kicad/pcbnew/ratsnest.cpp

1167 lines
39 KiB
C++

/***********************/
/**** ratsnest.cpp ****/
/* Ratsnets functions */
/***********************/
#include "fctsys.h"
#include "gr_basic.h"
#include "common.h"
#include "class_drawpanel.h"
#include "confirm.h"
#include "pcbnew.h"
#include "autorout.h"
#include "class_board_design_settings.h"
#include "colors_selection.h"
#include "protos.h"
static std::vector <D_PAD*> s_localPadBuffer; // for local ratsnest
// calculations when moving a
// footprint: buffer of pads to
// consider
static bool DisplayRastnestInProgress; // Enable the display of the
// ratsnest during the ratsnest
// computations
/* Note about the ratsnest computation:
* Building the general ratsnest:
* I used the "lee algorithm".
* This is a 2 steps algorithm.
* the m_SubRatsnest member of pads handle a "block number" or a "cluster
* number" or a "subnet number"
* initially, m_SubRatsnest = 0 (pad not connected).
* Build_Board_Ratsnest( wxDC* DC ) Create this ratsnest
* for each net:
* First:
* we create a link (and therefore a logical block) between 2 pad. This is
* achieved by:
* search for a pad without link.
* search its nearest pad
* link these 2 pads (i.e. create a ratsnest item)
* the pads are grouped in a logical block ( a cluster).
* until no pad without link found.
* Each logical block has a number called block number or "subnet number",
* stored in m_SubRatsnest member for each pad of the block.
* The first block has its block number = 1, the second is 2 ...
* the function to do that is gen_rats_pad_to_pad()
*
* Secondly:
* The first pass created many logical blocks
* A block contains 2 or more pads.
* we create links between 2 block. This is achieved by:
* Test all pads in the first block, and search (for each pad)
* a neighbor in other blocks and compute the distance between pads,
* We select the pad pair which have the smallest distance.
* These 2 pads are linked (i.e. a new ratsnest item is created between the 2
* pads)
* and the 2 block are merged.
* Therefore the logical block 1 contains the initial block 1 "eats" the pads
* of the other block
* The computation is made until only one block is found.
* the function used is gen_rats_block_to_block()
*
*
* How existing and new tracks are handled:
* The complete ratsnest (using the pad analysis) is computed.
* it is independent of the tracks and handle the "logical connections".
* It depends only on the footprints geometry (and the netlist),
* and must be computed only after a netlist read or a footprints geometry
* change.
* Each link (ratsnest) can only be INACTIVE (because pads are connected by a
* track) or ACTIVE (no tracks)
*
* After the complete ratsnest is built, or when a track is added or deleted,
* we run an algorithm derived from the complete ratsnest computation.
* it is much faster because it analysis only the existing ratsnest and not all
* the pads list
* and determine only if an existing ratsnest must be activated
* (no physical track exists) or not (a physical track exists)
* if a track is added or deleted only the corresponding net is tested.
*
* the m_SubRatsnest member of pads is set to 0 (no blocks), and all links are
* set to INACTIVE (ratsnest not show).
* Before running this fast lee algorithm, we create blocks (and their
* corresponding block number)
* by grouping pads connected by tracks.
* So, when tracks exists, the fast lee algorithm is started with some blocks
* already created.
* because the fast lee algorithm test only the ratsnest and does not search
* for nearest pads (this search was previously made) the online ratsnest
* can be done when a track is created without noticeable computing time
* First:
* for all links (in this step, all are inactive):
* search for a link which have 1 (or 2) pad having the m_SubRatsnest member =
* 0.
* if found the link is set to ACTIVE (i.e. the ratsnest will be showed) and
* the pad is merged with the block
* or a new block is created ( see tst_rats_pad_to_pad() ).
* Secondly:
* blocks are tested:
* for all links we search if the 2 pads linked are in 2 different block.
* if yes, the link status is set to ACTIVE, and the 2 block are merged
* until only one block is found
* ( see tst_rats_block_to_block() )
*/
/**
* Function Compile_Ratsnest
* Create the entire board ratsnest.
* Must be called after a board change (changes for
* pads, footprints or a read netlist ).
*
* @param display_status_pcb : if true, display the computation results
*/
void WinEDA_BasePcbFrame::Compile_Ratsnest( wxDC* DC, bool display_status_pcb )
{
wxString msg;
DisplayRastnestInProgress = TRUE;
GetBoard()->m_Status_Pcb = 0; /* we want a full ratsnest computation,
* from the scratch */
MsgPanel->EraseMsgBox();
// Rebuild the full pads and net info list
RecalculateAllTracksNetcode();
if( display_status_pcb )
{
msg.Printf( wxT( " %d" ), m_Pcb->GetPadsCount() );
Affiche_1_Parametre( this, 1, wxT( "pads" ), msg, RED );
}
if( display_status_pcb )
{
msg.Printf( wxT( " %d" ), m_Pcb->m_NetInfo->GetCount() );
Affiche_1_Parametre( this, 8, wxT( "Nets" ), msg, CYAN );
}
/* Compute the full ratsnest
* which can be see like all the possible links or logical connections.
