kicad/eeschema/sch_rtree.h

306 lines
8.7 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2019-2021 KiCad Developers, see AUTHORS.txt for contributors.
* Copyright (C) 2020 CERN
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef EESCHEMA_SCH_RTREE_H_
#define EESCHEMA_SCH_RTREE_H_
#include <core/typeinfo.h>
#include <eda_rect.h>
#include <sch_item.h>
#include <set>
#include <vector>
#include <geometry/rtree.h>
/**
* Implements an R-tree for fast spatial and type indexing of schematic items.
* Non-owning.
*/
class EE_RTREE
{
private:
using ee_rtree = RTree<SCH_ITEM*, int, 3, double>;
public:
EE_RTREE()
{
this->m_tree = new ee_rtree();
m_count = 0;
}
~EE_RTREE()
{
delete this->m_tree;
}
/**
* Insert an item into the tree. Item's bounding box is taken via its BBox() method.
*/
void insert( SCH_ITEM* aItem )
{
BOX2I bbox = aItem->GetBoundingBox();
// Inflate a bit for safety, selection shadows, etc.
bbox.Inflate( aItem->GetPenWidth() );
const int type = int( aItem->Type() );
const int mmin[3] = { type, bbox.GetX(), bbox.GetY() };
const int mmax[3] = { type, bbox.GetRight(), bbox.GetBottom() };
m_tree->Insert( mmin, mmax, aItem );
m_count++;
}
/**
* Remove an item from the tree. Removal is done by comparing pointers, attempting
* to remove a copy of the item will fail.
*/
bool remove( SCH_ITEM* aItem )
{
// First, attempt to remove the item using its given BBox
BOX2I bbox = aItem->GetBoundingBox();
// Inflate a bit for safety, selection shadows, etc.
bbox.Inflate( aItem->GetPenWidth() );
const int type = int( aItem->Type() );
const int mmin[3] = { type, bbox.GetX(), bbox.GetY() };
const int mmax[3] = { type, bbox.GetRight(), bbox.GetBottom() };
// If we are not successful ( true == not found ), then we expand
// the search to the full tree
if( m_tree->Remove( mmin, mmax, aItem ) )
{
// N.B. We must search the whole tree for the pointer to remove
// because the item may have been moved before we have the chance to
// delete it from the tree
const int mmin2[3] = { INT_MIN, INT_MIN, INT_MIN };
const int mmax2[3] = { INT_MAX, INT_MAX, INT_MAX };
if( m_tree->Remove( mmin2, mmax2, aItem ) )
return false;
}
m_count--;
return true;
}
/**
* Remove all items from the RTree
*/
void clear()
{
m_tree->RemoveAll();
m_count = 0;
}
/**
* Determine if a given item exists in the tree. Note that this does not search the full tree
* so if the item has been moved, this will return false when it should be true.
*
* @param aItem Item that may potentially exist in the tree.
* @param aRobust If true, search the whole tree, not just the bounding box.
* @return true if the item definitely exists, false if it does not exist within bbox.
*/
bool contains( const SCH_ITEM* aItem, bool aRobust = false ) const
{
BOX2I bbox = aItem->GetBoundingBox();
// Inflate a bit for safety, selection shadows, etc.
bbox.Inflate( aItem->GetPenWidth() );
const int type = int( aItem->Type() );
const int mmin[3] = { type, bbox.GetX(), bbox.GetY() };
const int mmax[3] = { type, bbox.GetRight(), bbox.GetBottom() };
bool found = false;
auto search =
[&found, &aItem]( const SCH_ITEM* aSearchItem )
{
if( aSearchItem == aItem )
{
found = true;
return false;
}
return true;
};
m_tree->Search( mmin, mmax, search );
if( !found && aRobust )
{
// N.B. We must search the whole tree for the pointer to remove
// because the item may have been moved. We do not expand the item
// type search as this should not change.
const int mmin2[3] = { type, INT_MIN, INT_MIN };
const int mmax2[3] = { type, INT_MAX, INT_MAX };
m_tree->Search( mmin2, mmax2, search );
}
return found;
}
/**
* Return the number of items in the tree.
