kicad/common/geometry/geometry_utils.cpp

160 lines
5.1 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file geometry_utils.cpp
* @brief a few functions useful in geometry calculations.
*/
#include <eda_rect.h>
#include <geometry/geometry_utils.h>
// To approximate a circle by segments, a minimal seg count is mandatory
#define MIN_SEGCOUNT_FOR_CIRCLE 6
int GetArcToSegmentCount( int aRadius, int aErrorMax, double aArcAngleDegree )
{
// calculate the number of segments to approximate a circle by segments
// given the max distance between the middle of a segment and the circle
// error relative to the radius value:
double rel_error = (double)aErrorMax / aRadius;
// minimal arc increment in degrees:
double arc_increment = 180 / M_PI * acos( 1.0 - rel_error ) * 2;
// Ensure a minimal arc increment reasonable value for a circle
// (360.0 degrees). For very small radius values, this is mandatory.
arc_increment = std::min( 360.0/MIN_SEGCOUNT_FOR_CIRCLE, arc_increment );
int segCount = round_nearest( fabs( aArcAngleDegree ) / arc_increment );
// Ensure at least one segment is used (can happen for small arcs)
return std::max( segCount, 1 );
}
double GetCircletoPolyCorrectionFactor( int aSegCountforCircle )
{
/* calculates the coeff to compensate radius reduction of circle
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / aSegCountforCircle / 2)
* this is the distance between the center and the middle of the segment.
* therefore, to move the middle of the segment to the circle (distance = radius)
* the correctionFactor is 1 /cos( PI/aSegCountforCircle )
*/
if( aSegCountforCircle < MIN_SEGCOUNT_FOR_CIRCLE )
aSegCountforCircle = MIN_SEGCOUNT_FOR_CIRCLE;
return 1.0 / cos( M_PI / aSegCountforCircle );
}
/***
* Utility for the line clipping code, returns the boundary code of
* a point. Bit allocation is arbitrary
*/
inline int clipOutCode( const EDA_RECT *aClipBox, int x, int y )
{
int code;
if( y < aClipBox->GetY() )
code = 2;
else if( y > aClipBox->GetBottom() )
code = 1;
else
code = 0;
if( x < aClipBox->GetX() )
code |= 4;
else if( x > aClipBox->GetRight() )
code |= 8;
return code;
}
bool ClipLine( const EDA_RECT *aClipBox, int &x1, int &y1, int &x2, int &y2 )
{
// Stock Cohen-Sutherland algorithm; check *any* CG book for details
int outcode1 = clipOutCode( aClipBox, x1, y1 );
int outcode2 = clipOutCode( aClipBox, x2, y2 );
while( outcode1 || outcode2 )
{
// Fast reject
if( outcode1 & outcode2 )
return true;
// Choose a side to clip
int thisoutcode, x, y;
if( outcode1 )
thisoutcode = outcode1;
else
thisoutcode = outcode2;
/* One clip round
* Since we use the full range of 32 bit ints, the proportion
* computation has to be done in 64 bits to avoid horrible
* results */
if( thisoutcode & 1 ) // Clip the bottom
{
y = aClipBox->GetBottom();
x = x1 + (x2 - x1) * int64_t(y - y1) / (y2 - y1);
}
else if( thisoutcode & 2 ) // Clip the top
{
y = aClipBox->GetY();
x = x1 + (x2 - x1) * int64_t(y - y1) / (y2 - y1);
}
else if( thisoutcode & 8 ) // Clip the right
{
x = aClipBox->GetRight();
y = y1 + (y2 - y1) * int64_t(x - x1) / (x2 - x1);
}
else // if( thisoutcode & 4), obviously, clip the left
{
x = aClipBox->GetX();
y = y1 + (y2 - y1) * int64_t(x - x1) / (x2 - x1);
}
// Put the result back and update the boundary code
// No ambiguity, otherwise it would have been a fast reject
if( thisoutcode == outcode1 )
{
x1 = x;
y1 = y;
outcode1 = clipOutCode( aClipBox, x1, y1 );
}
else
{
x2 = x;
y2 = y;
outcode2 = clipOutCode( aClipBox, x2, y2 );
}
}
return false;
}