kicad/eeschema/sch_line.cpp

869 lines
23 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <sch_painter.h>
#include <plotter.h>
#include <sch_line.h>
#include <sch_edit_frame.h>
#include <settings/color_settings.h>
#include <schematic.h>
#include <project/project_file.h>
#include <project/net_settings.h>
#include <trigo.h>
SCH_LINE::SCH_LINE( const wxPoint& pos, int layer ) :
SCH_ITEM( NULL, SCH_LINE_T )
{
m_start = pos;
m_end = pos;
m_startIsDangling = m_endIsDangling = false;
m_stroke.SetWidth( 0 );
m_stroke.SetPlotStyle( PLOT_DASH_TYPE::DEFAULT );
m_stroke.SetColor( COLOR4D::UNSPECIFIED );
switch( layer )
{
default: m_Layer = LAYER_NOTES; break;
case LAYER_WIRE: m_Layer = LAYER_WIRE; break;
case LAYER_BUS: m_Layer = LAYER_BUS; break;
}
}
SCH_LINE::SCH_LINE( const SCH_LINE& aLine ) :
SCH_ITEM( aLine )
{
m_start = aLine.m_start;
m_end = aLine.m_end;
m_stroke = aLine.m_stroke;
m_startIsDangling = aLine.m_startIsDangling;
m_endIsDangling = aLine.m_endIsDangling;
}
EDA_ITEM* SCH_LINE::Clone() const
{
return new SCH_LINE( *this );
}
/*
* Conversion between PLOT_DASH_TYPE values and style names displayed
*/
const std::map<PLOT_DASH_TYPE, const char*> lineStyleNames{
{ PLOT_DASH_TYPE::SOLID, "solid" },
{ PLOT_DASH_TYPE::DASH, "dashed" },
{ PLOT_DASH_TYPE::DASHDOT, "dash_dot" },
{ PLOT_DASH_TYPE::DOT, "dotted" },
};
const char* SCH_LINE::GetLineStyleName( PLOT_DASH_TYPE aStyle )
{
auto resultIt = lineStyleNames.find( aStyle );
//legacy behavior is to default to dash if there is no name
return resultIt == lineStyleNames.end() ? lineStyleNames.find( PLOT_DASH_TYPE::DASH )->second :
resultIt->second;
}
PLOT_DASH_TYPE SCH_LINE::GetLineStyleByName( const wxString& aStyleName )
{
PLOT_DASH_TYPE id = PLOT_DASH_TYPE::DEFAULT; // Default style id
//find the name by value
auto resultIt = std::find_if( lineStyleNames.begin(), lineStyleNames.end(),
[aStyleName]( const auto& it ) { return it.second == aStyleName; } );
if( resultIt != lineStyleNames.end() )
id = resultIt->first;
return id;
}
void SCH_LINE::Move( const wxPoint& aOffset )
{
if( aOffset != wxPoint( 0, 0 ) )
{
m_start += aOffset;
m_end += aOffset;
SetModified();
}
}
void SCH_LINE::MoveStart( const wxPoint& aOffset )
{
if( aOffset != wxPoint( 0, 0 ) )
{
m_start += aOffset;
SetModified();
}
}
void SCH_LINE::MoveEnd( const wxPoint& aOffset )
{
if( aOffset != wxPoint( 0, 0 ) )
{
m_end += aOffset;
SetModified();
}
}
#if defined(DEBUG)
void SCH_LINE::Show( int nestLevel, std::ostream& os ) const
{
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str()
<< " layer=\"" << m_Layer << '"'
<< " startIsDangling=\"" << m_startIsDangling
<< '"' << " endIsDangling=\""
<< m_endIsDangling << '"' << ">"
<< " <start" << m_start << "/>"
<< " <end" << m_end << "/>" << "</"
<< GetClass().Lower().mb_str() << ">\n";
}
#endif
void SCH_LINE::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 2;
aLayers[0] = m_Layer;
aLayers[1] = LAYER_SELECTION_SHADOWS;
