kicad/pcbnew/zone_filler.cpp

1640 lines
60 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014-2017 CERN
* Copyright (C) 2014-2021 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Włostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <thread>
#include <future>
#include <core/kicad_algo.h>
#include <advanced_config.h>
#include <board.h>
#include <board_design_settings.h>
#include <zone.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_shape.h>
#include <pcb_target.h>
#include <pcb_track.h>
#include <connectivity/connectivity_data.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_commit.h>
#include <progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <confirm.h>
#include <convert_to_biu.h>
#include <math/util.h> // for KiROUND
#include "zone_filler.h"
static const double s_RoundPadThermalSpokeAngle = 450; // in deci-degrees
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) :
m_board( aBoard ),
m_brdOutlinesValid( false ),
m_commit( aCommit ),
m_progressReporter( nullptr ),
m_maxError( ARC_HIGH_DEF ),
m_worstClearance( 0 )
{
// To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller;
}
ZONE_FILLER::~ZONE_FILLER()
{
}
void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
m_progressReporter = aReporter;
wxASSERT_MSG( m_commit, "ZONE_FILLER must have a valid commit to call SetProgressReporter" );
}
bool ZONE_FILLER::Fill( std::vector<ZONE*>& aZones, bool aCheck, wxWindow* aParent )
{
std::lock_guard<KISPINLOCK> lock( m_board->GetConnectivity()->GetLock() );
std::vector<std::pair<ZONE*, PCB_LAYER_ID>> toFill;
std::vector<CN_ZONE_ISOLATED_ISLAND_LIST> islandsList;
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity();
// Rebuild just in case. This really needs to be reliable.
connectivity->Clear();
connectivity->Build( m_board, m_progressReporter );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
m_worstClearance = bds.GetBiggestClearanceValue();
if( m_progressReporter )
{
m_progressReporter->Report( aCheck ? _( "Checking zone fills..." )
: _( "Building zone fills..." ) );
m_progressReporter->SetMaxProgress( aZones.size() );
m_progressReporter->KeepRefreshing();
}
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours();
m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
// Update and cache zone bounding boxes and pad effective shapes so that we don't have to
// make them thread-safe.
for( ZONE* zone : m_board->Zones() )
{
zone->CacheBoundingBox();
m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() );
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( pad->IsDirty() )
{
pad->BuildEffectiveShapes( UNDEFINED_LAYER );
pad->BuildEffectivePolygon();
}
m_worstClearance = std::max( m_worstClearance, pad->GetLocalClearance() );
}
for( ZONE* zone : footprint->Zones() )
{
zone->CacheBoundingBox();
m_worstClearance = std::max( m_worstClearance, zone->GetLocalClearance() );
}
// Rules may depend on insideCourtyard() or other expressions
footprint->BuildPolyCourtyards();
}
// Sort by priority to reduce deferrals waiting on higher priority zones.
std::sort( aZones.begin(), aZones.end(),
[]( const ZONE* lhs, const ZONE* rhs )
{
return lhs->GetPriority() > rhs->GetPriority();
} );
for( ZONE* zone : aZones )
{
// Rule areas are not filled
if( zone->GetIsRuleArea() )
continue;
if( m_commit )
m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later
// to know if the current filled areas are up to date
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
zone->BuildHashValue( layer );
// Add the zone to the list of zones to test or refill
toFill.emplace_back( std::make_pair( zone, layer ) );
}
islandsList.emplace_back( CN_ZONE_ISOLATED_ISLAND_LIST( zone ) );
// Remove existing fill first to prevent drawing invalid polygons
// on some platforms
zone->UnFill();
zone->SetFillVersion( bds.m_ZoneFillVersion );
}
size_t cores = std::thread::hardware_concurrency();
std::atomic<size_t> nextItem;
auto check_fill_dependency =
[&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool
{
// Check to see if we have to knock-out the filled areas of a higher-priority
// zone. If so we have to wait until said zone is filled before we can fill.
// If the other zone is already filled then we're good-to-go
if( aOtherZone->GetFillFlag( aLayer ) )
return false;
// Even if keepouts exclude copper pours the exclusion is by outline, not by
// filled area, so we're good-to-go here too.
if( aOtherZone->GetIsRuleArea() )
return false;
// If the zones share no common layers
if( !aOtherZone->GetLayerSet().test( aLayer ) )
return false;
if( aOtherZone->GetPriority() <= aZone->GetPriority() )
return false;
// Same-net zones always use outline to produce predictable results
if( aOtherZone->GetNetCode() == aZone->GetNetCode() )
return false;
// A higher priority zone is found: if we intersect and it's not filled yet
// then we have to wait.