* some of them are active (no track connected) and others are inactive
* (when track connect pads)
* This full ratsnest is not modified by track editing.
* It changes only when a netlist is read, or footprints are modified
*/
Build_Board_Ratsnest( DC );
/* Compute the pad connections due to the existing tracks (physical
* connections) */
test_connexions( DC );
/* Compute the active ratsnest, i.e. the unconnected links
* it is faster than Build_Board_Ratsnest()
* because many optimizations and computations are already made
*/
Tst_Ratsnest( DC, 0 );
// Redraw the active ratsnest ( if enabled )
if( GetBoard()->IsElementVisible(RATSNEST_VISIBLE) && DC )
DrawGeneralRatsnest( DC, 0 );
if( display_status_pcb )
m_Pcb->DisplayInfo( this );
}
/* Sort function used by QSORT
* Sort pads by net code
*/
static int sortByNetcode( const void* o1, const void* o2 )
{
D_PAD** pt_ref = (D_PAD**) o1;
D_PAD** pt_compare = (D_PAD**) o2;
return (*pt_ref)->GetNet() - (*pt_compare)->GetNet();
}
/* Sort function used by QSORT
* Sort ratsnest by length
*/
static int sort_by_length( const void* o1, const void* o2 )
{
RATSNEST_ITEM* ref = (RATSNEST_ITEM*) o1;
RATSNEST_ITEM* compare = (RATSNEST_ITEM*) o2;
return ref->m_Lenght - compare->m_Lenght;
}
/**
* Function used by Build_Board_Ratsnest
* This function creates a ratsnest between two blocks ( which fit the same
* net )
* A block is a group of pads already linked (by a previous ratsnest
* computation, or tracks)
* The search is made between the pads in block 1 (the reference block) and
* other blocks
* the block n ( n > 1 ) it connected to block 1 by their 2 nearest pads.
* When the block is found, it is merged with the block 1
* the D_PAD member m_SubRatsnest handles the block number
* @param aRatsnestBuffer = a std::vector<RATSNEST_ITEM> buffer to fill with
* new ratsnest items
* @param aPadBuffer = a std::vector<D_PAD*> that is the list of pads to
* consider
* @param aPadIdxStart = starting index (within the pad list) for search
* @param aPadIdxMax = ending index (within the pad list) for search
* @return blocks not connected count
*/
static int gen_rats_block_to_block(
std::vector<RATSNEST_ITEM>& aRatsnestBuffer,
std::vector<D_PAD*>& aPadBuffer,
unsigned aPadIdxStart,
unsigned aPadIdxMax )
{
int dist_min, current_dist;
int current_num_block = 1;
int padBlock1Idx = -1; // Index in aPadBuffer for the "better" pad
// found in block 1
int padBlockToMergeIdx = -1; // Index in aPadBuffer for the "better" pad
// found in block to merge
dist_min = 0x7FFFFFFF;
/* Search the nearest pad from block 1 */
for( unsigned ii = aPadIdxStart; ii < aPadIdxMax; ii++ )
{
D_PAD* ref_pad = aPadBuffer[ii];
/* search a pad which is in the block 1 */
if( ref_pad->GetSubRatsnest() != 1 )
continue;
/* pad is found, search its nearest neighbor in other blocks */
for( unsigned jj = aPadIdxStart; jj < aPadIdxMax; jj++ )
{
D_PAD* curr_pad = aPadBuffer[jj];
if( curr_pad->GetSubRatsnest() == 1 ) // not in an other block
continue;
/* Compare distance between pads ("Manhattan" distance) */
current_dist = abs( curr_pad->m_Pos.x - ref_pad->m_Pos.x ) +
abs( curr_pad->m_Pos.y - ref_pad->m_Pos.y );
if( dist_min > current_dist ) // we have found a better pad pair
{
// The tested block can be a good candidate for merging
// we memorize the "best" current values for merging
current_num_block = curr_pad->GetSubRatsnest();
dist_min = current_dist;
padBlockToMergeIdx = jj;
padBlock1Idx = ii;
}
}
}
/* The reference block is labeled block 1.