}
const EDA_RECT SCH_LINE::GetBoundingBox() const
{
int width = m_stroke.GetWidth() / 2;
int extra = m_stroke.GetWidth() & 0x1;
int xmin = std::min( m_start.x, m_end.x ) - width;
int ymin = std::min( m_start.y, m_end.y ) - width;
int xmax = std::max( m_start.x, m_end.x ) + width + extra;
int ymax = std::max( m_start.y, m_end.y ) + width + extra;
EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin, ymax - ymin ) );
return ret;
}
double SCH_LINE::GetLength() const
{
return GetLineLength( m_start, m_end );
}
void SCH_LINE::SetLineColor( const COLOR4D& aColor )
{
m_stroke.SetColor( aColor );
}
void SCH_LINE::SetLineColor( const double r, const double g, const double b, const double a )
{
COLOR4D newColor(r, g, b, a);
if( newColor == COLOR4D::UNSPECIFIED )
m_stroke.SetColor( COLOR4D::UNSPECIFIED );
else
{
// Eeschema does not allow alpha channel in colors
newColor.a = 1.0;
m_stroke.SetColor( newColor );
}
}
COLOR4D SCH_LINE::GetLineColor() const
{
if( m_stroke.GetColor() != COLOR4D::UNSPECIFIED )
return m_stroke.GetColor();
NETCLASSPTR netclass = NetClass();
if( netclass )
return netclass->GetSchematicColor();
return m_stroke.GetColor();
}
PLOT_DASH_TYPE SCH_LINE::GetDefaultStyle() const
{
if( IsGraphicLine() )
return PLOT_DASH_TYPE::DASH;
return PLOT_DASH_TYPE::SOLID;
}
void SCH_LINE::SetLineStyle( const int aStyleId )
{
SetLineStyle( static_cast<PLOT_DASH_TYPE>( aStyleId ) );
}
void SCH_LINE::SetLineStyle( const PLOT_DASH_TYPE aStyle )
{
if( aStyle == GetDefaultStyle() )
m_stroke.SetPlotStyle( PLOT_DASH_TYPE::DEFAULT );
else
m_stroke.SetPlotStyle( aStyle );
}
PLOT_DASH_TYPE SCH_LINE::GetLineStyle() const
{
if( m_stroke.GetPlotStyle() != PLOT_DASH_TYPE::DEFAULT )
return m_stroke.GetPlotStyle();
return GetDefaultStyle();
}
PLOT_DASH_TYPE SCH_LINE::GetEffectiveLineStyle() const
{
if( m_stroke.GetPlotStyle() != PLOT_DASH_TYPE::DEFAULT )
return m_stroke.GetPlotStyle();
NETCLASSPTR netclass = NetClass();
if( netclass )
return (PLOT_DASH_TYPE) netclass->GetLineStyle();
return GetLineStyle();
}
void SCH_LINE::SetLineWidth( const int aSize )
{
m_stroke.SetWidth( aSize );
}
int SCH_LINE::GetPenWidth() const
{
NETCLASSPTR netclass = NetClass();
switch ( m_Layer )
{
default:
if( m_stroke.GetWidth() > 0 )
return m_stroke.GetWidth();
if( Schematic() )
return Schematic()->Settings().m_DefaultLineWidth;
return DEFAULT_LINE_THICKNESS;
case LAYER_WIRE:
if( m_stroke.GetWidth() > 0 )
return m_stroke.GetWidth();
if( netclass )
return netclass->GetWireWidth();
if( Schematic() )
return Schematic()->Settings().m_DefaultWireThickness;
return DEFAULT_WIRE_THICKNESS;
case LAYER_BUS:
if( m_stroke.GetWidth() > 0 )
return m_stroke.GetWidth();
if( netclass )
return netclass->GetBusWidth();
if( Schematic() )
return Schematic()->Settings().m_DefaultBusThickness;
return DEFAULT_BUS_THICKNESS;
}
}
void SCH_LINE::Print( RENDER_SETTINGS* aSettings, const wxPoint& offset )
{
wxDC* DC = aSettings->GetPrintDC();