EDA_RECT inflatedBBox = aZone->GetCachedBoundingBox();
inflatedBBox.Inflate( m_worstClearance );
return inflatedBBox.Intersects( aOtherZone->GetCachedBoundingBox() );
};
auto fill_lambda =
[&]( PROGRESS_REPORTER* aReporter )
{
size_t num = 0;
for( size_t i = nextItem++; i < toFill.size(); i = nextItem++ )
{
PCB_LAYER_ID layer = toFill[i].second;
ZONE* zone = toFill[i].first;
bool canFill = true;
// Check for any fill dependencies. If our zone needs to be clipped by
// another zone then we can't fill until that zone is filled.
for( ZONE* otherZone : aZones )
{
if( otherZone == zone )
continue;
if( check_fill_dependency( zone, layer, otherZone ) )
{
canFill = false;
break;
}
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
break;
if( !canFill )
continue;
// Now we're ready to fill.
SHAPE_POLY_SET rawPolys, finalPolys;
fillSingleZone( zone, layer, rawPolys, finalPolys );
std::unique_lock<std::mutex> zoneLock( zone->GetLock() );
zone->SetRawPolysList( layer, rawPolys );
zone->SetFilledPolysList( layer, finalPolys );
zone->SetFillFlag( layer, true );
if( m_progressReporter )
m_progressReporter->AdvanceProgress();
num++;
}
return num;
};
while( !toFill.empty() )
{
size_t parallelThreadCount = std::min( cores, toFill.size() );
std::vector<std::future<size_t>> returns( parallelThreadCount );
nextItem = 0;
if( parallelThreadCount <= 1 )
fill_lambda( m_progressReporter );
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii] = std::async( std::launch::async, fill_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
// Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status;
do
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) );
} while( status != std::future_status::ready );
}
}
alg::delete_if( toFill, [&]( const std::pair<ZONE*, PCB_LAYER_ID> pair ) -> bool
{
return pair.first->GetFillFlag( pair.second );
} );
if( m_progressReporter && m_progressReporter->IsCancelled() )
break;
}
// Now update the connectivity to check for copper islands
if( m_progressReporter )
{
if( m_progressReporter->IsCancelled() )
return false;
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Removing isolated copper islands..." ) );
m_progressReporter->KeepRefreshing();
}
connectivity->SetProgressReporter( m_progressReporter );
connectivity->FindIsolatedCopperIslands( islandsList );
connectivity->SetProgressReporter( nullptr );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
for( ZONE* zone : aZones )
{
// Keepout zones are not filled
if( zone->GetIsRuleArea() )
continue;
zone->SetIsFilled( true );
}
// Now remove insulated copper islands
for( CN_ZONE_ISOLATED_ISLAND_LIST& zone : islandsList )
{
for( PCB_LAYER_ID layer : zone.m_zone->GetLayerSet().Seq() )
{
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
continue;
if( !zone.m_islands.count( layer ) )
continue;
std::vector<int>& islands = zone.m_islands.at( layer );
// The list of polygons to delete must be explored from last to first in list,
// to allow deleting a polygon from list without breaking the remaining of the list
std::sort( islands.begin(), islands.end(), std::greater<int>() );
SHAPE_POLY_SET poly = zone.m_zone->GetFilledPolysList( layer );
long long int minArea = zone.m_zone->GetMinIslandArea();
ISLAND_REMOVAL_MODE mode = zone.m_zone->GetIslandRemovalMode();
for( int idx : islands )
{
SHAPE_LINE_CHAIN& outline = poly.Outline( idx );
if( mode == ISLAND_REMOVAL_MODE::ALWAYS )
poly.DeletePolygon( idx );
else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area() < minArea )
poly.DeletePolygon( idx );
else
zone.m_zone->SetIsIsland( layer, idx );
}
zone.m_zone->SetFilledPolysList( layer, poly );
zone.m_zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
}
}
// Now remove islands outside the board edge
for( ZONE* zone : aZones )
{
LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask( MAX_CU_LAYERS );
for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() )
{
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
continue;
SHAPE_POLY_SET poly = zone->GetFilledPolysList( layer );
for( int ii = poly.OutlineCount() - 1; ii >= 0; ii-- )
{
std::vector<SHAPE_LINE_CHAIN>& island = poly.Polygon( ii );
if( island.empty() || !m_boardOutline.Contains( island.front().CPoint( 0 ) ) )
poly.DeletePolygon( ii );
}
zone->SetFilledPolysList( layer, poly );
zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
}
}
if( aCheck )
{
bool outOfDate = false;
for( ZONE* zone : aZones )
{
// Keepout zones are not filled
if( zone->GetIsRuleArea() )
continue;
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
MD5_HASH was = zone->GetHashValue( layer );
zone->CacheTriangulation( layer );
zone->BuildHashValue( layer );
MD5_HASH is = zone->GetHashValue( layer );
if( is != was )
outOfDate = true;
}
}
if( outOfDate )
{
KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ),
_( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING );
dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) );
dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL )
return false;
}
}
if( m_progressReporter )
{
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Performing polygon fills..." ) );
m_progressReporter->SetMaxProgress( islandsList.size() );
}
nextItem = 0;
auto tri_lambda =
[&]( PROGRESS_REPORTER* aReporter ) -> size_t
{
size_t num = 0;
for( size_t i = nextItem++; i < islandsList.size(); i = nextItem++ )
{
islandsList[i].m_zone->CacheTriangulation();
num++;
if( m_progressReporter )
{
m_progressReporter->AdvanceProgress();
if( m_progressReporter->IsCancelled() )
break;
}
}
return num;
};
size_t parallelThreadCount = std::min( cores, islandsList.size() );
std::vector<std::future<size_t>> returns( parallelThreadCount );
if( parallelThreadCount <= 1 )
tri_lambda( m_progressReporter );
else
{
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
returns[ii] = std::async( std::launch::async, tri_lambda, m_progressReporter );
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
{
// Here we balance returns with a 100ms timeout to allow UI updating
std::future_status status;
do
{
if( m_progressReporter )
{
m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() )
break;
}
status = returns[ii].wait_for( std::chrono::milliseconds( 100 ) );
} while( status != std::future_status::ready );
}
}
if( m_progressReporter )
{
if( m_progressReporter->IsCancelled() )
return false;
m_progressReporter->AdvancePhase();
m_progressReporter->KeepRefreshing();
}
return true;
}
/**
* Return true if the given pad has a thermal connection with the given zone.
