kicad/common/gal/cairo/cairo_gal.cpp

1838 lines
54 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2012 Torsten Hueter, torstenhtr <at> gmx.de
* Copyright (C) 2012-2021 Kicad Developers, see AUTHORS.txt for contributors.
* Copyright (C) 2017-2018 CERN
*
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* CairoGal - Graphics Abstraction Layer for Cairo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <wx/image.h>
#include <wx/log.h>
#include <gal/cairo/cairo_gal.h>
#include <gal/cairo/cairo_compositor.h>
#include <gal/definitions.h>
#include <geometry/shape_poly_set.h>
#include <math/util.h> // for KiROUND
#include <trigo.h>
#include <bitmap_base.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <pixman.h>
using namespace KIGFX;
CAIRO_GAL_BASE::CAIRO_GAL_BASE( GAL_DISPLAY_OPTIONS& aDisplayOptions ) : GAL( aDisplayOptions )
{
// Initialise grouping
m_isGrouping = false;
m_isElementAdded = false;
m_groupCounter = 0;
m_currentGroup = nullptr;
m_lineWidth = 1.0;
m_lineWidthInPixels = 1.0;
m_lineWidthIsOdd = true;
// Initialise Cairo state
cairo_matrix_init_identity( &m_cairoWorldScreenMatrix );
m_currentContext = nullptr;
m_context = nullptr;
m_surface = nullptr;
// Grid color settings are different in Cairo and OpenGL
SetGridColor( COLOR4D( 0.1, 0.1, 0.1, 0.8 ) );
SetAxesColor( COLOR4D( BLUE ) );
// Avoid uninitialized variables:
cairo_matrix_init_identity( &m_currentXform );
cairo_matrix_init_identity( &m_currentWorld2Screen );
}
CAIRO_GAL_BASE::~CAIRO_GAL_BASE()
{
ClearCache();
if( m_surface )
cairo_surface_destroy( m_surface );
if( m_context )
cairo_destroy( m_context );
for( _cairo_surface* imageSurface : m_imageSurfaces )
cairo_surface_destroy( imageSurface );
}
void CAIRO_GAL_BASE::BeginDrawing()
{
resetContext();
}
void CAIRO_GAL_BASE::EndDrawing()
{
// Force remaining objects to be drawn
Flush();
}
void CAIRO_GAL_BASE::updateWorldScreenMatrix()
{
cairo_matrix_multiply( &m_currentWorld2Screen, &m_currentXform, &m_cairoWorldScreenMatrix );
}
const VECTOR2D CAIRO_GAL_BASE::xform( double x, double y )
{
VECTOR2D rv;
rv.x = m_currentWorld2Screen.xx * x + m_currentWorld2Screen.xy * y + m_currentWorld2Screen.x0;
rv.y = m_currentWorld2Screen.yx * x + m_currentWorld2Screen.yy * y + m_currentWorld2Screen.y0;
return rv;
}
const VECTOR2D CAIRO_GAL_BASE::xform( const VECTOR2D& aP )
{
return xform( aP.x, aP.y );
}
const double CAIRO_GAL_BASE::angle_xform( const double aAngle )
{
// calculate rotation angle due to the rotation transform
// and if flipped on X axis.
double world_rotation = -std::atan2( m_currentWorld2Screen.xy, m_currentWorld2Screen.xx );
// When flipped on X axis, the rotation angle is M_PI - initial angle:
if( IsFlippedX() )
world_rotation = M_PI - world_rotation;
return std::fmod( aAngle + world_rotation, 2.0 * M_PI );
}
void CAIRO_GAL_BASE::arc_angles_xform_and_normalize( double& aStartAngle, double& aEndAngle )
{
// 360 deg arcs have a specific calculation.
bool is_360deg_arc = std::abs( aEndAngle - aStartAngle ) >= 2 * M_PI;
double startAngle = aStartAngle;
double endAngle = aEndAngle;
// When the view is flipped, the coordinates are flipped by the matrix transform
// However, arc angles need to be "flipped": the flipped angle is M_PI - initial angle.
if( IsFlippedX() )
{
startAngle = M_PI - startAngle;
endAngle = M_PI - endAngle;
}
// Normalize arc angles
SWAP( startAngle, >, endAngle );
// now rotate arc according to the rotation transform matrix
// Remark:
// We call angle_xform() to calculate angles according to the flip/rotation
// transform and normalize between -2M_PI and +2M_PI.
// Therefore, if aStartAngle = aEndAngle + 2*n*M_PI, the transform gives
// aEndAngle = aStartAngle
// So, if this is the case, force the aEndAngle value to draw a circle.
aStartAngle = angle_xform( startAngle );
if( is_360deg_arc ) // arc is a full circle
aEndAngle = aStartAngle + 2 * M_PI;
else
aEndAngle = angle_xform( endAngle );
}
const double CAIRO_GAL_BASE::xform( double x )
{
double dx = m_currentWorld2Screen.xx * x;
double dy = m_currentWorld2Screen.yx * x;
return sqrt( dx * dx + dy * dy );
}
static double roundp( double x )
{
return floor( x + 0.5 ) + 0.5;
}
const VECTOR2D CAIRO_GAL_BASE::roundp( const VECTOR2D& v )
{
if( m_lineWidthIsOdd && m_isStrokeEnabled )
return VECTOR2D( ::roundp( v.x ), ::roundp( v.y ) );
else
return VECTOR2D( floor( v.x + 0.5 ), floor( v.y + 0.5 ) );
}
void CAIRO_GAL_BASE::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
syncLineWidth();
VECTOR2D p0 = roundp( xform( aStartPoint ) );
VECTOR2D p1 = roundp( xform( aEndPoint ) );
cairo_move_to( m_currentContext, p0.x, p0.y );
cairo_line_to( m_currentContext, p1.x, p1.y );
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::syncLineWidth( bool aForceWidth, double aWidth )
{
double w = floor( xform( aForceWidth ? aWidth : m_lineWidth ) + 0.5 );
if( w <= 1.0 )
{
w = 1.0;
cairo_set_line_join( m_currentContext, CAIRO_LINE_JOIN_MITER );
cairo_set_line_cap( m_currentContext, CAIRO_LINE_CAP_BUTT );
cairo_set_line_width( m_currentContext, 1.0 );
m_lineWidthIsOdd = true;
}
else
{
cairo_set_line_join( m_currentContext, CAIRO_LINE_JOIN_ROUND );
cairo_set_line_cap( m_currentContext, CAIRO_LINE_CAP_ROUND );
cairo_set_line_width( m_currentContext, w );
m_lineWidthIsOdd = ( (int) w % 2 ) == 1;
}
m_lineWidthInPixels = w;
}
void CAIRO_GAL_BASE::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint,
double aWidth )
{
if( m_isFillEnabled )
{
syncLineWidth( true, aWidth );
VECTOR2D p0 = roundp( xform( aStartPoint ) );
VECTOR2D p1 = roundp( xform( aEndPoint ) );
cairo_move_to( m_currentContext, p0.x, p0.y );
cairo_line_to( m_currentContext, p1.x, p1.y );
cairo_set_source_rgba( m_currentContext, m_fillColor.r, m_fillColor.g, m_fillColor.b,
m_fillColor.a );
cairo_stroke( m_currentContext );
}
else
{
aWidth /= 2.0;
SetLineWidth( 1.0 );
syncLineWidth();
// Outline mode for tracks
VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineAngle = atan2( startEndVector.y, startEndVector.x );
double sa = sin( lineAngle + M_PI / 2.0 );
double ca = cos( lineAngle + M_PI / 2.0 );
VECTOR2D pa0 = xform( aStartPoint + VECTOR2D( aWidth * ca, aWidth * sa ) );
VECTOR2D pa1 = xform( aStartPoint - VECTOR2D( aWidth * ca, aWidth * sa ) );
VECTOR2D pb0 = xform( aEndPoint + VECTOR2D( aWidth * ca, aWidth * sa ) );
VECTOR2D pb1 = xform( aEndPoint - VECTOR2D( aWidth * ca, aWidth * sa ) );
cairo_set_source_rgba( m_currentContext, m_strokeColor.r, m_strokeColor.g, m_strokeColor.b,
m_strokeColor.a );
cairo_move_to( m_currentContext, pa0.x, pa0.y );
cairo_line_to( m_currentContext, pb0.x, pb0.y );
cairo_move_to( m_currentContext, pa1.x, pa1.y );
cairo_line_to( m_currentContext, pb1.x, pb1.y );
flushPath();
// Calculate the segment angle and arc center in normal/mirrored transform for rounded ends.