COLOR4D color = GetLineColor();
if( color == COLOR4D::UNSPECIFIED )
color = aSettings->GetLayerColor( GetLayer() );
wxPoint start = m_start;
wxPoint end = m_end;
int penWidth = std::max( GetPenWidth(), aSettings->GetDefaultPenWidth() );
GRLine( nullptr, DC, start.x, start.y, end.x, end.y, penWidth, color,
GetwxPenStyle( GetEffectiveLineStyle() ) );
}
void SCH_LINE::MirrorX( int aXaxis_position )
{
MIRROR( m_start.y, aXaxis_position );
MIRROR( m_end.y, aXaxis_position );
}
void SCH_LINE::MirrorY( int aYaxis_position )
{
MIRROR( m_start.x, aYaxis_position );
MIRROR( m_end.x, aYaxis_position );
}
void SCH_LINE::Rotate( wxPoint aPosition )
{
RotatePoint( &m_start, aPosition, 900 );
RotatePoint( &m_end, aPosition, 900 );
}
void SCH_LINE::RotateStart( wxPoint aPosition )
{
RotatePoint( &m_start, aPosition, 900 );
}
void SCH_LINE::RotateEnd( wxPoint aPosition )
{
RotatePoint( &m_end, aPosition, 900 );
}
bool SCH_LINE::IsSameQuadrant( SCH_LINE* aLine, const wxPoint& aPosition )
{
wxPoint first;
wxPoint second;
if( m_start == aPosition )
first = m_end - aPosition;
else if( m_end == aPosition )
first = m_start - aPosition;
else
return false;
if( aLine->m_start == aPosition )
second = aLine->m_end - aPosition;
else if( aLine->m_end == aPosition )
second = aLine->m_start - aPosition;
else
return false;
return ( sign( first.x ) == sign( second.x ) && sign( first.y ) == sign( second.y ) );
}
bool SCH_LINE::IsParallel( SCH_LINE* aLine )
{
wxCHECK_MSG( aLine != NULL && aLine->Type() == SCH_LINE_T, false,
wxT( "Cannot test line segment for overlap." ) );
wxPoint firstSeg = m_end - m_start;
wxPoint secondSeg = aLine->m_end - aLine->m_start;
// Use long long here to avoid overflow in calculations
return !( (long long) firstSeg.x * secondSeg.y - (long long) firstSeg.y * secondSeg.x );
}
SCH_LINE* SCH_LINE::MergeOverlap( SCH_SCREEN* aScreen, SCH_LINE* aLine, bool aCheckJunctions )
{
auto less = []( const wxPoint& lhs, const wxPoint& rhs ) -> bool
{
if( lhs.x == rhs.x )
return lhs.y < rhs.y;
return lhs.x < rhs.x;
};
wxCHECK_MSG( aLine != NULL && aLine->Type() == SCH_LINE_T, NULL,
wxT( "Cannot test line segment for overlap." ) );
if( this == aLine || GetLayer() != aLine->GetLayer() )
return nullptr;
auto leftmost_start = aLine->m_start;
auto leftmost_end = aLine->m_end;
auto rightmost_start = m_start;
auto rightmost_end = m_end;
// We place the start to the left and below the end of both lines
if( leftmost_start != std::min( { leftmost_start, leftmost_end }, less ) )
std::swap( leftmost_start, leftmost_end );
if( rightmost_start != std::min( { rightmost_start, rightmost_end }, less ) )
std::swap( rightmost_start, rightmost_end );
// - leftmost is the line that starts farthest to the left
// - other is the line that is _not_ leftmost
// - rightmost is the line that ends farthest to the right. This may or may not be 'other'
// as the second line may be completely covered by the first.