*/
bool hasThermalConnection( PAD* pad, const ZONE* aZone )
{
// Rejects non-standard pads with tht-only thermal reliefs
if( aZone->GetPadConnection( pad ) == ZONE_CONNECTION::THT_THERMAL
&& pad->GetAttribute() != PAD_ATTRIB::PTH )
{
return false;
}
if( aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THERMAL
&& aZone->GetPadConnection( pad ) != ZONE_CONNECTION::THT_THERMAL )
{
return false;
}
if( pad->GetNetCode() != aZone->GetNetCode() || pad->GetNetCode() <= 0 )
return false;
EDA_RECT item_boundingbox = pad->GetBoundingBox();
int thermalGap = aZone->GetThermalReliefGap( pad );
item_boundingbox.Inflate( thermalGap, thermalGap );
return item_boundingbox.Intersects( aZone->GetCachedBoundingBox() );
}
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be
* either the thermal clearance or the electrical clearance).
*/
void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles )
{
if( aPad->GetShape() == PAD_SHAPE::CUSTOM )
{
SHAPE_POLY_SET poly;
aPad->TransformShapeWithClearanceToPolygon( poly, aLayer, aGap, m_maxError,
ERROR_OUTSIDE );
// the pad shape in zone can be its convex hull or the shape itself
if( aPad->GetCustomShapeInZoneOpt() == CUST_PAD_SHAPE_IN_ZONE_CONVEXHULL )
{
std::vector<wxPoint> convex_hull;
BuildConvexHull( convex_hull, poly );
aHoles.NewOutline();
for( const wxPoint& pt : convex_hull )
aHoles.Append( pt );
}
else
aHoles.Append( poly );
}
else
{
aPad->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError,
ERROR_OUTSIDE );
}
}
/**
* Add a knockout for a pad's hole.
*/
void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles )
{
// Note: drill size represents finish size, which means the actual hole size is the plating
// thickness larger.
if( aPad->GetAttribute() == PAD_ATTRIB::PTH )
aGap += aPad->GetBoard()->GetDesignSettings().GetHolePlatingThickness();
aPad->TransformHoleWithClearanceToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE );
}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which
* might be either the electrical clearance or the board edge clearance).
*/
void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap,
bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles )
{
switch( aItem->Type() )
{
case PCB_SHAPE_T:
case PCB_TEXT_T:
case PCB_FP_SHAPE_T:
aItem->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError,
ERROR_OUTSIDE, aIgnoreLineWidth );
break;
case PCB_FP_TEXT_T:
{
FP_TEXT* text = static_cast<FP_TEXT*>( aItem );
if( text->IsVisible() )
{
text->TransformShapeWithClearanceToPolygon( aHoles, aLayer, aGap, m_maxError,
ERROR_OUTSIDE, aIgnoreLineWidth );
}
}
break;
default:
break;
}
}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add
* in spokes, which must be done later.
*/
void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aFill )
{
SHAPE_POLY_SET holes;
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( !hasThermalConnection( pad, aZone ) )
continue;
int gap = aZone->GetThermalReliefGap( pad );
// If the pad is flashed to the current layer, or is on the same layer and shares a netcode, then
// we need to knock out the thermal relief.
if( pad->FlashLayer( aLayer ) || ( pad->IsOnLayer( aLayer ) && pad->GetNetCode() == aZone->GetNetCode() ) )
{
addKnockout( pad, aLayer, gap, holes );
}
else
{
// If the pad isn't on the current layer but has a hole, knock out a thermal relief
// for the hole.
