture( GL_TEXTURE0 );
glGenTextures( 1, &smaaAreaTex );
glBindTexture( GL_TEXTURE_2D, smaaAreaTex );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RG8, AREATEX_WIDTH, AREATEX_HEIGHT, 0, GL_RG,
GL_UNSIGNED_BYTE, areaTexBytes );
checkGlError( "loading smaa area tex" );
glGenTextures( 1, &smaaSearchTex );
glBindTexture( GL_TEXTURE_2D, smaaSearchTex );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexImage2D( GL_TEXTURE_2D, 0, GL_R8, SEARCHTEX_WIDTH, SEARCHTEX_HEIGHT, 0, GL_RED,
GL_UNSIGNED_BYTE, searchTexBytes );
checkGlError( "loading smaa search tex" );
std::string quality_string;
if( quality == SMAA_QUALITY::HIGH )
{
quality_string = "#define SMAA_PRESET_HIGH\n";
}
else
{
quality_string = "#define SMAA_PRESET_ULTRA\n";
}
// set up shaders
std::string vert_preamble( R"SHADER(
#version 120
#define SMAA_GLSL_2_1
#define SMAA_INCLUDE_VS 1
#define SMAA_INCLUDE_PS 0
uniform vec4 SMAA_RT_METRICS;
)SHADER" );
std::string frag_preamble( R"SHADER(
#version 120
#define SMAA_GLSL_2_1
#define SMAA_INCLUDE_VS 0
#define SMAA_INCLUDE_PS 1
uniform vec4 SMAA_RT_METRICS;
)SHADER" );
std::string smaa_source = std::string( BUILTIN_SHADERS::smaa_base_shader_p1 )
+ std::string( BUILTIN_SHADERS::smaa_base_shader_p2 )
+ std::string( BUILTIN_SHADERS::smaa_base_shader_p3 )
+ std::string( BUILTIN_SHADERS::smaa_base_shader_p4 );
//
// Set up pass 1 Shader
//
pass_1_shader = std::make_unique<SHADER>();
pass_1_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_VERTEX, vert_preamble, quality_string,
smaa_source, BUILTIN_SHADERS::smaa_pass_1_vertex_shader );
pass_1_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_FRAGMENT, frag_preamble,
quality_string, smaa_source,
BUILTIN_SHADERS::smaa_pass_1_fragment_shader );
pass_1_shader->Link();
checkGlError( "linking pass 1 shader" );
GLint smaaColorTexParameter = pass_1_shader->AddParameter( "colorTex" );
checkGlError( "pass1: getting colorTex uniform" );
pass_1_metrics = pass_1_shader->AddParameter( "SMAA_RT_METRICS" );
checkGlError( "pass1: getting metrics uniform" );
pass_1_shader->Use();
checkGlError( "pass1: using shader" );
pass_1_shader->SetParameter( smaaColorTexParameter, 0 );
checkGlError( "pass1: setting colorTex uniform" );
pass_1_shader->Deactivate();
checkGlError( "pass1: deactivating shader" );
//
// set up pass 2 shader
//
pass_2_shader = std::make_unique<SHADER>();
pass_2_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_VERTEX, vert_preamble, quality_string,
smaa_source, BUILTIN_SHADERS::smaa_pass_2_vertex_shader );
pass_2_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_FRAGMENT, frag_preamble,
quality_string, smaa_source,
BUILTIN_SHADERS::smaa_pass_2_fragment_shader );
pass_2_shader->Link();
checkGlError( "linking pass 2 shader" );
GLint smaaEdgesTexParameter = pass_2_shader->AddParameter( "edgesTex" );
checkGlError( "pass2: getting colorTex uniform" );
GLint smaaAreaTexParameter = pass_2_shader->AddParameter( "areaTex" );
checkGlError( "pass2: getting areaTex uniform" );
GLint smaaSearchTexParameter = pass_2_shader->AddParameter( "searchTex" );
checkGlError( "pass2: getting searchTex uniform" );
pass_2_metrics = pass_2_shader->AddParameter( "SMAA_RT_METRICS" );
checkGlError( "pass2: getting metrics uniform" );
pass_2_shader->Use();
checkGlError( "pass2: using shader" );
pass_2_shader->SetParameter( smaaEdgesTexParameter, 0 );
checkGlError( "pass2: setting colorTex uniform" );
pass_2_shader->SetParameter( smaaAreaTexParameter, 1 );
checkGlError( "pass2: setting areaTex uniform" );
pass_2_shader->SetParameter( smaaSearchTexParameter, 3 );
checkGlError( "pass2: setting searchTex uniform" );
pass_2_shader->Deactivate();
checkGlError( "pass2: deactivating shader" );
//
// set up pass 3 shader
//
pass_3_shader = std::make_unique<SHADER>();
pass_3_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_VERTEX, vert_preamble, quality_string,
smaa_source, BUILTIN_SHADERS::smaa_pass_3_vertex_shader );
pass_3_shader->LoadShaderFromStrings( KIGFX::SHADER_TYPE_FRAGMENT, frag_preamble,
quality_string, smaa_source,
BUILTIN_SHADERS::smaa_pass_3_fragment_shader );
pass_3_shader->Link();
GLint smaaP3ColorTexParameter = pass_3_shader->AddParameter( "colorTex" );
checkGlError( "pass3: getting colorTex uniform" );
GLint smaaBlendTexParameter = pass_3_shader->AddParameter( "blendTex" );
checkGlError( "pass3: getting blendTex uniform" );