VECTOR2D center_a = xform( aStartPoint );
VECTOR2D center_b = xform( aEndPoint );
startEndVector = center_b - center_a;
lineAngle = atan2( startEndVector.y, startEndVector.x );
double radius = ( pa0 - center_a ).EuclideanNorm();
// Draw the rounded end point of the segment
double arcStartAngle = lineAngle - M_PI / 2.0;
cairo_arc( m_currentContext, center_b.x, center_b.y, radius, arcStartAngle,
arcStartAngle + M_PI );
// Draw the rounded start point of the segment
arcStartAngle = lineAngle + M_PI / 2.0;
cairo_arc( m_currentContext, center_a.x, center_a.y, radius, arcStartAngle,
arcStartAngle + M_PI );
flushPath();
}
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius )
{
syncLineWidth();
VECTOR2D c = roundp( xform( aCenterPoint ) );
double r = ::roundp( xform( aRadius ) );
cairo_set_line_width( m_currentContext, std::min( 2.0 * r, m_lineWidthInPixels ) );
cairo_new_sub_path( m_currentContext );
cairo_arc( m_currentContext, c.x, c.y, r, 0.0, 2 * M_PI );
cairo_close_path( m_currentContext );
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::DrawArc( const VECTOR2D& aCenterPoint, double aRadius,
const EDA_ANGLE& aStartAngle, const EDA_ANGLE& aEndAngle )
{
syncLineWidth();
double startAngle = aStartAngle.AsRadians();
double endAngle = aEndAngle.AsRadians();
// calculate start and end arc angles according to the rotation transform matrix
// and normalize:
arc_angles_xform_and_normalize( startAngle, endAngle );
double r = xform( aRadius );
// N.B. This is backwards. We set this because we want to adjust the center
// point that changes both endpoints. In the worst case, this is twice as far.
// We cannot adjust radius or center based on the other because this causes the
// whole arc to change position/size
m_lineWidthIsOdd = !( static_cast<int>( aRadius ) % 2 );
auto mid = roundp( xform( aCenterPoint ) );
cairo_set_line_width( m_currentContext, m_lineWidthInPixels );
cairo_new_sub_path( m_currentContext );
if( m_isFillEnabled )
cairo_move_to( m_currentContext, mid.x, mid.y );
cairo_arc( m_currentContext, mid.x, mid.y, r, startAngle, endAngle );
if( m_isFillEnabled )
cairo_close_path( m_currentContext );
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::DrawArcSegment( const VECTOR2D& aCenterPoint, double aRadius,
const EDA_ANGLE& aStartAngle, const EDA_ANGLE& aEndAngle,
double aWidth, double aMaxError )
{
// Note: aMaxError is not used because Cairo can draw true arcs
if( m_isFillEnabled )
{
m_lineWidth = aWidth;
m_isStrokeEnabled = true;
m_isFillEnabled = false;
DrawArc( aCenterPoint, aRadius, aStartAngle, aEndAngle );
m_isFillEnabled = true;
m_isStrokeEnabled = false;
return;
}
syncLineWidth();
// calculate start and end arc angles according to the rotation transform matrix
// and normalize:
double startAngleS = aStartAngle.AsRadians();
double endAngleS = aEndAngle.AsRadians();
arc_angles_xform_and_normalize( startAngleS, endAngleS );
double r = xform( aRadius );
// N.B. This is backwards. We set this because we want to adjust the center
// point that changes both endpoints. In the worst case, this is twice as far.
// We cannot adjust radius or center based on the other because this causes the
// whole arc to change position/size
m_lineWidthIsOdd = !( static_cast<int>( aRadius ) % 2 );
VECTOR2D mid = roundp( xform( aCenterPoint ) );
double width = xform( aWidth / 2.0 );
VECTOR2D startPointS = VECTOR2D( r, 0.0 );
VECTOR2D endPointS = VECTOR2D( r, 0.0 );
RotatePoint( startPointS, -EDA_ANGLE( startAngleS, RADIANS_T ) );
RotatePoint( endPointS, -EDA_ANGLE( endAngleS, RADIANS_T ) );
cairo_save( m_currentContext );
cairo_set_source_rgba( m_currentContext, m_strokeColor.r, m_strokeColor.g, m_strokeColor.b,
m_strokeColor.a );
cairo_translate( m_currentContext, mid.x, mid.y );
cairo_new_sub_path( m_currentContext );
cairo_arc( m_currentContext, 0, 0, r - width, startAngleS, endAngleS );
cairo_new_sub_path( m_currentContext );
cairo_arc( m_currentContext, 0, 0, r + width, startAngleS, endAngleS );
cairo_new_sub_path( m_currentContext );
cairo_arc_negative( m_currentContext, startPointS.x, startPointS.y, width, startAngleS,
startAngleS + M_PI );
cairo_new_sub_path( m_currentContext );
cairo_arc( m_currentContext, endPointS.x, endPointS.y, width, endAngleS, endAngleS + M_PI );
cairo_restore( m_currentContext );
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
// Calculate the diagonal points
syncLineWidth();
const VECTOR2D p0 = roundp( xform( aStartPoint ) );
const VECTOR2D p1 = roundp( xform( VECTOR2D( aEndPoint.x, aStartPoint.y ) ) );
const VECTOR2D p2 = roundp( xform( aEndPoint ) );
const VECTOR2D p3 = roundp( xform( VECTOR2D( aStartPoint.x, aEndPoint.y ) ) );
// The path is composed from 4 segments
cairo_move_to( m_currentContext, p0.x, p0.y );
cairo_line_to( m_currentContext, p1.x, p1.y );
cairo_line_to( m_currentContext, p2.x, p2.y );
cairo_line_to( m_currentContext, p3.x, p3.y );
cairo_close_path( m_currentContext );
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::DrawPolygon( const SHAPE_POLY_SET& aPolySet, bool aStrokeTriangulation )
{
for( int i = 0; i < aPolySet.OutlineCount(); ++i )
drawPoly( aPolySet.COutline( i ) );
}
void CAIRO_GAL_BASE::DrawPolygon( const SHAPE_LINE_CHAIN& aPolygon )
{
drawPoly( aPolygon );
}
void CAIRO_GAL_BASE::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA,
const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint,
double aFilterValue )
{
// Note: aFilterValue is not used because the cubic Bezier curve is
// supported by Cairo.