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
// Note: drill size represents finish size, which means the actual holes size is
// the plating thickness larger.
if( pad->GetAttribute() == PAD_ATTRIB::PTH )
gap += pad->GetBoard()->GetDesignSettings().GetHolePlatingThickness();
pad->TransformHoleWithClearanceToPolygon( holes, gap, m_maxError, ERROR_OUTSIDE );
}
}
}
aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST );
}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are
* not connected to it.
*/
void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aHoles )
{
long ticker = 0;
auto checkForCancel =
[&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
{
return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
};
// A small extra clearance to be sure actual track clearances are not smaller than
// requested clearance due to many approximations in calculations, like arc to segment
// approx, rounding issues, etc.
int extra_margin = Millimeter2iu( ADVANCED_CFG::GetCfg().m_ExtraClearance );
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
int zone_clearance = aZone->GetLocalClearance();
EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox();
// Items outside the zone bounding box are skipped, so it needs to be inflated by the
// largest clearance value found in the netclasses and rules
zone_boundingbox.Inflate( m_worstClearance + extra_margin );
auto evalRulesForItems =
[&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b,
PCB_LAYER_ID aEvalLayer ) -> int
{
auto c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer );
return c.Value().Min();
};
// Add non-connected pad clearances
//
auto knockoutPadClearance =
[&]( PAD* aPad )
{
if( aPad->GetBoundingBox().Intersects( zone_boundingbox ) )
{
int gap = 0;
bool knockoutHoleClearance = true;
if( aPad->GetNetCode() > 0 && aPad->GetNetCode() == aZone->GetNetCode() )
{
// For pads having the same netcode as the zone, the net and hole
// clearances have no meanings.
// So just knock out the greater of the zone's local clearance and
// thermal relief.
gap = std::max( zone_clearance, aZone->GetThermalReliefGap( aPad ) );
knockoutHoleClearance = false;
}
else
{
gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aPad, aLayer );
}
gap += extra_margin;
if( aPad->FlashLayer( aLayer ) )
addKnockout( aPad, aLayer, gap, aHoles );
else if( aPad->GetDrillSize().x > 0 )
addHoleKnockout( aPad, gap, aHoles );
if( knockoutHoleClearance && aPad->GetDrillSize().x > 0 )
{
gap = evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer );
gap += extra_margin;
addHoleKnockout( aPad, gap, aHoles );
}
}
};
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( checkForCancel( m_progressReporter ) )
return;
if( pad->GetNetCode() != aZone->GetNetCode()
|| pad->GetNetCode() <= 0
|| aZone->GetPadConnection( pad ) == ZONE_CONNECTION::NONE )
{
knockoutPadClearance( pad );
}
}
}
// Add non-connected track clearances
//
auto knockoutTrackClearance =
[&]( PCB_TRACK* aTrack )
{
if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) )
{
if( aTrack->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
int gap = 0;
bool checkHoleClearance = true;
if( via->GetNetCode() > 0 && via->GetNetCode() == aZone->GetNetCode() )
{
// For pads having the same netcode as the zone, the net and hole
// clearances have no meanings.
// So just knock out the zone's local clearance.
gap = zone_clearance;
checkHoleClearance = false;
}
else
{
gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer );
}
if( via->FlashLayer( aLayer ) )
{
via->TransformShapeWithClearanceToPolygon( aHoles, aLayer,
gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
if( checkHoleClearance )
{
gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
aZone, via, aLayer ) );
}
int radius = via->GetDrillValue() / 2 + bds.GetHolePlatingThickness();
TransformCircleToPolygon( aHoles, via->GetPosition(),
radius + gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
else
{
int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aTrack, aLayer );
aTrack->TransformShapeWithClearanceToPolygon( aHoles, aLayer,
gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
}
};
for( PCB_TRACK* track : m_board->Tracks() )
{
if( !track->IsOnLayer( aLayer ) )
continue;
if( track->GetNetCode() == aZone->GetNetCode() && ( aZone->GetNetCode() != 0) )
continue;
if( checkForCancel( m_progressReporter ) )
return;
knockoutTrackClearance( track );
}
// Add graphic item clearances. They are by definition unconnected, and have no clearance
// definitions of their own.