* if current_num_block != 1 we have found an other block, and we must
* merge it with the reference block
* The link is made by the 2 nearest pads
*/
if( current_num_block > 1 )
{
/* The block n (n=current_num_block) is merged with the bloc 1 :
* to do that, we set the m_SubRatsnest member to 1 for all pads in
* block n
*/
for( unsigned ii = aPadIdxStart; ii < aPadIdxMax; ii++ )
{
D_PAD* pad = aPadBuffer[ii];
if( pad->GetSubRatsnest() == current_num_block )
pad->SetSubRatsnest( 1 );
}
if( padBlock1Idx < 0 )
DisplayError( NULL,
wxT( "gen_rats_block_to_block() internal error" ) );
else
{
/* Create the new ratsnest */
RATSNEST_ITEM net;
net.SetNet( aPadBuffer[padBlock1Idx]->GetNet() );
net.m_Status = CH_ACTIF | CH_VISIBLE;
net.m_Lenght = dist_min;
net.m_PadStart = aPadBuffer[padBlock1Idx];
net.m_PadEnd = aPadBuffer[padBlockToMergeIdx];
aRatsnestBuffer.push_back( net );
}
}
return current_num_block;
}
/**
* Function used by Build_Board_Ratsnest
* this is the first pass of the lee algorithm
* This function creates the link (ratsnest) between 2 pads ( fitting the same
* net )
* the function search for a first not connected pad and search its nearest
* neighbor
* Its creates a block if the 2 pads are not connected, or merge the
* unconnected pad to the existing block.
* These blocks include 2 pads and the 2 pads are linked by a ratsnest.
*
* @param aRatsnestBuffer = a std::vector<RATSNEST_ITEM> buffer to fill with
* new ratsnest items
* @param aPadBuffer = a std::vector<D_PAD*> that is the list of pads to
* consider
* @param aPadIdxStart = starting index (within the pad list) for search
* @param aPadIdxMax = ending index (within the pad list) for search
* @param current_num_block = Last existing block number of pads
* These block are created by the existing tracks analysis
*
* @return the last block number used
*/
static int gen_rats_pad_to_pad( vector<RATSNEST_ITEM>& aRatsnestBuffer,
std::vector<D_PAD*>& aPadBuffer,
unsigned aPadIdxStart,
unsigned aPadIdxMax,
int current_num_block )
{
int dist_min, current_dist;
D_PAD* ref_pad, * pad;
for( unsigned ii = aPadIdxStart; ii < aPadIdxMax; ii++ )
{
ref_pad = aPadBuffer[ii];
if( ref_pad->GetSubRatsnest() )
continue; // Pad already connected
dist_min = 0x7FFFFFFF;
int padBlockToMergeIdx = -1; // Index in aPadBuffer for the "better"
// pad found in block to merge
for( unsigned jj = aPadIdxStart; jj < aPadIdxMax; jj++ )
{
if( ii == jj )
continue;
pad = aPadBuffer[jj];
/* Compare distance between pads ("Manhattan" distance) */
current_dist = abs( pad->m_Pos.x - ref_pad->m_Pos.x ) +
abs( pad->m_Pos.y - ref_pad->m_Pos.y );
if( dist_min > current_dist )
{
dist_min = current_dist;
padBlockToMergeIdx = jj;
}
}
if( padBlockToMergeIdx >= 0 )
{
pad = aPadBuffer[padBlockToMergeIdx];
/* Update the block number
* if the 2 pads are not already created : a new block is created
*/
if( (pad->GetSubRatsnest() == 0)
&& (ref_pad->GetSubRatsnest() == 0) )
{
current_num_block++; // Creates a new block number (or
// subratsnest)
pad->SetSubRatsnest( current_num_block );
ref_pad->SetSubRatsnest( current_num_block );
}
/* If a pad is already connected connected : merge the other pad in
* the block */
else
{
ref_pad->SetSubRatsnest( pad->GetSubRatsnest() );
}
/* Create the new ratsnest item */
RATSNEST_ITEM rast;
rast.SetNet( ref_pad->GetNet() );
rast.m_Status = CH_ACTIF | CH_VISIBLE;
rast.m_Lenght = dist_min;
rast.m_PadStart = ref_pad;
rast.m_PadEnd = pad;
aRatsnestBuffer.push_back( rast );
}
}
return current_num_block;
}
/**
* Function to compute the full ratsnest (using the LEE algorithm )
* In the functions tracks are not considered
* This is only the "basic" ratsnest depending only on pads.
*
* - Create the sorted pad list (if necessary)
* The active pads (i.e included in a net ) are called nodes
* This pad list is sorted by net codes
*
* - Compute the ratsnest (LEE algorithm ):
* a - Create the ratsnest between a not connected pad and its nearest
* neighbor. Blocks of pads are created
* b - Create the ratsnest between blocks:
* Test the pads of the 1st block and create a link (ratsnest)
* with the nearest pad found in an other block.
* The other block is merged with the first block.
* until only one block is left.
*
* A ratsnest can be seen as a logical connection.
*
* Update :
* nb_nodes = Active pads count for the board
* nb_links = link count for the board (logical connection count)
* (there are n-1 links for an equipotent which have n active pads) .