syncLineWidth();
const VECTOR2D sp = roundp( xform( aStartPoint ) );
const VECTOR2D cpa = roundp( xform( aControlPointA ) );
const VECTOR2D cpb = roundp( xform( aControlPointB ) );
const VECTOR2D ep = roundp( xform( aEndPoint ) );
cairo_move_to( m_currentContext, sp.x, sp.y );
cairo_curve_to( m_currentContext, cpa.x, cpa.y, cpb.x, cpb.y, ep.x, ep.y );
cairo_line_to( m_currentContext, ep.x, ep.y );
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::DrawBitmap( const BITMAP_BASE& aBitmap, double alphaBlend )
{
cairo_save( m_currentContext );
alphaBlend = std::clamp( alphaBlend, 0.0, 1.0 );
// We have to calculate the pixel size in users units to draw the image.
// m_worldUnitLength is a factor used for converting IU to inches
double scale = 1.0 / ( aBitmap.GetPPI() * m_worldUnitLength );
// The position of the bitmap is the bitmap center.
// move the draw origin to the top left bitmap corner:
int w = aBitmap.GetSizePixels().x;
int h = aBitmap.GetSizePixels().y;
cairo_set_matrix( m_currentContext, &m_currentWorld2Screen );
cairo_scale( m_currentContext, scale, scale );
cairo_translate( m_currentContext, -w / 2.0, -h / 2.0 );
cairo_new_path( m_currentContext );
cairo_surface_t* image = cairo_image_surface_create( CAIRO_FORMAT_ARGB32, w, h );
cairo_surface_flush( image );
unsigned char* pix_buffer = cairo_image_surface_get_data( image );
// The pixel buffer of the initial bitmap:
const wxImage& bm_pix_buffer = *aBitmap.GetImageData();
uint32_t mask_color = ( bm_pix_buffer.GetMaskRed() << 16 )
+ ( bm_pix_buffer.GetMaskGreen() << 8 ) + ( bm_pix_buffer.GetMaskBlue() );
// Copy the source bitmap to the cairo bitmap buffer.
// In cairo bitmap buffer, a ARGB32 bitmap is an ARGB pixel packed into a uint_32
// 24 low bits only are used for color, top 8 are transparency.
for( int row = 0; row < h; row++ )
{
for( int col = 0; col < w; col++ )
{
// Build the RGB24 pixel:
uint32_t pixel = bm_pix_buffer.GetRed( col, row ) << 16;
pixel += bm_pix_buffer.GetGreen( col, row ) << 8;
pixel += bm_pix_buffer.GetBlue( col, row );
if( bm_pix_buffer.HasAlpha() )
pixel += bm_pix_buffer.GetAlpha( col, row ) << 24;
else if( bm_pix_buffer.HasMask() && pixel == mask_color )
pixel += ( wxALPHA_TRANSPARENT << 24 );
else
pixel += ( wxALPHA_OPAQUE << 24 );
// Write the pixel to the cairo image buffer:
uint32_t* pix_ptr = (uint32_t*) pix_buffer;
*pix_ptr = pixel;
pix_buffer += 4;
}
}
cairo_surface_mark_dirty( image );
cairo_set_source_surface( m_currentContext, image, 0, 0 );
cairo_paint_with_alpha( m_currentContext, alphaBlend );
// store the image handle so it can be destroyed later
m_imageSurfaces.push_back( image );
m_isElementAdded = true;
cairo_restore( m_currentContext );
}
void CAIRO_GAL_BASE::ResizeScreen( int aWidth, int aHeight )
{
m_screenSize = VECTOR2I( aWidth, aHeight );
}
void CAIRO_GAL_BASE::Flush()
{
storePath();
}
void CAIRO_GAL_BASE::ClearScreen()
{
cairo_set_source_rgb( m_currentContext, m_clearColor.r, m_clearColor.g, m_clearColor.b );
cairo_rectangle( m_currentContext, 0.0, 0.0, m_screenSize.x, m_screenSize.y );
cairo_fill( m_currentContext );
}
void CAIRO_GAL_BASE::SetIsFill( bool aIsFillEnabled )
{
storePath();
m_isFillEnabled = aIsFillEnabled;
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_SET_FILL;
groupElement.m_Argument.BoolArg = aIsFillEnabled;
m_currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL_BASE::SetIsStroke( bool aIsStrokeEnabled )
{
storePath();
m_isStrokeEnabled = aIsStrokeEnabled;
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_SET_STROKE;
groupElement.m_Argument.BoolArg = aIsStrokeEnabled;
m_currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL_BASE::SetStrokeColor( const COLOR4D& aColor )
{
storePath();
m_strokeColor = aColor;
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_SET_STROKECOLOR;
groupElement.m_Argument.DblArg[0] = m_strokeColor.r;
groupElement.m_Argument.DblArg[1] = m_strokeColor.g;
groupElement.m_Argument.DblArg[2] = m_strokeColor.b;
groupElement.m_Argument.DblArg[3] = m_strokeColor.a;
m_currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL_BASE::SetFillColor( const COLOR4D& aColor )
{
storePath();
m_fillColor = aColor;
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_SET_FILLCOLOR;
groupElement.m_Argument.DblArg[0] = m_fillColor.r;
groupElement.m_Argument.DblArg[1] = m_fillColor.g;
groupElement.m_Argument.DblArg[2] = m_fillColor.b;
groupElement.m_Argument.DblArg[3] = m_fillColor.a;
m_currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL_BASE::SetLineWidth( float aLineWidth )
{
storePath();
GAL::SetLineWidth( aLineWidth );
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_SET_LINE_WIDTH;
groupElement.m_Argument.DblArg[0] = aLineWidth;
m_currentGroup->push_back( groupElement );
}
else
{
m_lineWidth = aLineWidth;
}
}
void CAIRO_GAL_BASE::SetLayerDepth( double aLayerDepth )
{
super::SetLayerDepth( aLayerDepth );
storePath();
}
void CAIRO_GAL_BASE::Transform( const MATRIX3x3D& aTransformation )
{
cairo_matrix_t cairoTransformation, newXform;
cairo_matrix_init( &cairoTransformation, aTransformation.m_data[0][0],
aTransformation.m_data[1][0], aTransformation.m_data[0][1],
aTransformation.m_data[1][1], aTransformation.m_data[0][2],
aTransformation.m_data[1][2] );
cairo_matrix_multiply( &newXform, &m_currentXform, &cairoTransformation );
m_currentXform = newXform;
updateWorldScreenMatrix();
}
void CAIRO_GAL_BASE::Rotate( double aAngle )
{
storePath();
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_ROTATE;
groupElement.m_Argument.DblArg[0] = aAngle;
m_currentGroup->push_back( groupElement );
}
else
{
cairo_matrix_rotate( &m_currentXform, aAngle );
updateWorldScreenMatrix();
}
}
void CAIRO_GAL_BASE::Translate( const VECTOR2D& aTranslation )
{
storePath();
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_TRANSLATE;
groupElement.m_Argument.DblArg[0] = aTranslation.x;
groupElement.m_Argument.DblArg[1] = aTranslation.y;
m_currentGroup->push_back( groupElement );
}
else
{
cairo_matrix_translate( &m_currentXform, aTranslation.x, aTranslation.y );
updateWorldScreenMatrix();
}
}
void CAIRO_GAL_BASE::Scale( const VECTOR2D& aScale )