//
auto knockoutGraphicClearance =
[&]( BOARD_ITEM* aItem )
{
// A item on the Edge_Cuts or Margin is always seen as on any layer:
if( aItem->IsOnLayer( aLayer )
|| aItem->IsOnLayer( Edge_Cuts )
|| aItem->IsOnLayer( Margin ) )
{
if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
{
bool ignoreLineWidths = false;
int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aItem, aLayer );
if( aItem->IsOnLayer( Edge_Cuts ) )
{
gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
aZone, aItem, Edge_Cuts ) );
ignoreLineWidths = true;
gap = std::max( gap, bds.GetDRCEpsilon() );
}
if( aItem->IsOnLayer( Margin ) )
{
gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
aZone, aItem, Margin ) );
}
addKnockout( aItem, aLayer, gap, ignoreLineWidths, aHoles );
}
}
};
for( FOOTPRINT* footprint : m_board->Footprints() )
{
bool skipFootprint = false;
knockoutGraphicClearance( &footprint->Reference() );
knockoutGraphicClearance( &footprint->Value() );
// Don't knock out holes in zones that share a net
// with a nettie footprint
if( footprint->IsNetTie() )
{
for( PAD* pad : footprint->Pads() )
{
if( aZone->GetNetCode() == pad->GetNetCode() )
{
skipFootprint = true;
break;
}
}
}
if( skipFootprint )
continue;
for( BOARD_ITEM* item : footprint->GraphicalItems() )
{
if( checkForCancel( m_progressReporter ) )
return;
knockoutGraphicClearance( item );
}
}
for( BOARD_ITEM* item : m_board->Drawings() )
{
if( checkForCancel( m_progressReporter ) )
return;
knockoutGraphicClearance( item );
}
// Add non-connected zone clearances
//
auto knockoutZoneClearance =
[&]( ZONE* aKnockout )
{
// If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) )
return;
if( aKnockout->GetCachedBoundingBox().Intersects( zone_boundingbox ) )
{
if( aKnockout->GetIsRuleArea() )
{
// Keepouts use outline with no clearance
aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, nullptr );
}
else if( bds.m_ZoneFillVersion == 5 )
{
// 5.x used outline with clearance
int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aKnockout,
aLayer );
aKnockout->TransformSmoothedOutlineToPolygon( aHoles, gap, nullptr );
}
else
{
// 6.0 uses filled areas with clearance
int gap = evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, aKnockout,
aLayer );
SHAPE_POLY_SET poly;
aKnockout->TransformShapeWithClearanceToPolygon( poly, aLayer, gap,
m_maxError,
ERROR_OUTSIDE );
aHoles.Append( poly );
}
}
};
for( ZONE* otherZone : m_board->Zones() )
{
if( checkForCancel( m_progressReporter ) )
return;
if( otherZone->GetIsRuleArea() )
{
if( otherZone->GetDoNotAllowCopperPour() )
knockoutZoneClearance( otherZone );
}
else
{
if( otherZone->GetNetCode() != aZone->GetNetCode()
&& otherZone->GetPriority() > aZone->GetPriority() )
{
knockoutZoneClearance( otherZone );
}
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( ZONE* otherZone : footprint->Zones() )
{
if( checkForCancel( m_progressReporter ) )
return;
if( otherZone->GetIsRuleArea() )
{
if( otherZone->GetDoNotAllowCopperPour() )
knockoutZoneClearance( otherZone );
}
else
{
if( otherZone->GetNetCode() != aZone->GetNetCode()
&& otherZone->GetPriority() > aZone->GetPriority() )
{
knockoutZoneClearance( otherZone );
}
}
}
}
aHoles.Simplify( SHAPE_POLY_SET::PM_FAST );
}
/**
* Removes the outlines of higher-proirity zones with the same net. These zones should be
* in charge of the fill parameters within their own outlines.
*/
void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aRawFill )
{
auto knockoutZoneOutline =
[&]( ZONE* aKnockout )
{
// If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) )
return;
if( aKnockout->GetCachedBoundingBox().Intersects( aZone->GetCachedBoundingBox() ) )
{
aRawFill.BooleanSubtract( *aKnockout->Outline(), SHAPE_POLY_SET::PM_FAST );
}
};
for( ZONE* otherZone : m_board->Zones() )
{
if( otherZone->GetNetCode() == aZone->GetNetCode()
&& otherZone->GetPriority() > aZone->GetPriority() )
{
knockoutZoneOutline( otherZone );
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( ZONE* otherZone : footprint->Zones() )
{
if( otherZone->GetNetCode() == aZone->GetNetCode()
&& otherZone->GetPriority() > aZone->GetPriority() )
{
knockoutZoneOutline( otherZone );
}
}
}
}
#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
{ if( m_debugZoneFiller && aDebugLayer == b ) \
{ \
m_board->SetLayerName( b, c ); \
SHAPE_POLY_SET d = a; \
d.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \
d.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \
aRawPolys = d; \
return false; \
} \
}
/**
* 1 - Creates the main zone outline using a correction to shrink the resulting area by
* m_ZoneMinThickness / 2. The result is areas with a margin of m_ZoneMinThickness / 2
* so that when drawing outline with segments having a thickness of m_ZoneMinThickness the
* outlines will match exactly the initial outlines
* 2 - Knocks out thermal reliefs around thermally-connected pads
* 3 - Builds a set of thermal spoke for the whole zone
* 4 - Knocks out unconnected copper items, deleting any affected spokes
* 5 - Removes unconnected copper islands, deleting any affected spokes
* 6 - Adds in the remaining spokes
*/
bool ZONE_FILLER::computeRawFilledArea( const ZONE* aZone,
PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer,
const SHAPE_POLY_SET& aSmoothedOutline,
const SHAPE_POLY_SET& aMaxExtents,
SHAPE_POLY_SET& aRawPolys )
{
m_maxError = m_board->GetDesignSettings().m_MaxError;
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = Millimeter2iu( 0.001 );
int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, 360.0 );
// Solid polygons are deflated and inflated during calculations. Deflating doesn't cause
// issues, but inflate is tricky as it can create excessively long and narrow spikes for
// acute angles.
// ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
// CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
// circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
// It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
// as a "less-safe" option.
// ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
// CHAMFER_ALL_CORNERS improves the segment count.
SHAPE_POLY_SET::CORNER_STRATEGY fastCornerStrategy = SHAPE_POLY_SET::CHAMFER_ALL_CORNERS;
SHAPE_POLY_SET::CORNER_STRATEGY cornerStrategy = SHAPE_POLY_SET::ROUND_ALL_CORNERS;
std::deque<SHAPE_LINE_CHAIN> thermalSpokes;
SHAPE_POLY_SET clearanceHoles;
aRawPolys = aSmoothedOutline;
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In1_Cu, "smoothed-outline" );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
knockoutThermalReliefs( aZone, aLayer, aRawPolys );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In2_Cu, "minus-thermal-reliefs" );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
buildCopperItemClearances( aZone, aLayer, clearanceHoles );
DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, "clearance-holes" );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
buildThermalSpokes( aZone, aLayer, thermalSpokes );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true;
SHAPE_POLY_SET testAreas = aRawPolys;
testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, "minus-clearance-holes" );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
{
testAreas.Deflate( half_min_width - epsilon, numSegs, fastCornerStrategy );
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, "spoke-test-deflated" );
testAreas.Inflate( half_min_width - epsilon, numSegs, fastCornerStrategy );
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, "spoke-test-reinflated" );
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches();
int interval = 0;
SHAPE_POLY_SET debugSpokes;
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes )
{
const VECTOR2I& testPt = spoke.CPoint( 3 );
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) )
{
if( m_debugZoneFiller )
debugSpokes.AddOutline( spoke );
aRawPolys.AddOutline( spoke );
continue;
}
if( interval++ > 400 )
{
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
interval = 0;
}
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes )
{
if( &other != &spoke && other.PointInside( testPt, 1, USE_BBOX_CACHES ) )
{
if( m_debugZoneFiller )
debugSpokes.AddOutline( spoke );
aRawPolys.AddOutline( spoke );
break;
}
}
}
DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, "spokes" );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In8_Cu, "after-spoke-trimming" );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
aRawPolys.Deflate( half_min_width - epsilon, numSegs, cornerStrategy );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In9_Cu, "deflated" );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
// Now remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
{
if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aRawPolys ) )
return false;
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() )
{
// If we're stroking the zone with a min_width stroke then this will naturally inflate
// the zone by half_min_width
}
else if( half_min_width - epsilon > epsilon )
{
aRawPolys.Inflate( half_min_width - epsilon, numSegs, cornerStrategy );
}
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In15_Cu, "after-reinflating" );
// Ensure additive changes (thermal stubs and particularly inflating acute corners) do not
// add copper outside the zone boundary or inside the clearance holes
aRawPolys.BooleanIntersection( aMaxExtents, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In16_Cu, "after-trim-to-outline" );
aRawPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In17_Cu, "after-trim-to-clearance-holes" );
// Lastly give any same-net but higher-priority zones control over their own area.
subtractHigherPriorityZones( aZone, aLayer, aRawPolys );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In18_Cu, "minus-higher-priority-zones" );
aRawPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
return true;
}
/*
* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
* ( holes are linked by overlapping segments to the main outline)
*/
bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aRawPolys,
SHAPE_POLY_SET& aFinalPolys )
{
SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr;
SHAPE_POLY_SET maxExtents;
SHAPE_POLY_SET smoothedPoly;
PCB_LAYER_ID debugLayer = UNDEFINED_LAYER;
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) )
{
debugLayer = aLayer;
aLayer = F_Cu;
}
if ( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) )
return false;
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
if( aZone->IsOnCopperLayer() )
{
if( computeRawFilledArea( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aRawPolys ) )
aZone->SetNeedRefill( false );
aFinalPolys = aRawPolys;
}
else
{
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = Millimeter2iu( 0.001 );
int numSegs = GetArcToSegmentCount( half_min_width, m_maxError, 360.0 );
smoothedPoly.Deflate( half_min_width - epsilon, numSegs );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
addHatchFillTypeOnZone( aZone, aLayer, debugLayer, smoothedPoly );
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( aZone->GetFilledPolysUseThickness() )
{
// If we're stroking the zone with a min_width stroke then this will naturally
// inflate the zone by half_min_width
}
else if( half_min_width - epsilon > epsilon )
{
smoothedPoly.Inflate( half_min_width - epsilon, numSegs );
}
aRawPolys = smoothedPoly;
aFinalPolys = smoothedPoly;
aFinalPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
aZone->SetNeedRefill( false );
}
return true;
}
/**
* Function buildThermalSpokes
*/
void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer,
std::deque<SHAPE_LINE_CHAIN>& aSpokesList )
{
auto zoneBB = aZone->GetCachedBoundingBox();
int zone_clearance = aZone->GetLocalClearance();
int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
biggest_clearance = std::max( biggest_clearance, zone_clearance );
zoneBB.Inflate( biggest_clearance );
// Is a point on the boundary of the polygon inside or outside? This small epsilon lets
// us avoid the question.