pass_3_metrics = pass_3_shader->AddParameter( "SMAA_RT_METRICS" );
checkGlError( "pass3: getting metrics uniform" );
pass_3_shader->Use();
checkGlError( "pass3: using shader" );
pass_3_shader->SetParameter( smaaP3ColorTexParameter, 0 );
checkGlError( "pass3: setting colorTex uniform" );
pass_3_shader->SetParameter( smaaBlendTexParameter, 1 );
checkGlError( "pass3: setting blendTex uniform" );
pass_3_shader->Deactivate();
checkGlError( "pass3: deactivating shader" );
shadersLoaded = true;
}
void ANTIALIASING_SMAA::updateUniforms()
{
auto dims = compositor->GetScreenSize();
pass_1_shader->Use();
checkGlError( "pass1: using shader" );
pass_1_shader->SetParameter( pass_1_metrics, 1.f / float( dims.x ), 1.f / float( dims.y ),
float( dims.x ), float( dims.y ) );
checkGlError( "pass1: setting metrics uniform" );
pass_1_shader->Deactivate();
checkGlError( "pass1: deactivating shader" );
pass_2_shader->Use();
checkGlError( "pass2: using shader" );
pass_2_shader->SetParameter( pass_2_metrics, 1.f / float( dims.x ), 1.f / float( dims.y ),
float( dims.x ), float( dims.y ) );
checkGlError( "pass2: setting metrics uniform" );
pass_2_shader->Deactivate();
checkGlError( "pass2: deactivating shader" );
pass_3_shader->Use();
checkGlError( "pass3: using shader" );
pass_3_shader->SetParameter( pass_3_metrics, 1.f / float( dims.x ), 1.f / float( dims.y ),
float( dims.x ), float( dims.y ) );
checkGlError( "pass3: setting metrics uniform" );
pass_3_shader->Deactivate();
checkGlError( "pass3: deactivating shader" );
}
bool ANTIALIASING_SMAA::Init()
{
if( !shadersLoaded )
loadShaders();
if( !areBuffersInitialized )
{
smaaBaseBuffer = compositor->CreateBuffer();
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
smaaEdgesBuffer = compositor->CreateBuffer();
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
smaaBlendBuffer = compositor->CreateBuffer();
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
updateUniforms();
areBuffersInitialized = true;
}
// Nothing to initialize
return true;
}
void ANTIALIASING_SMAA::OnLostBuffers()
{
areBuffersInitialized = false;
}
unsigned int ANTIALIASING_SMAA::CreateBuffer()
{
return compositor->CreateBuffer( compositor->GetScreenSize() );
}
void ANTIALIASING_SMAA::DrawBuffer( GLuint buffer )
{
// draw to internal buffer
compositor->DrawBuffer( buffer, smaaBaseBuffer );
}
void ANTIALIASING_SMAA::Begin()
{
compositor->SetBuffer( smaaBaseBuffer );
compositor->ClearBuffer( COLOR4D::BLACK );
}
namespace
{
void draw_fullscreen_triangle()
{
glMatrixMode( GL_MODELVIEW );
glPushMatrix();
glLoadIdentity();
glMatrixMode( GL_PROJECTION );
glPushMatrix();
glLoadIdentity();
glBegin( GL_TRIANGLES );
glTexCoord2f( 0.0f, 1.0f );
glVertex2f( -1.0f, 1.0f );
glTexCoord2f( 0.0f, -1.0f );
glVertex2f( -1.0f, -3.0f );
glTexCoord2f( 2.0f, 1.0f );
glVertex2f( 3.0f, 1.0f );
glEnd();
glPopMatrix();
glMatrixMode( GL_MODELVIEW );
glPopMatrix();
}
} // namespace
void ANTIALIASING_SMAA::Present()
{
auto sourceTexture = compositor->GetBufferTexture( smaaBaseBuffer );
glDisable( GL_BLEND );
glDisable( GL_DEPTH_TEST );
glEnable( GL_TEXTURE_2D );
//
// pass 1: main-buffer -> smaaEdgesBuffer
//
compositor->SetBuffer( smaaEdgesBuffer );
compositor->ClearBuffer( COLOR4D::BLACK );
glActiveTexture( GL_TEXTURE0 );
glBindTexture( GL_TEXTURE_2D, sourceTexture );
checkGlError( "binding colorTex" );
pass_1_shader->Use();
checkGlError( "using smaa pass 1 shader" );
draw_fullscreen_triangle();
pass_1_shader->Deactivate();
//
// pass 2: smaaEdgesBuffer -> smaaBlendBuffer
//
compositor->SetBuffer( smaaBlendBuffer );
compositor->ClearBuffer( COLOR4D::BLACK );
auto edgesTex = compositor->GetBufferTexture( smaaEdgesBuffer );
glActiveTexture( GL_TEXTURE0 );
glBindTexture( GL_TEXTURE_2D, edgesTex );
glActiveTexture( GL_TEXTURE1 );
glBindTexture( GL_TEXTURE_2D, smaaAreaTex );
glActiveTexture( GL_TEXTURE3 );
glBindTexture( GL_TEXTURE_2D, smaaSearchTex );
pass_2_shader->Use();
draw_fullscreen_triangle();
pass_2_shader->Deactivate();
//
// pass 3: colorTex + BlendBuffer -> output
//
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
compositor->ClearBuffer( COLOR4D::BLACK );
auto blendTex = compositor->GetBufferTexture( smaaBlendBuffer );
glActiveTexture( GL_TEXTURE0 );
glBindTexture( GL_TEXTURE_2D, sourceTexture );
glActiveTexture( GL_TEXTURE1 );
glBindTexture( GL_TEXTURE_2D, blendTex );
pass_3_shader->Use();
draw_fullscreen_triangle();
pass_3_shader->Deactivate();
}