{
storePath();
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_SCALE;
groupElement.m_Argument.DblArg[0] = aScale.x;
groupElement.m_Argument.DblArg[1] = aScale.y;
m_currentGroup->push_back( groupElement );
}
else
{
cairo_matrix_scale( &m_currentXform, aScale.x, aScale.y );
updateWorldScreenMatrix();
}
}
void CAIRO_GAL_BASE::Save()
{
storePath();
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_SAVE;
m_currentGroup->push_back( groupElement );
}
else
{
m_xformStack.push_back( m_currentXform );
updateWorldScreenMatrix();
}
}
void CAIRO_GAL_BASE::Restore()
{
storePath();
if( m_isGrouping )
{
GROUP_ELEMENT groupElement;
groupElement.m_Command = CMD_RESTORE;
m_currentGroup->push_back( groupElement );
}
else
{
if( !m_xformStack.empty() )
{
m_currentXform = m_xformStack.back();
m_xformStack.pop_back();
updateWorldScreenMatrix();
}
}
}
int CAIRO_GAL_BASE::BeginGroup()
{
// If the grouping is started: the actual path is stored in the group, when
// a attribute was changed or when grouping stops with the end group method.
storePath();
GROUP group;
int groupNumber = getNewGroupNumber();
m_groups.insert( std::make_pair( groupNumber, group ) );
m_currentGroup = &m_groups[groupNumber];
m_isGrouping = true;
return groupNumber;
}
void CAIRO_GAL_BASE::EndGroup()
{
storePath();
m_isGrouping = false;
}
void CAIRO_GAL_BASE::DrawGroup( int aGroupNumber )
{
// This method implements a small Virtual Machine - all stored commands
// are executed; nested calling is also possible
storePath();
for( auto it = m_groups[aGroupNumber].begin(); it != m_groups[aGroupNumber].end(); ++it )
{
switch( it->m_Command )
{
case CMD_SET_FILL:
m_isFillEnabled = it->m_Argument.BoolArg;
break;
case CMD_SET_STROKE:
m_isStrokeEnabled = it->m_Argument.BoolArg;
break;
case CMD_SET_FILLCOLOR:
m_fillColor = COLOR4D( it->m_Argument.DblArg[0], it->m_Argument.DblArg[1],
it->m_Argument.DblArg[2], it->m_Argument.DblArg[3] );
break;
case CMD_SET_STROKECOLOR:
m_strokeColor = COLOR4D( it->m_Argument.DblArg[0], it->m_Argument.DblArg[1],
it->m_Argument.DblArg[2], it->m_Argument.DblArg[3] );
break;
case CMD_SET_LINE_WIDTH:
{
// Make lines appear at least 1 pixel wide, no matter of zoom
double x = 1.0, y = 1.0;
cairo_device_to_user_distance( m_currentContext, &x, &y );
double minWidth = std::min( fabs( x ), fabs( y ) );
cairo_set_line_width( m_currentContext,
std::max( it->m_Argument.DblArg[0], minWidth ) );
break;
}
case CMD_STROKE_PATH:
cairo_set_source_rgba( m_currentContext, m_strokeColor.r, m_strokeColor.g,
m_strokeColor.b, m_strokeColor.a );
cairo_append_path( m_currentContext, it->m_CairoPath );
cairo_stroke( m_currentContext );
break;
case CMD_FILL_PATH:
cairo_set_source_rgba( m_currentContext, m_fillColor.r, m_fillColor.g, m_fillColor.b,
m_strokeColor.a );
cairo_append_path( m_currentContext, it->m_CairoPath );
cairo_fill( m_currentContext );
break;
/*
case CMD_TRANSFORM:
cairo_matrix_t matrix;
cairo_matrix_init( &matrix, it->argument.DblArg[0], it->argument.DblArg[1],
it->argument.DblArg[2], it->argument.DblArg[3],
it->argument.DblArg[4], it->argument.DblArg[5] );
cairo_transform( m_currentContext, &matrix );
break;
*/
case CMD_ROTATE:
cairo_rotate( m_currentContext, it->m_Argument.DblArg[0] );
break;
case CMD_TRANSLATE:
cairo_translate( m_currentContext, it->m_Argument.DblArg[0], it->m_Argument.DblArg[1] );
break;
case CMD_SCALE:
cairo_scale( m_currentContext, it->m_Argument.DblArg[0], it->m_Argument.DblArg[1] );
break;
case CMD_SAVE:
cairo_save( m_currentContext );
break;
case CMD_RESTORE:
cairo_restore( m_currentContext );
break;
case CMD_CALL_GROUP:
DrawGroup( it->m_Argument.IntArg );
break;
}
}
}
void CAIRO_GAL_BASE::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor )
{
storePath();
for( auto it = m_groups[aGroupNumber].begin(); it != m_groups[aGroupNumber].end(); ++it )
{
if( it->m_Command == CMD_SET_FILLCOLOR || it->m_Command == CMD_SET_STROKECOLOR )
{
it->m_Argument.DblArg[0] = aNewColor.r;
it->m_Argument.DblArg[1] = aNewColor.g;
it->m_Argument.DblArg[2] = aNewColor.b;
it->m_Argument.DblArg[3] = aNewColor.a;
}
}
}
void CAIRO_GAL_BASE::ChangeGroupDepth( int aGroupNumber, int aDepth )
{
// Cairo does not have any possibilities to change the depth coordinate of stored items,
// it depends only on the order of drawing
}
void CAIRO_GAL_BASE::DeleteGroup( int aGroupNumber )
{
storePath();
// Delete the Cairo paths
std::deque<GROUP_ELEMENT>::iterator it, end;
for( it = m_groups[aGroupNumber].begin(), end = m_groups[aGroupNumber].end(); it != end; ++it )
{
if( it->m_Command == CMD_FILL_PATH || it->m_Command == CMD_STROKE_PATH )
cairo_path_destroy( it->m_CairoPath );
}
// Delete the group
m_groups.erase( aGroupNumber );
}
void CAIRO_GAL_BASE::ClearCache()
{
for( auto it = m_groups.begin(); it != m_groups.end(); )
DeleteGroup( ( it++ )->first );
}
void CAIRO_GAL_BASE::SetNegativeDrawMode( bool aSetting )
{
cairo_set_operator( m_currentContext, aSetting ? CAIRO_OPERATOR_CLEAR : CAIRO_OPERATOR_OVER );
}
void CAIRO_GAL::StartDiffLayer()
{
SetTarget( TARGET_TEMP );
ClearTarget( TARGET_TEMP );
}
void CAIRO_GAL::EndDiffLayer()
{
m_compositor->DrawBuffer( m_tempBuffer, m_mainBuffer, CAIRO_OPERATOR_ADD );
}
void CAIRO_GAL::StartNegativesLayer()
{
SetTarget( TARGET_TEMP );
ClearTarget( TARGET_TEMP );
}
void CAIRO_GAL::EndNegativesLayer()
{
m_compositor->DrawBuffer( m_tempBuffer, m_mainBuffer, CAIRO_OPERATOR_OVER );
}
void CAIRO_GAL_BASE::DrawCursor( const VECTOR2D& aCursorPosition )
{
m_cursorPosition = aCursorPosition;
}
void CAIRO_GAL_BASE::EnableDepthTest( bool aEnabled )
{
}
void CAIRO_GAL_BASE::resetContext()
{
for( _cairo_surface* imageSurface : m_imageSurfaces )
cairo_surface_destroy( imageSurface );
m_imageSurfaces.clear();
ClearScreen();
// Compute the world <-> screen transformations
ComputeWorldScreenMatrix();
cairo_matrix_init( &m_cairoWorldScreenMatrix, m_worldScreenMatrix.m_data[0][0],
m_worldScreenMatrix.m_data[1][0], m_worldScreenMatrix.m_data[0][1],
m_worldScreenMatrix.m_data[1][1], m_worldScreenMatrix.m_data[0][2],
m_worldScreenMatrix.m_data[1][2] );
// we work in screen-space coordinates and do the transforms outside.