int epsilon = KiROUND( IU_PER_MM * 0.04 ); // about 1.5 mil
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( !hasThermalConnection( pad, aZone ) )
continue;
// We currently only connect to pads, not pad holes
if( !pad->IsOnLayer( aLayer ) )
continue;
int thermalReliefGap = aZone->GetThermalReliefGap( pad );
// Calculate thermal bridge half width
int spoke_w = aZone->GetThermalReliefSpokeWidth( pad );
// Avoid spoke_w bigger than the smaller pad size, because
// it is not possible to create stubs bigger than the pad.
// Possible refinement: have a separate size for vertical and horizontal stubs
spoke_w = std::min( spoke_w, pad->GetSize().x );
spoke_w = std::min( spoke_w, pad->GetSize().y );
// Cannot create stubs having a width < zone min thickness
if( spoke_w < aZone->GetMinThickness() )
continue;
int spoke_half_w = spoke_w / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = pad->GetBoundingBox();
itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) )
continue;
// Thermal spokes consist of segments from the pad center to points just outside
// the thermal relief.
//
// We use the bounding-box to lay out the spokes, but for this to work the
// bounding box has to be built at the same rotation as the spokes.
// We have to use a dummy pad to avoid dirtying the cached shapes
wxPoint shapePos = pad->ShapePos();
double padAngle = pad->GetOrientation();
PAD dummy_pad( *pad );
dummy_pad.SetOrientation( 0.0 );
// Spokes are from center of pad, not from hole
dummy_pad.SetPosition( -pad->GetOffset() );
BOX2I reliefBB = dummy_pad.GetBoundingBox();
reliefBB.Inflate( thermalReliefGap + epsilon );
// For circle pads, the thermal spoke orientation is 45 deg
if( pad->GetShape() == PAD_SHAPE::CIRCLE )
padAngle = s_RoundPadThermalSpokeAngle;
for( int i = 0; i < 4; i++ )
{
SHAPE_LINE_CHAIN spoke;
switch( i )
{
case 0: // lower stub
spoke.Append( +spoke_half_w, -spoke_half_w );
spoke.Append( -spoke_half_w, -spoke_half_w );
spoke.Append( -spoke_half_w, reliefBB.GetBottom() );
spoke.Append( 0, reliefBB.GetBottom() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetBottom() );
break;
case 1: // upper stub
spoke.Append( +spoke_half_w, spoke_half_w );
spoke.Append( -spoke_half_w, spoke_half_w );
spoke.Append( -spoke_half_w, reliefBB.GetTop() );
spoke.Append( 0, reliefBB.GetTop() ); // test pt
spoke.Append( +spoke_half_w, reliefBB.GetTop() );
break;
case 2: // right stub
spoke.Append( -spoke_half_w, spoke_half_w );
spoke.Append( -spoke_half_w, -spoke_half_w );
spoke.Append( reliefBB.GetRight(), -spoke_half_w );
spoke.Append( reliefBB.GetRight(), 0 ); // test pt
spoke.Append( reliefBB.GetRight(), spoke_half_w );
break;
case 3: // left stub
spoke.Append( spoke_half_w, spoke_half_w );
spoke.Append( spoke_half_w, -spoke_half_w );
spoke.Append( reliefBB.GetLeft(), -spoke_half_w );
spoke.Append( reliefBB.GetLeft(), 0 ); // test pt
spoke.Append( reliefBB.GetLeft(), spoke_half_w );
break;
}
spoke.Rotate( -DECIDEG2RAD( padAngle ) );
spoke.Move( shapePos );
spoke.SetClosed( true );
spoke.GenerateBBoxCache();
aSpokesList.push_back( std::move( spoke ) );
}
}
}
}
bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aRawPolys )
{
// Build grid:
// obviously line thickness must be > zone min thickness.