*
*/
void WinEDA_BasePcbFrame::Build_Board_Ratsnest( wxDC* DC )
{
D_PAD* pad;
int noconn;
m_Pcb->m_NbNoconnect = 0;
m_Pcb->m_FullRatsnest.clear();
if( m_Pcb->GetPadsCount() == 0 )
return;
/* Created pad list and the net_codes if needed */
if( (m_Pcb->m_Status_Pcb & NET_CODES_OK) == 0 )
m_Pcb->m_NetInfo->BuildListOfNets();
for( unsigned ii = 0; ii<m_Pcb->GetPadsCount(); ++ii )
{
pad = m_Pcb->m_NetInfo->GetPad( ii );
pad->SetSubRatsnest( 0 );
}
if( m_Pcb->GetNodesCount() == 0 )
return; /* No useful connections. */
/* Ratsnest computation */
DisplayRastnestInProgress = TRUE;
unsigned current_net_code = 1; // First net code is analyzed.
// (net_code = 0 -> no connect)
noconn = 0;
for( ; current_net_code < m_Pcb->m_NetInfo->GetCount(); current_net_code++ )
{
NETINFO_ITEM* net = m_Pcb->FindNet( current_net_code );
if( net == NULL ) //Should not occur
{
DisplayError( this,
wxT( "Build_Board_Ratsnest() error: net not found" ) );
return;
}
net->m_RatsnestStartIdx = m_Pcb->GetRatsnestsCount();
// Search for the last subratsnest already in use
int num_block = 0;
for( unsigned ii = 0; ii < net->m_ListPad.size(); ii++ )
{
pad = net->m_ListPad[ii];
if( num_block < pad->GetSubRatsnest() )
num_block = pad->GetSubRatsnest();
}
/* Compute the ratsnest relative to the current net */
/* a - first pass : create the blocks from not already in block pads */
int icnt = gen_rats_pad_to_pad( m_Pcb->m_FullRatsnest,
net->m_ListPad,
0,
net->m_ListPad.size(),
num_block );
/* b - blocks connection (Iteration) */
while( icnt > 1 )
{
icnt = gen_rats_block_to_block( m_Pcb->m_FullRatsnest,
net->m_ListPad,
0,
net->m_ListPad.size() );
net = m_Pcb->FindNet( current_net_code );
}
net->m_RatsnestEndIdx = m_Pcb->GetRatsnestsCount();
/* sort by length */
net = m_Pcb->FindNet( current_net_code );
if( ( net->m_RatsnestEndIdx - net->m_RatsnestStartIdx ) > 1 )
{
RATSNEST_ITEM* rats = &m_Pcb->m_FullRatsnest[0];
qsort( rats + net->m_RatsnestStartIdx,
net->m_RatsnestEndIdx - net->m_RatsnestStartIdx,
sizeof(RATSNEST_ITEM), sort_by_length );
}
}
m_Pcb->m_NbNoconnect = noconn;
m_Pcb->m_Status_Pcb |= LISTE_RATSNEST_ITEM_OK;
// erase the ratsnest displayed on screen if needed
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
{
if( !GetBoard()->IsElementVisible(RATSNEST_VISIBLE) ) // Clear VISIBLE flag
m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_VISIBLE;
if( DC )
m_Pcb->m_FullRatsnest[ii].Draw( DrawPanel, DC, GR_XOR,
wxPoint( 0, 0 ) );
}
}
/**
* Displays the general ratsnest
* Only ratsnest with the status bit CH_VISIBLE is set are displayed
* @param netcode if > 0, Display only the ratsnest relative to the
* corresponding net_code
*/
void WinEDA_BasePcbFrame::DrawGeneralRatsnest( wxDC* DC, int net_code )
{
if( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 )
return;
if( ( m_Pcb->m_Status_Pcb & DO_NOT_SHOW_GENERAL_RASTNEST ) )
return;
if( DC == NULL )
return;
int state = CH_VISIBLE | CH_ACTIF;
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
{
RATSNEST_ITEM& item = m_Pcb->m_FullRatsnest[ii];
if( ( item.m_Status & state ) != state )
continue;
if( ( net_code <= 0 ) || ( net_code == item.GetNet() ) )
{
item.Draw( DrawPanel, DC, GR_XOR, wxPoint( 0, 0 ) );
}
}
}
/**
* Function used by Tst_Ratsnest
* Function like gen_rats_block_to_block(..)
* Function testing the ratsnest between 2 blocks ( same net )
* The search is made between pads in block 1 and the others blocks
* The block n ( n > 1 ) is merged with block 1 by the smallest ratsnest
* Difference between gen_rats_block_to_block(..):
* The analysis is not made pads to pads but uses the general ratsnest list.