cairo_identity_matrix( m_context );
cairo_matrix_init_identity( &m_currentXform );
// Start drawing with a new path
cairo_new_path( m_context );
m_isElementAdded = true;
updateWorldScreenMatrix();
m_lineWidth = 0;
}
void CAIRO_GAL_BASE::drawAxes( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
syncLineWidth();
VECTOR2D p0 = roundp( xform( aStartPoint ) );
VECTOR2D p1 = roundp( xform( aEndPoint ) );
VECTOR2D org = roundp( xform( VECTOR2D( 0.0, 0.0 ) ) ); // Axis origin = 0,0 coord
cairo_set_source_rgba( m_currentContext, m_axesColor.r, m_axesColor.g, m_axesColor.b,
m_axesColor.a );
cairo_move_to( m_currentContext, p0.x, org.y );
cairo_line_to( m_currentContext, p1.x, org.y );
cairo_move_to( m_currentContext, org.x, p0.y );
cairo_line_to( m_currentContext, org.x, p1.y );
cairo_stroke( m_currentContext );
}
void CAIRO_GAL_BASE::drawGridLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
syncLineWidth();
VECTOR2D p0 = roundp( xform( aStartPoint ) );
VECTOR2D p1 = roundp( xform( aEndPoint ) );
cairo_set_source_rgba( m_currentContext, m_gridColor.r, m_gridColor.g, m_gridColor.b,
m_gridColor.a );
cairo_move_to( m_currentContext, p0.x, p0.y );
cairo_line_to( m_currentContext, p1.x, p1.y );
cairo_stroke( m_currentContext );
}
void CAIRO_GAL_BASE::drawGridCross( const VECTOR2D& aPoint )
{
syncLineWidth();
VECTOR2D offset( 0, 0 );
double size = 2.0 * m_lineWidthInPixels + 0.5;
VECTOR2D p0 = roundp( xform( aPoint ) ) - VECTOR2D( size, 0 ) + offset;
VECTOR2D p1 = roundp( xform( aPoint ) ) + VECTOR2D( size, 0 ) + offset;
VECTOR2D p2 = roundp( xform( aPoint ) ) - VECTOR2D( 0, size ) + offset;
VECTOR2D p3 = roundp( xform( aPoint ) ) + VECTOR2D( 0, size ) + offset;
cairo_set_source_rgba( m_currentContext, m_gridColor.r, m_gridColor.g, m_gridColor.b,
m_gridColor.a );
cairo_move_to( m_currentContext, p0.x, p0.y );
cairo_line_to( m_currentContext, p1.x, p1.y );
cairo_move_to( m_currentContext, p2.x, p2.y );
cairo_line_to( m_currentContext, p3.x, p3.y );
cairo_stroke( m_currentContext );
}
void CAIRO_GAL_BASE::drawGridPoint( const VECTOR2D& aPoint, double aWidth, double aHeight )
{
VECTOR2D p = roundp( xform( aPoint ) );
double sw = std::max( 1.0, aWidth );
double sh = std::max( 1.0, aHeight );
cairo_set_source_rgba( m_currentContext, m_gridColor.r, m_gridColor.g, m_gridColor.b,
m_gridColor.a );
cairo_rectangle( m_currentContext, p.x - std::floor( sw / 2 ) - 0.5,
p.y - std::floor( sh / 2 ) - 0.5, sw, sh );
cairo_fill( m_currentContext );
}
void CAIRO_GAL_BASE::flushPath()
{
if( m_isFillEnabled )
{
cairo_set_source_rgba( m_currentContext, m_fillColor.r, m_fillColor.g, m_fillColor.b,
m_fillColor.a );
if( m_isStrokeEnabled )
{
cairo_set_line_width( m_currentContext, m_lineWidthInPixels );
cairo_fill_preserve( m_currentContext );
}
else
{
cairo_fill( m_currentContext );
}
}
if( m_isStrokeEnabled )
{
cairo_set_line_width( m_currentContext, m_lineWidthInPixels );
cairo_set_source_rgba( m_currentContext, m_strokeColor.r, m_strokeColor.g, m_strokeColor.b,
m_strokeColor.a );
cairo_stroke( m_currentContext );
}
}
void CAIRO_GAL_BASE::storePath()
{
if( m_isElementAdded )
{
m_isElementAdded = false;
if( !m_isGrouping )
{
if( m_isFillEnabled )
{
cairo_set_source_rgba( m_currentContext, m_fillColor.r, m_fillColor.g,
m_fillColor.b, m_fillColor.a );
cairo_fill_preserve( m_currentContext );
}
if( m_isStrokeEnabled )
{
cairo_set_source_rgba( m_currentContext, m_strokeColor.r, m_strokeColor.g,
m_strokeColor.b, m_strokeColor.a );
cairo_stroke_preserve( m_currentContext );
}
}
else
{
// Copy the actual path, append it to the global path list
// then check, if the path needs to be stroked/filled and
// add this command to the group list;
if( m_isStrokeEnabled )
{
GROUP_ELEMENT groupElement;
groupElement.m_CairoPath = cairo_copy_path( m_currentContext );
groupElement.m_Command = CMD_STROKE_PATH;
m_currentGroup->push_back( groupElement );
}
if( m_isFillEnabled )
{
GROUP_ELEMENT groupElement;
groupElement.m_CairoPath = cairo_copy_path( m_currentContext );
groupElement.m_Command = CMD_FILL_PATH;
m_currentGroup->push_back( groupElement );
}
}
cairo_new_path( m_currentContext );
}
}
void CAIRO_GAL_BASE::blitCursor( wxMemoryDC& clientDC )
{
if( !IsCursorEnabled() )
return;
VECTOR2D p = ToScreen( m_cursorPosition );
const COLOR4D cColor = getCursorColor();
const int cursorSize = m_fullscreenCursor ? 8000 : 80;
wxColour color( cColor.r * cColor.a * 255, cColor.g * cColor.a * 255, cColor.b * cColor.a * 255,
255 );
clientDC.SetPen( wxPen( color ) );
clientDC.DrawLine( p.x - cursorSize / 2, p.y, p.x + cursorSize / 2, p.y );
clientDC.DrawLine( p.x, p.y - cursorSize / 2, p.x, p.y + cursorSize / 2 );