*
* @return number of elements in the tree.
*/
size_t size() const
{
return m_count;
}
bool empty() const
{
return m_count == 0;
}
using iterator = typename ee_rtree::Iterator;
/**
* The #EE_TYPE struct provides a type-specific auto-range iterator to the RTree. Using
* this struct, one can write lines like:
*
* for( auto item : rtree.OfType( SCH_SYMBOL_T ) )
*
* and iterate over the RTree items that are symbols only
*/
struct EE_TYPE
{
EE_TYPE( ee_rtree* aTree, KICAD_T aType ) : type_tree( aTree )
{
KICAD_T type = BaseType( aType );
if( type == SCH_LOCATE_ANY_T )
m_rect = { { INT_MIN, INT_MIN, INT_MIN }, { INT_MAX, INT_MAX, INT_MAX } };
else
m_rect = { { type, INT_MIN, INT_MIN }, { type, INT_MAX, INT_MAX } };
};
EE_TYPE( ee_rtree* aTree, KICAD_T aType, const EDA_RECT aRect ) : type_tree( aTree )
{
KICAD_T type = BaseType( aType );
if( type == SCH_LOCATE_ANY_T )
m_rect = { { INT_MIN, aRect.GetX(), aRect.GetY() },
{ INT_MAX, aRect.GetRight(), aRect.GetBottom() } };
else
m_rect = { { type, aRect.GetX(), aRect.GetY() },
{ type, aRect.GetRight(), aRect.GetBottom() } };
};
ee_rtree::Rect m_rect;
ee_rtree* type_tree;
iterator begin()
{
return type_tree->begin( m_rect );
}
iterator end()
{
return type_tree->end( m_rect );
}
bool empty()
{
return type_tree->Count() == 0;
}
};
EE_TYPE OfType( KICAD_T aType ) const
{
return EE_TYPE( m_tree, aType );
}
EE_TYPE Overlapping( const EDA_RECT& aRect ) const
{
return EE_TYPE( m_tree, SCH_LOCATE_ANY_T, aRect );
}
EE_TYPE Overlapping( const VECTOR2I& aPoint, int aAccuracy = 0 ) const
{
EDA_RECT rect( aPoint, wxSize( 0, 0 ) );
rect.Inflate( aAccuracy );
return EE_TYPE( m_tree, SCH_LOCATE_ANY_T, rect );
}
EE_TYPE Overlapping( KICAD_T aType, const VECTOR2I& aPoint, int aAccuracy = 0 ) const
{
EDA_RECT rect( aPoint, wxSize( 0, 0 ) );
rect.Inflate( aAccuracy );
return EE_TYPE( m_tree, aType, rect );
}
EE_TYPE Overlapping( KICAD_T aType, const EDA_RECT& aRect ) const
{
return EE_TYPE( m_tree, aType, aRect );
}
/**
* Returns a read/write iterator that points to the first
* element in the %EE_RTREE
* N.B. The iteration order of the RTree is not readily apparent and will change
* if/when you add or move items and the RTree is re-balanced. Any exposure of the
* RTree contents to the user MUST be sorted before being presented. See SCH_SEXPR_PLUGIN::Format
* or SCH_EDITOR_CONTROL::nextMatch for examples.
* @return Complete RTree of the screen's items
*/
iterator begin()
{
return m_tree->begin();
}
/**
* Returns a read/write iterator that points to one past the last
* element in the %EE_RTREE
*/
iterator end()
{
return m_tree->end();
}
const iterator begin() const
{
return m_tree->begin();
}
const iterator end() const
{
return m_tree->end();
}
private:
ee_rtree* m_tree;
size_t m_count;
};
#endif /* EESCHEMA_SCH_RTREE_H_ */