* The function activate the smallest ratsnest between block 1 and the block n
* (activate a logical connexion)
*
* @param net = the current NETINFO_ITEM for the current net
* output:
* .state member of the ratsnest
* @return blocks not connected count
*/
static int tst_rats_block_to_block( NETINFO_ITEM* net,
vector<RATSNEST_ITEM>& aRatsnestBuffer )
{
int current_num_block, min_block;
RATSNEST_ITEM* rats, * min_rats;
/* Search a link from a block to an other block */
min_rats = NULL;
for( unsigned ii = net->m_RatsnestStartIdx;
ii < net->m_RatsnestEndIdx;
ii++ )
{
rats = &aRatsnestBuffer[ii];
if( rats->m_PadStart->GetSubRatsnest() ==
rats->m_PadEnd->GetSubRatsnest() ) // Same block
continue;
if( min_rats == NULL )
min_rats = rats;
else if( min_rats->m_Lenght > rats->m_Lenght )
min_rats = rats;
}
if( min_rats == NULL )
return 1;
/* At this point we have found a link between 2 different blocks (clusters)
* we must set its status to ACTIVE and merge the 2 blocks
*/
min_rats->m_Status |= CH_ACTIF;
current_num_block = min_rats->m_PadStart->GetSubRatsnest();
min_block = min_rats->m_PadEnd->GetSubRatsnest();
if( min_block > current_num_block )
EXCHG( min_block, current_num_block );
/* Merging the 2 blocks in one cluster */
for( unsigned ii = 0; ii < net->m_ListPad.size(); ii++ )
{
if( net->m_ListPad[ii]->GetSubRatsnest() == current_num_block )
{
net->m_ListPad[ii]->SetSubRatsnest( min_block );
}
}
return current_num_block;
}
/**
* Function used by Tst_Ratsnest_general
* The general ratsnest list must exists
* Activates the ratsnest between 2 pads ( supposes du meme net )
* The function links 1 pad not already connected an other pad and activate
* some blocks linked by a ratsnest
* Its test only the existing ratsnest and activate some ratsnest (status bit
* CH_ACTIF set)
*
* @param start_rat_list = starting address for the ratsnest list
* @param end_rat_list = ending address for the ratsnest list
* @param current_num_block = last block number (computed from the track
* analysis)
*
* output:
* ratsnest list (status member set)
* and pad list (m_SubRatsnest set)
*
* @return new block number
*/
static int tst_rats_pad_to_pad( int current_num_block,
RATSNEST_ITEM* start_rat_list,
RATSNEST_ITEM* end_rat_list )
{
D_PAD* pad_start, * pad_end;
RATSNEST_ITEM* chevelu;
for( chevelu = start_rat_list; chevelu < end_rat_list; chevelu++ )
{
pad_start = chevelu->m_PadStart;
pad_end = chevelu->m_PadEnd;
/* Update the block if the 2 pads are not connected : a new block is
* created
*/
if( (pad_start->GetSubRatsnest() == 0)
&& (pad_end->GetSubRatsnest() == 0) )
{
current_num_block++;
pad_start->SetSubRatsnest( current_num_block );
pad_end->SetSubRatsnest( current_num_block );
chevelu->m_Status |= CH_ACTIF;
}
/* If a pad is already connected : the other is merged in the current
* block */
else if( pad_start->GetSubRatsnest() == 0 )
{
pad_start->SetSubRatsnest( pad_end->GetSubRatsnest() );
chevelu->m_Status |= CH_ACTIF;
}
else if( pad_end->GetSubRatsnest() == 0 )
{
pad_end->SetSubRatsnest( pad_start->GetSubRatsnest() );
chevelu->m_Status |= CH_ACTIF;
}
}
return current_num_block;
}
/* Compute the active ratsnest
* The general ratsnest list must exists
* Compute the ACTIVE ratsnest in the general ratsnest list
* if ref_netcode == 0, test all nets, else test only ref_netcode
*/
void WinEDA_BasePcbFrame::Tst_Ratsnest( wxDC* DC, int ref_netcode )
{
RATSNEST_ITEM* rats;
D_PAD* pad;
NETINFO_ITEM* net;
if( m_Pcb->GetPadsCount() == 0 )
return;
if( (m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK) == 0 )
Build_Board_Ratsnest( DC );
for( int net_code = 1;
net_code < (int) m_Pcb->m_NetInfo->GetCount();
net_code++ )
{
net = m_Pcb->FindNet( net_code );
if( net == NULL ) //Should not occur
{
DisplayError( this, wxT( "Tst_Ratsnest() error: net not found" ) );
return;
}
if( ref_netcode && (net_code != ref_netcode) )
continue;
int num_block = 0;
for( unsigned ip = 0; ip < net->m_ListPad.size(); ip++ )
{
pad = net->m_ListPad[ip];
int subnet = pad->GetSubNet();
pad->SetSubRatsnest( subnet );
num_block = MAX( num_block, subnet );
}
for( unsigned ii = net->m_RatsnestStartIdx;
ii < net->m_RatsnestEndIdx;
ii++ )
{
m_Pcb->m_FullRatsnest[ii].m_Status &= ~CH_ACTIF;
}
/* a - test connection between pads */
rats = &m_Pcb->m_FullRatsnest[0];
int icnt = tst_rats_pad_to_pad( num_block,
rats + net->m_RatsnestStartIdx,
rats + net->m_RatsnestEndIdx );
/* b - test connection between blocks (Iteration) */
while( icnt > 1 )
{
icnt = tst_rats_block_to_block( net, m_Pcb->m_FullRatsnest );
}
}
m_Pcb->m_NbNoconnect = 0;
for( unsigned ii = 0; ii < m_Pcb->GetRatsnestsCount(); ii++ )
{
if( m_Pcb->m_FullRatsnest[ii].m_Status & CH_ACTIF )
m_Pcb->m_NbNoconnect++;
}
}
/**
* Function Test_1_Net_Ratsnest
* Compute the ratsnest relative to the net "net_code"
* @param ref_netcode = netcode used to compute the ratsnest.