}
void CAIRO_GAL_BASE::drawPoly( const std::deque<VECTOR2D>& aPointList )
{
wxCHECK( aPointList.size() > 1, /* void */ );
// Iterate over the point list and draw the segments
std::deque<VECTOR2D>::const_iterator it = aPointList.begin();
syncLineWidth();
const VECTOR2D p = roundp( xform( it->x, it->y ) );
cairo_move_to( m_currentContext, p.x, p.y );
for( ++it; it != aPointList.end(); ++it )
{
const VECTOR2D p2 = roundp( xform( it->x, it->y ) );
cairo_line_to( m_currentContext, p2.x, p2.y );
}
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::drawPoly( const std::vector<VECTOR2D>& aPointList )
{
wxCHECK( aPointList.size() > 1, /* void */ );
// Iterate over the point list and draw the segments
std::vector<VECTOR2D>::const_iterator it = aPointList.begin();
syncLineWidth();
const VECTOR2D p = roundp( xform( it->x, it->y ) );
cairo_move_to( m_currentContext, p.x, p.y );
for( ++it; it != aPointList.end(); ++it )
{
const VECTOR2D p2 = roundp( xform( it->x, it->y ) );
cairo_line_to( m_currentContext, p2.x, p2.y );
}
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::drawPoly( const VECTOR2D aPointList[], int aListSize )
{
wxCHECK( aListSize > 1, /* void */ );
// Iterate over the point list and draw the segments
const VECTOR2D* ptr = aPointList;
syncLineWidth();
const VECTOR2D p = roundp( xform( ptr->x, ptr->y ) );
cairo_move_to( m_currentContext, p.x, p.y );
for( int i = 1; i < aListSize; ++i )
{
++ptr;
const VECTOR2D p2 = roundp( xform( ptr->x, ptr->y ) );
cairo_line_to( m_currentContext, p2.x, p2.y );
}
flushPath();
m_isElementAdded = true;
}
void CAIRO_GAL_BASE::drawPoly( const SHAPE_LINE_CHAIN& aLineChain )
{
wxCHECK( aLineChain.PointCount() > 1, /* void */ );
syncLineWidth();
auto numPoints = aLineChain.PointCount();
if( aLineChain.IsClosed() )
numPoints += 1;
const VECTOR2I start = aLineChain.CPoint( 0 );
const VECTOR2D p = roundp( xform( start.x, start.y ) );
cairo_move_to( m_currentContext, p.x, p.y );
for( int i = 1; i < numPoints; ++i )
{
const VECTOR2I& pw = aLineChain.CPoint( i );
const VECTOR2D ps = roundp( xform( pw.x, pw.y ) );
cairo_line_to( m_currentContext, ps.x, ps.y );
}
flushPath();
m_isElementAdded = true;
}
unsigned int CAIRO_GAL_BASE::getNewGroupNumber()
{
wxASSERT_MSG( m_groups.size() < std::numeric_limits<unsigned int>::max(),
wxT( "There are no free slots to store a group" ) );
while( m_groups.find( m_groupCounter ) != m_groups.end() )
m_groupCounter++;
return m_groupCounter++;
}
CAIRO_GAL::CAIRO_GAL( GAL_DISPLAY_OPTIONS& aDisplayOptions, wxWindow* aParent,
wxEvtHandler* aMouseListener, wxEvtHandler* aPaintListener,
const wxString& aName ) :
CAIRO_GAL_BASE( aDisplayOptions ),
wxWindow( aParent, wxID_ANY, wxDefaultPosition, wxDefaultSize, wxEXPAND, aName )
{
// Initialise compositing state
m_mainBuffer = 0;
m_overlayBuffer = 0;
m_tempBuffer = 0;
m_savedBuffer = 0;
m_validCompositor = false;
SetTarget( TARGET_NONCACHED );
m_bitmapBuffer = nullptr;
m_wxOutput = nullptr;
m_parentWindow = aParent;
m_mouseListener = aMouseListener;
m_paintListener = aPaintListener;
// Connect the native cursor handler
Connect( wxEVT_SET_CURSOR, wxSetCursorEventHandler( CAIRO_GAL::onSetNativeCursor ), nullptr,
this );
// Connecting the event handlers
Connect( wxEVT_PAINT, wxPaintEventHandler( CAIRO_GAL::onPaint ) );
// Mouse events are skipped to the parent
Connect( wxEVT_MOTION, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_AUX1_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_AUX1_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_AUX1_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_AUX2_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_AUX2_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_AUX2_DCLICK, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
#if defined _WIN32 || defined _WIN64
Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
#endif
SetSize( aParent->GetClientSize() );
m_screenSize = VECTOR2I( aParent->GetClientSize() );
// Allocate memory for pixel storage
allocateBitmaps();
m_isInitialized = false;
}
CAIRO_GAL::~CAIRO_GAL()
{
deleteBitmaps();
}
void CAIRO_GAL::BeginDrawing()
{
initSurface();
CAIRO_GAL_BASE::BeginDrawing();
if( !m_validCompositor )
setCompositor();
m_compositor->SetMainContext( m_context );
m_compositor->SetBuffer( m_mainBuffer );
}
void CAIRO_GAL::EndDrawing()
{
CAIRO_GAL_BASE::EndDrawing();
// Merge buffers on the screen
m_compositor->DrawBuffer( m_mainBuffer );
m_compositor->DrawBuffer( m_overlayBuffer );
// Now translate the raw context data from the format stored
// by cairo into a format understood by wxImage.