// It can happens if a board file was edited by hand by a python script
// Use 1 micron margin to be *sure* there is no issue in Gerber files
// (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
// This margin also avoid problems due to rounding coordinates in next calculations
// that can create incorrect polygons
int thickness = std::max( aZone->GetHatchThickness(),
aZone->GetMinThickness() + Millimeter2iu( 0.001 ) );
int linethickness = thickness - aZone->GetMinThickness();
int gridsize = thickness + aZone->GetHatchGap();
double orientation = aZone->GetHatchOrientation();
SHAPE_POLY_SET filledPolys = aRawPolys;
// Use a area that contains the rotated bbox by orientation,
// and after rotate the result by -orientation.
if( orientation != 0.0 )
filledPolys.Rotate( M_PI / 180.0 * orientation, VECTOR2I( 0, 0 ) );
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base;
int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness();
VECTOR2I corner( 0, 0 );;
hole_base.Append( corner );
corner.x += hole_size;
hole_base.Append( corner );
corner.y += hole_size;
hole_base.Append( corner );
corner.x = 0;
hole_base.Append( corner );
hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchSmoothingLevel() > 0 )
{
// the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
// aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchGap()
* aZone->GetHatchSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > Millimeter2iu( SMOOTH_MIN_VAL_MM ) )
{
SHAPE_POLY_SET smooth_hole;
smooth_hole.AddOutline( hole_base );
int smooth_level = aZone->GetHatchSmoothingLevel();
if( smooth_value < Millimeter2iu( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 )
smooth_level = 1;
// Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness() / 2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );
// the error to approximate a circle by segments when smoothing corners by a arc
int error_max = std::max( Millimeter2iu( 0.01 ), smooth_value / 20 );
switch( smooth_level )
{
case 1:
// Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 );
break;
default:
if( aZone->GetHatchSmoothingLevel() > 2 )
error_max /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, error_max ).Outline( 0 );
break;
case 0:
break;
};
}
}
// Build holes
SHAPE_POLY_SET holes;
for( int xx = 0; ; xx++ )
{
int xpos = xx * gridsize;
if( xpos > bbox.GetWidth() )
break;
for( int yy = 0; ; yy++ )
{
int ypos = yy * gridsize;
if( ypos > bbox.GetHeight() )
break;
// Generate hole
SHAPE_LINE_CHAIN hole( hole_base );
hole.Move( VECTOR2I( xpos, ypos ) );
holes.AddOutline( hole );
}
}
holes.Move( bbox.GetPosition() );
if( orientation != 0.0 )
holes.Rotate( -M_PI/180.0 * orientation, VECTOR2I( 0,0 ) );
DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, "hatch-holes" );
int outline_margin = aZone->GetMinThickness() * 1.1;
// Using GetHatchThickness() can look more consistent than GetMinThickness().
if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin )
outline_margin = aZone->GetHatchThickness();
// The fill has already been deflated to ensure GetMinThickness() so we just have to
// account for anything beyond that.
SHAPE_POLY_SET deflatedFilledPolys = aRawPolys;
deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(), 16 );
holes.BooleanIntersection( deflatedFilledPolys, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, "fill-clipped-hatch-holes" );
SHAPE_POLY_SET deflatedOutline = *aZone->Outline();
deflatedOutline.Deflate( outline_margin, 16 );
holes.BooleanIntersection( deflatedOutline, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, "outline-clipped-hatch-holes" );
if( aZone->GetNetCode() != 0 )
{
// Vias and pads connected to the zone must not be allowed to become isolated inside
// one of the holes. Effectively this means their copper outline needs to be expanded
// to be at least as wide as the gap so that it is guaranteed to touch at least one
// edge.
EDA_RECT zone_boundingbox = aZone->GetCachedBoundingBox();
SHAPE_POLY_SET aprons;
int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19;
for( PCB_TRACK* track : m_board->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( track );
if( via->GetNetCode() == aZone->GetNetCode()
&& via->IsOnLayer( aLayer )
&& via->GetBoundingBox().Intersects( zone_boundingbox ) )
{
int r = std::max( min_apron_radius,
via->GetDrillValue() / 2 + outline_margin );
TransformCircleToPolygon( aprons, via->GetPosition(), r, ARC_HIGH_DEF,
ERROR_OUTSIDE );
}
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( pad->GetNetCode() == aZone->GetNetCode()
&& pad->IsOnLayer( aLayer )
&& pad->GetBoundingBox().Intersects( zone_boundingbox ) )
{
// What we want is to bulk up the pad shape so that the narrowest bit of
// copper between the hole and the apron edge is at least outline_margin
// wide (and that the apron itself meets min_apron_radius. But that would
// take a lot of code and math, and the following approximation is close
// enough.
int pad_width = std::min( pad->GetSize().x, pad->GetSize().y );
int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
int min_annular_ring_width = ( pad_width - slot_width ) / 2;
int clearance = std::max( min_apron_radius - pad_width / 2,
outline_margin - min_annular_ring_width );
clearance = std::max( 0, clearance - linethickness / 2 );
pad->TransformShapeWithClearanceToPolygon( aprons, aLayer, clearance,
ARC_HIGH_DEF, ERROR_OUTSIDE );
}
}
}
holes.BooleanSubtract( aprons, SHAPE_POLY_SET::PM_FAST );
}
DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, "pad-via-clipped-hatch-holes" );
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); )
{
double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii );
else
++ii;
}
// create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons needed by Gerber files and Fracture()
aRawPolys.BooleanSubtract( aRawPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
DUMP_POLYS_TO_COPPER_LAYER( aRawPolys, In14_Cu, "after-hatching" );
return true;
}