*/
int WinEDA_BasePcbFrame::Test_1_Net_Ratsnest( wxDC* DC, int ref_netcode )
{
DisplayRastnestInProgress = FALSE;
DrawGeneralRatsnest( DC, ref_netcode );
Tst_Ratsnest( DC, ref_netcode );
DrawGeneralRatsnest( DC, ref_netcode );
return m_Pcb->GetRatsnestsCount();
}
/**
* Build a ratsnest relative to one footprint. This is a simplified
* computation
* used only in move footprint. It is not optimal, but it is fast and
* sufficient
* to guide a footprint placement
* It shows the connections from a pad to the nearest connected pad
* @param Module = module to consider.
*
* The ratsnest has 2 sections:
* - An "internal" ratsnest relative to pads of this footprint which are
* in the same net.
* this ratsnest section is computed once.
* - An "external" ratsnest connecting a pad of this footprint to an other
* pad (in an other footprint)
* The ratsnest section must be computed for each new position
*/
void WinEDA_BasePcbFrame::build_ratsnest_module( wxDC* DC, MODULE* Module )
{
static unsigned pads_module_count; // node count (node = pad with a net
// code) for the footprint being moved
static unsigned internalRatsCount; // number of internal links (links
// between pads of the module)
D_PAD** baseListePad;
D_PAD* pad_ref;
D_PAD* pad_externe;
int current_net_code;
int distance;
wxPoint pad_pos; // True pad position according to the
// current footprint position
if( (GetBoard()->m_Status_Pcb & LISTE_PAD_OK) == 0 )
{
GetBoard()->m_Status_Pcb = 0;
GetBoard()->m_NetInfo->BuildListOfNets();
}
/* Compute the "local" ratsnest if needed (when this footprint starts move)
* and the list of external pads to consider, i.e pads in others
* footprints which are "connected" to
* a pad in the current footprint
*/
if( (m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK) != 0 )
goto CalculateExternalRatsnest;
/* Compute the "internal" ratsnest, i.e the links between the current
*footprint pads */
s_localPadBuffer.clear();
m_Pcb->m_LocalRatsnest.clear();
for( pad_ref = Module->m_Pads; pad_ref != NULL; pad_ref = pad_ref->Next() )
{
if( pad_ref->GetNet() == 0 )
continue;
s_localPadBuffer.push_back( pad_ref );
pad_ref->SetSubRatsnest( 0 );
pad_ref->SetSubNet( 0 );
}
pads_module_count = s_localPadBuffer.size();
if( pads_module_count == 0 )
return; /* no connection! */
qsort( &s_localPadBuffer[0],
pads_module_count,
sizeof(D_PAD*),
sortByNetcode );
/* Build the list of pads linked to the current footprint pads */
DisplayRastnestInProgress = FALSE;
current_net_code = 0;
for( unsigned ii = 0; ii < pads_module_count; ii++ )
{
pad_ref = s_localPadBuffer[ii];
if( pad_ref->GetNet() == current_net_code )
continue;
// A new net was found, load all pads of others modules members of this
// net:
NETINFO_ITEM* net = m_Pcb->FindNet( pad_ref->GetNet() );
if( net == NULL ) //Should not occur
{
DisplayError( this,
wxT( "build_ratsnest_module() error: net not found" ) );
return;
}
for( unsigned jj = 0; jj < net->m_ListPad.size(); jj++ )
{
pad_externe = net->m_ListPad[jj];
if( pad_externe->GetParent() == Module )
continue;
pad_externe->SetSubRatsnest( 0 );
pad_externe->SetSubNet( 0 );
s_localPadBuffer.push_back( pad_externe );
}
}
/* Sort the pad list by net_code */
baseListePad = &s_localPadBuffer[0];
qsort( baseListePad + pads_module_count,
s_localPadBuffer.size() - pads_module_count,
sizeof(D_PAD*), sortByNetcode );
/* Compute the internal rats nest:
* this is the same as general ratsnest, but considers only the current
* footprint pads it is therefore not time consuming, and it is made only
* once
*/
current_net_code = s_localPadBuffer[0]->GetNet();
for( unsigned ii = 0; ii < pads_module_count; ii++ )
{
/* Search the end of pad list relative to the current net */
unsigned jj = ii + 1;
for( ; jj <= pads_module_count; jj++ )
{
if( jj >= pads_module_count )
break;