pixman_image_t* dstImg = pixman_image_create_bits(
wxPlatformInfo::Get().GetEndianness() == wxENDIAN_LITTLE ? PIXMAN_b8g8r8
: PIXMAN_r8g8b8,
m_screenSize.x, m_screenSize.y, (uint32_t*) m_wxOutput, m_wxBufferWidth * 3 );
pixman_image_t* srcImg =
pixman_image_create_bits( PIXMAN_a8r8g8b8, m_screenSize.x, m_screenSize.y,
(uint32_t*) m_bitmapBuffer, m_wxBufferWidth * 4 );
pixman_image_composite( PIXMAN_OP_SRC, srcImg, nullptr, dstImg, 0, 0, 0, 0, 0, 0,
m_screenSize.x, m_screenSize.y );
// Free allocated memory
pixman_image_unref( srcImg );
pixman_image_unref( dstImg );
wxImage img( m_wxBufferWidth, m_screenSize.y, m_wxOutput, true );
wxBitmap bmp( img );
wxMemoryDC mdc( bmp );
wxClientDC clientDC( this );
// Now it is the time to blit the mouse cursor
blitCursor( mdc );
clientDC.Blit( 0, 0, m_screenSize.x, m_screenSize.y, &mdc, 0, 0, wxCOPY );
deinitSurface();
}
void CAIRO_GAL::PostPaint( wxPaintEvent& aEvent )
{
// posts an event to m_paint_listener to ask for redraw the canvas.
if( m_paintListener )
wxPostEvent( m_paintListener, aEvent );
}
void CAIRO_GAL::ResizeScreen( int aWidth, int aHeight )
{
CAIRO_GAL_BASE::ResizeScreen( aWidth, aHeight );
// Recreate the bitmaps
deleteBitmaps();
allocateBitmaps();
if( m_validCompositor )
m_compositor->Resize( aWidth, aHeight );
m_validCompositor = false;
SetSize( wxSize( aWidth, aHeight ) );
}
bool CAIRO_GAL::Show( bool aShow )
{
bool s = wxWindow::Show( aShow );
if( aShow )
wxWindow::Raise();
return s;
}
int CAIRO_GAL::BeginGroup()
{
initSurface();
return CAIRO_GAL_BASE::BeginGroup();
}
void CAIRO_GAL::EndGroup()
{
CAIRO_GAL_BASE::EndGroup();
deinitSurface();
}
void CAIRO_GAL::SetTarget( RENDER_TARGET aTarget )
{
// If the compositor is not set, that means that there is a recaching process going on
// and we do not need the compositor now
if( !m_validCompositor )
return;
// Cairo grouping prevents display of overlapping items on the same layer in the lighter color
if( m_isInitialized )
storePath();
switch( aTarget )
{
default:
case TARGET_CACHED:
case TARGET_NONCACHED: m_compositor->SetBuffer( m_mainBuffer ); break;
case TARGET_OVERLAY: m_compositor->SetBuffer( m_overlayBuffer ); break;
case TARGET_TEMP: m_compositor->SetBuffer( m_tempBuffer ); break;
}
m_currentTarget = aTarget;
}
RENDER_TARGET CAIRO_GAL::GetTarget() const
{
return m_currentTarget;
}
void CAIRO_GAL::ClearTarget( RENDER_TARGET aTarget )
{
// Save the current state
unsigned int currentBuffer = m_compositor->GetBuffer();
switch( aTarget )
{
// Cached and noncached items are rendered to the same buffer
default:
case TARGET_CACHED:
case TARGET_NONCACHED: m_compositor->SetBuffer( m_mainBuffer ); break;
case TARGET_OVERLAY: m_compositor->SetBuffer( m_overlayBuffer ); break;
case TARGET_TEMP: m_compositor->SetBuffer( m_tempBuffer ); break;
}
m_compositor->ClearBuffer( COLOR4D::BLACK );
// Restore the previous state
m_compositor->SetBuffer( currentBuffer );
}
void CAIRO_GAL::initSurface()
{
if( m_isInitialized )
return;
m_surface = cairo_image_surface_create_for_data( m_bitmapBuffer, GAL_FORMAT, m_wxBufferWidth,
m_screenSize.y, m_stride );
m_context = cairo_create( m_surface );
#ifdef DEBUG
cairo_status_t status = cairo_status( m_context );
wxASSERT_MSG( status == CAIRO_STATUS_SUCCESS, wxT( "Cairo context creation error" ) );
#endif /* DEBUG */
m_currentContext = m_context;
m_isInitialized = true;
}
void CAIRO_GAL::deinitSurface()
{
if( !m_isInitialized )
return;
cairo_destroy( m_context );
m_context = nullptr;
cairo_surface_destroy( m_surface );
m_surface = nullptr;
m_isInitialized = false;
}
void CAIRO_GAL::allocateBitmaps()
{
m_wxBufferWidth = m_screenSize.x;
while( ( ( m_wxBufferWidth * 3 ) % 4 ) != 0 )
m_wxBufferWidth++;
// Create buffer, use the system independent Cairo context backend
m_stride = cairo_format_stride_for_width( GAL_FORMAT, m_wxBufferWidth );
m_bufferSize = m_stride * m_screenSize.y;
wxASSERT( m_bitmapBuffer == nullptr );
m_bitmapBuffer = new unsigned char[m_bufferSize * 4];
wxASSERT( m_wxOutput == nullptr );
m_wxOutput = new unsigned char[m_wxBufferWidth * 3 * m_screenSize.y];
}
void CAIRO_GAL::deleteBitmaps()
{
delete[] m_bitmapBuffer;
m_bitmapBuffer = nullptr;
delete[] m_wxOutput;
m_wxOutput = nullptr;
}
void CAIRO_GAL::setCompositor()
{
// Recreate the compositor with the new Cairo context
m_compositor.reset( new CAIRO_COMPOSITOR( &m_currentContext ) );
m_compositor->Resize( m_screenSize.x, m_screenSize.y );
m_compositor->SetAntialiasingMode( m_options.cairo_antialiasing_mode );
// Prepare buffers
m_mainBuffer = m_compositor->CreateBuffer();
m_overlayBuffer = m_compositor->CreateBuffer();
m_tempBuffer = m_compositor->CreateBuffer();
m_validCompositor = true;
}
void CAIRO_GAL::onPaint( wxPaintEvent& aEvent )
{
PostPaint( aEvent );
}
void CAIRO_GAL::skipMouseEvent( wxMouseEvent& aEvent )
{
// Post the mouse event to the event listener registered in constructor, if any
if( m_mouseListener )
wxPostEvent( m_mouseListener, aEvent );
}
bool CAIRO_GAL::updatedGalDisplayOptions( const GAL_DISPLAY_OPTIONS& aOptions )
{
bool refresh = false;
if( m_validCompositor &&
aOptions.cairo_antialiasing_mode != m_compositor->GetAntialiasingMode() )
{
m_compositor->SetAntialiasingMode( m_options.cairo_antialiasing_mode );
m_validCompositor = false;
deinitSurface();
refresh = true;
}
if( super::updatedGalDisplayOptions( aOptions ) )
{
Refresh();
refresh = true;
}
return refresh;
}
bool CAIRO_GAL::SetNativeCursorStyle( KICURSOR aCursor )
{
// Store the current cursor type and get the wxCursor for it
if( !GAL::SetNativeCursorStyle( aCursor ) )