if( s_localPadBuffer[jj]->GetNet() != current_net_code )
break;
}
/* End of list found: */
/* a - first step of lee algorithm : build the pad to pad link list */
int icnt = gen_rats_pad_to_pad( m_Pcb->m_LocalRatsnest,
s_localPadBuffer,
ii,
jj,
0 );
/* b - second step of lee algorithm : build the block to block link
*list (Iteration) */
while( icnt > 1 )
{
icnt = gen_rats_block_to_block( m_Pcb->m_LocalRatsnest,
s_localPadBuffer,
ii,
jj );
}
ii = jj;
if( ii < s_localPadBuffer.size() )
current_net_code = s_localPadBuffer[ii]->GetNet();
}
internalRatsCount = m_Pcb->m_LocalRatsnest.size();
/* set the ratsnest status, flag LOCAL_RATSNEST_ITEM */
for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ )
{
m_Pcb->m_LocalRatsnest[ii].m_Status = LOCAL_RATSNEST_ITEM;
}
m_Pcb->m_Status_Pcb |= RATSNEST_ITEM_LOCAL_OK;
/* This section computes the "external" ratsnest: must be done when the
* footprint position changes
*/
CalculateExternalRatsnest:
/* This section search:
* for each current module pad the nearest neighbor external pad (of
* course for the same net code).
* For each current footprint cluster of pad (pads having the same net
* code),
* we search the smaller rats nest.
* so, for each net, only one rats nest item is created
*/
RATSNEST_ITEM local_rats;
local_rats.m_Lenght = 0x7FFFFFFF;
local_rats.m_Status = 0;
bool addRats = false;
if( internalRatsCount < m_Pcb->m_LocalRatsnest.size() )
m_Pcb->m_LocalRatsnest.erase(
m_Pcb->m_LocalRatsnest.begin() + internalRatsCount,
m_Pcb->m_LocalRatsnest.end() );
current_net_code = s_localPadBuffer[0]->GetNet();
for( unsigned ii = 0; ii < pads_module_count; ii++ )
{
pad_ref = s_localPadBuffer[ii];
if( pad_ref->GetNet() != current_net_code )
{
/* if needed, creates a new ratsnest for the old net */
if( addRats )
{
m_Pcb->m_LocalRatsnest.push_back( local_rats );
}
addRats = false;
current_net_code = pad_ref->GetNet();
local_rats.m_Lenght = 0x7FFFFFFF;
}
pad_pos = pad_ref->m_Pos - g_Offset_Module;
// Search the nearest external pad of this current pad
for( unsigned jj = pads_module_count;
jj < s_localPadBuffer.size();
jj++ )
{
pad_externe = s_localPadBuffer[jj];
/* we search pads having the same net code */
if( pad_externe->GetNet() < pad_ref->GetNet() )
continue;
if( pad_externe->GetNet() > pad_ref->GetNet() ) // remember pads
// are sorted by
// net code
break;
distance = abs( pad_externe->m_Pos.x - pad_pos.x ) +
abs( pad_externe->m_Pos.y - pad_pos.y );
if( distance < local_rats.m_Lenght )
{
local_rats.m_PadStart = pad_ref;
local_rats.m_PadEnd = pad_externe;
local_rats.SetNet( pad_ref->GetNet() );
local_rats.m_Lenght = distance;
local_rats.m_Status = 0;
addRats = true;
}
}
}
if( addRats ) // Ensure the last created rats nest item is stored in buffer
m_Pcb->m_LocalRatsnest.push_back( local_rats );
}
/*
* Display the ratsnest of a moving footprint, computed by
* build_ratsnest_module()
*/
void WinEDA_BasePcbFrame::trace_ratsnest_module( wxDC* DC )
{
if( DC == NULL )
return;
if( ( m_Pcb->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK ) == 0 )
return;
int tmpcolor = g_ColorsSettings.GetItemColor(RATSNEST_VISIBLE);
for( unsigned ii = 0; ii < m_Pcb->m_LocalRatsnest.size(); ii++ )
{
RATSNEST_ITEM* rats = &m_Pcb->m_LocalRatsnest[ii];
if( rats->m_Status & LOCAL_RATSNEST_ITEM )
{
g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, YELLOW);
rats->Draw( DrawPanel, DC, GR_XOR, g_Offset_Module );
}
else
{
g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, tmpcolor);
wxPoint tmp = rats->m_PadStart->m_Pos;
rats->m_PadStart->m_Pos -= g_Offset_Module;
rats->Draw( DrawPanel, DC, GR_XOR, wxPoint( 0, 0 ) );
rats->m_PadStart->m_Pos = tmp;
}
}
g_ColorsSettings.SetItemColor(RATSNEST_VISIBLE, tmpcolor);
}
/*
* Construction of the list mode display for quick calculation
* in real time the net of a pad in the paths of a track starting
* on the pad.