return false;
m_currentwxCursor = CURSOR_STORE::GetCursor( m_currentNativeCursor );
// Update the cursor in the wx control
wxWindow::SetCursor( m_currentwxCursor );
return true;
}
void CAIRO_GAL::onSetNativeCursor( wxSetCursorEvent& aEvent )
{
aEvent.SetCursor( m_currentwxCursor );
}
void CAIRO_GAL_BASE::DrawGrid()
{
SetTarget( TARGET_NONCACHED );
// Draw the grid
// For the drawing the start points, end points and increments have
// to be calculated in world coordinates
VECTOR2D worldStartPoint = m_screenWorldMatrix * VECTOR2D( 0.0, 0.0 );
VECTOR2D worldEndPoint = m_screenWorldMatrix * VECTOR2D( m_screenSize );
// Compute the line marker or point radius of the grid
// Note: generic grids can't handle sub-pixel lines without
// either losing fine/course distinction or having some dots
// fail to render
float marker = std::fmax( 1.0f, m_gridLineWidth ) / m_worldScale;
float doubleMarker = 2.0f * marker;
// Draw axes if desired
if( m_axesEnabled )
{
SetLineWidth( marker );
drawAxes( worldStartPoint, worldEndPoint );
}
if( !m_gridVisibility || m_gridSize.x == 0 || m_gridSize.y == 0 )
return;
VECTOR2D gridScreenSize( m_gridSize );
double gridThreshold = KiROUND( computeMinGridSpacing() / m_worldScale );
if( m_gridStyle == GRID_STYLE::SMALL_CROSS )
gridThreshold *= 2.0;
// If we cannot display the grid density, scale down by a tick size and
// try again. Eventually, we get some representation of the grid
while( std::min( gridScreenSize.x, gridScreenSize.y ) <= gridThreshold )
{
gridScreenSize = gridScreenSize * static_cast<double>( m_gridTick );
}
// Compute grid starting and ending indexes to draw grid points on the
// visible screen area
// Note: later any point coordinate will be offsetted by m_gridOrigin
int gridStartX = KiROUND( ( worldStartPoint.x - m_gridOrigin.x ) / gridScreenSize.x );
int gridEndX = KiROUND( ( worldEndPoint.x - m_gridOrigin.x ) / gridScreenSize.x );
int gridStartY = KiROUND( ( worldStartPoint.y - m_gridOrigin.y ) / gridScreenSize.y );
int gridEndY = KiROUND( ( worldEndPoint.y - m_gridOrigin.y ) / gridScreenSize.y );
// Ensure start coordinate > end coordinate
SWAP( gridStartX, >, gridEndX );
SWAP( gridStartY, >, gridEndY );
// Ensure the grid fills the screen
--gridStartX;
++gridEndX;
--gridStartY;
++gridEndY;
// Draw the grid behind all other layers
SetLayerDepth( m_depthRange.y * 0.75 );
if( m_gridStyle == GRID_STYLE::LINES )
{
// Now draw the grid, every coarse grid line gets the double width
// Vertical lines
for( int j = gridStartY; j <= gridEndY; j++ )
{
const double y = j * gridScreenSize.y + m_gridOrigin.y;
if( m_axesEnabled && y == 0.0 )
continue;
SetLineWidth( ( j % m_gridTick ) ? marker : doubleMarker );
drawGridLine( VECTOR2D( gridStartX * gridScreenSize.x + m_gridOrigin.x, y ),
VECTOR2D( gridEndX * gridScreenSize.x + m_gridOrigin.x, y ) );
}
// Horizontal lines
for( int i = gridStartX; i <= gridEndX; i++ )
{
const double x = i * gridScreenSize.x + m_gridOrigin.x;
if( m_axesEnabled && x == 0.0 )
continue;
SetLineWidth( ( i % m_gridTick ) ? marker : doubleMarker );
drawGridLine( VECTOR2D( x, gridStartY * gridScreenSize.y + m_gridOrigin.y ),
VECTOR2D( x, gridEndY * gridScreenSize.y + m_gridOrigin.y ) );
}
}
else // Dots or Crosses grid
{
m_lineWidthIsOdd = true;
m_isStrokeEnabled = true;
for( int j = gridStartY; j <= gridEndY; j++ )
{
bool tickY = ( j % m_gridTick == 0 );
for( int i = gridStartX; i <= gridEndX; i++ )
{
bool tickX = ( i % m_gridTick == 0 );
VECTOR2D pos{ i * gridScreenSize.x + m_gridOrigin.x,
j * gridScreenSize.y + m_gridOrigin.y };
if( m_gridStyle == GRID_STYLE::SMALL_CROSS )
{
SetLineWidth( ( tickX && tickY ) ? doubleMarker : marker );
drawGridCross( pos );
}
else if( m_gridStyle == GRID_STYLE::DOTS )
{
double doubleGridLineWidth = m_gridLineWidth * 2.0f;
drawGridPoint( pos, ( tickX ) ? doubleGridLineWidth : m_gridLineWidth,
( tickY ) ? doubleGridLineWidth : m_gridLineWidth );
}
}
}
}
}
void CAIRO_GAL_BASE::DrawGlyph( const KIFONT::GLYPH& aGlyph, int aNth, int aTotal )
{
if( aGlyph.IsStroke() )
{
const KIFONT::STROKE_GLYPH& glyph = static_cast<const KIFONT::STROKE_GLYPH&>( aGlyph );
for( const std::vector<VECTOR2D>& pointList : glyph )
drawPoly( pointList );
}
else if( aGlyph.IsOutline() )
{
const KIFONT::OUTLINE_GLYPH& glyph = static_cast<const KIFONT::OUTLINE_GLYPH&>( aGlyph );
if( aNth == 0 )
{
cairo_close_path( m_currentContext );
flushPath();
cairo_new_path( m_currentContext );
SetIsFill( true );
SetIsStroke( false );
}
// eventually glyphs should not be drawn as polygons at all,
// but as bitmaps with antialiasing, this is just a stopgap measure
// of getting some form of outline font display
glyph.Triangulate(
[&]( const VECTOR2D& aVertex1, const VECTOR2D& aVertex2, const VECTOR2D& aVertex3 )
{
syncLineWidth();
const VECTOR2D p0 = roundp( xform( aVertex1 ) );
const VECTOR2D p1 = roundp( xform( aVertex2 ) );
const VECTOR2D p2 = roundp( xform( aVertex3 ) );
cairo_move_to( m_currentContext, p0.x, p0.y );
cairo_line_to( m_currentContext, p1.x, p1.y );
cairo_line_to( m_currentContext, p2.x, p2.y );
cairo_close_path( m_currentContext );
cairo_set_fill_rule( m_currentContext, CAIRO_FILL_RULE_EVEN_ODD );
flushPath();
cairo_fill( m_currentContext );
} );
if( aNth == aTotal - 1 )
{
/*
cairo_close_path( currentContext );
setSourceRgba( currentContext, fillColor );
cairo_set_fill_rule( currentContext, CAIRO_FILL_RULE_EVEN_ODD );
cairo_fill_preserve( currentContext );
setSourceRgba( currentContext, strokeColor );
cairo_stroke( currentContext );
*/
flushPath();
m_isElementAdded = true;
}
}
}