*
* Parameters:
* Pad_ref (if null: 0 has put the number of ratsnest)
* Ox, oy = coord of extremity of the track record
* Init (flag)
* = 0: update of the ratsnest.
* <> 0: Creating a list
*/
/* Buffer to store pads coordinates when creating a track.
* these pads are members of the net
* and when the mouse is moved, the g_MaxLinksShowed links to neighbors are
* drawn
*/
static std::vector <wxPoint> s_RatsnestMouseToPads;
static wxPoint s_CursorPos; // Coordinate of the moving point (mouse cursor and
// end of current track segment)
/* Used by build_ratsnest_pad(): sort function by link length (manhattan
* distance)
*/
static bool sort_by_localnetlength( const wxPoint& ref, const wxPoint& compare )
{
wxPoint deltaref = ref - s_CursorPos;
wxPoint deltacmp = compare - s_CursorPos;
// = distance between ref coordinate and pad ref
int lengthref = abs( deltaref.x ) + abs( deltaref.y );
// distance between ref coordinate and the other pad
int lengthcmp = abs( deltacmp.x ) + abs( deltacmp.y );
return lengthref < lengthcmp;
}
void WinEDA_BasePcbFrame::build_ratsnest_pad( BOARD_ITEM* ref,
const wxPoint& refpos, bool init )
{
int current_net_code = 0, conn_number = 0;
D_PAD* pad_ref = NULL;
if( ( ( m_Pcb->m_Status_Pcb & LISTE_RATSNEST_ITEM_OK ) == 0 )
|| ( ( m_Pcb->m_Status_Pcb & LISTE_PAD_OK ) == 0 )
|| ( ( m_Pcb->m_Status_Pcb & NET_CODES_OK ) == 0 ) )
{
s_RatsnestMouseToPads.clear();
return;
}
s_CursorPos = refpos;
if( init )
{
s_RatsnestMouseToPads.clear();
if( ref == NULL )
return;
switch( ref->Type() )
{
case TYPE_PAD:
pad_ref = (D_PAD*) ref;
current_net_code = pad_ref->GetNet();
conn_number = pad_ref->GetSubNet();
break;
case TYPE_TRACK:
case TYPE_VIA:
{
TRACK* track_ref = (TRACK*) ref;
current_net_code = track_ref->GetNet();
conn_number = track_ref->GetSubNet();
break;
}
default:
;
}
if( current_net_code <= 0 )
return;
NETINFO_ITEM* net = m_Pcb->FindNet( current_net_code );
if( net == NULL ) // Should not occur
{
DisplayError( this,
wxT( "build_ratsnest_pad() error: net not found" ) );
return;
}
// Create a list of pads candidates ( pads not already connected to the
// current track:
for( unsigned ii = 0; ii < net->m_ListPad.size(); ii++ )
{
D_PAD* pad = net->m_ListPad[ii];
if( pad == pad_ref )
continue;
if( !pad->GetSubNet() || (pad->GetSubNet() != conn_number) )
s_RatsnestMouseToPads.push_back( pad->m_Pos );
}
} /* end if Init */
if( s_RatsnestMouseToPads.size() > 1 )
sort( s_RatsnestMouseToPads.begin(),
s_RatsnestMouseToPads.end(), sort_by_localnetlength );
}
/*
* Displays a "ratsnest" during track creation
*/
void WinEDA_BasePcbFrame::trace_ratsnest_pad( wxDC* DC )
{
if( DC == NULL )
return;
if( s_RatsnestMouseToPads.size() == 0 )
return;
GRSetDrawMode( DC, GR_XOR );
for( int ii = 0; ii < (int) s_RatsnestMouseToPads.size(); ii++ )
{
if( ii >= g_MaxLinksShowed )
break;
GRLine( &DrawPanel->m_ClipBox, DC, s_CursorPos,
s_RatsnestMouseToPads[ii], 0, YELLOW );
}
}