if( less( rightmost_start, leftmost_start ) )
{
std::swap( leftmost_start, rightmost_start );
std::swap( leftmost_end, rightmost_end );
}
wxPoint other_start = rightmost_start;
wxPoint other_end = rightmost_end;
if( less( rightmost_end, leftmost_end ) )
{
rightmost_start = leftmost_start;
rightmost_end = leftmost_end;
}
// If we end one before the beginning of the other, no overlap is possible
if( less( leftmost_end, other_start ) )
{
return nullptr;
}
// Search for a common end:
if( ( leftmost_start == other_start ) && ( leftmost_end == other_end ) ) // Trivial case
{
auto ret = new SCH_LINE( *aLine );
ret->SetStartPoint( leftmost_start );
ret->SetEndPoint( leftmost_end );
if( IsSelected() || aLine->IsSelected() )
ret->SetSelected();
return ret;
}
bool colinear = false;
/* Test alignment: */
if( ( leftmost_start.y == leftmost_end.y ) &&
( other_start.y == other_end.y ) ) // Horizontal segment
{
colinear = ( leftmost_start.y == other_start.y );
}
else if( ( leftmost_start.x == leftmost_end.x ) &&
( other_start.x == other_end.x ) ) // Vertical segment
{
colinear = ( leftmost_start.x == other_start.x );
}
else
{
// We use long long here to avoid overflow -- it enforces promotion
// The slope of the left-most line is dy/dx. Then we check that the slope from the
// left most start to the right most start is the same as well as the slope from the
// left most start to right most end.
long long dx = leftmost_end.x - leftmost_start.x;
long long dy = leftmost_end.y - leftmost_start.y;
colinear = ( ( ( other_start.y - leftmost_start.y ) * dx ==
( other_start.x - leftmost_start.x ) * dy ) &&
( ( other_end.y - leftmost_start.y ) * dx ==
( other_end.x - leftmost_start.x ) * dy ) );
}
if( !colinear )
return nullptr;
// We either have a true overlap or colinear touching segments. We always want to merge
// the former, but the later only get merged if there no junction at the touch point.
bool touching = leftmost_end == rightmost_start;
if( touching && aCheckJunctions && aScreen->IsJunctionNeeded( leftmost_end ) )
return nullptr;
// Make a new segment that merges the 2 segments
leftmost_end = rightmost_end;
auto ret = new SCH_LINE( *aLine );
ret->SetStartPoint( leftmost_start );
ret->SetEndPoint( leftmost_end );
if( IsSelected() || aLine->IsSelected() )
ret->SetSelected();
return ret;
}
void SCH_LINE::GetEndPoints( std::vector <DANGLING_END_ITEM>& aItemList )
{
if( IsGraphicLine() )
return;
if( ( GetLayer() == LAYER_BUS ) || ( GetLayer() == LAYER_WIRE ) )
{
DANGLING_END_ITEM item( (GetLayer() == LAYER_BUS) ? BUS_START_END : WIRE_START_END, this,
m_start );
aItemList.push_back( item );
DANGLING_END_ITEM item1( (GetLayer() == LAYER_BUS) ? BUS_END_END : WIRE_END_END, this,
m_end );
aItemList.push_back( item1 );
}
}
bool SCH_LINE::UpdateDanglingState( std::vector<DANGLING_END_ITEM>& aItemList,
const SCH_SHEET_PATH* aPath )
{
bool previousStartState = m_startIsDangling;
bool previousEndState = m_endIsDangling;
m_startIsDangling = m_endIsDangling = true;
if( GetLayer() == LAYER_WIRE )
{
for( DANGLING_END_ITEM item : aItemList )
{
if( item.GetItem() == this )
continue;
if( item.GetType() == BUS_START_END ||
item.GetType() == BUS_END_END ||
item.GetType() == BUS_ENTRY_END )
continue;
if( m_start == item.GetPosition() )
m_startIsDangling = false;
if( m_end == item.GetPosition() )
m_endIsDangling = false;
if( !m_startIsDangling && !m_endIsDangling )
break;
}
}
else if( GetLayer() == LAYER_BUS || IsGraphicLine() )
{
// Lines on the notes layer and the bus layer cannot be tested for dangling ends.
previousStartState = previousEndState = m_startIsDangling = m_endIsDangling = false;
}
return ( previousStartState != m_startIsDangling ) || ( previousEndState != m_endIsDangling );
}
bool SCH_LINE::IsConnectable() const
{
if( m_Layer == LAYER_WIRE || m_Layer == LAYER_BUS )
return true;
return false;
}
bool SCH_LINE::CanConnect( const SCH_ITEM* aItem ) const
{
if( m_Layer == LAYER_WIRE )
{
switch( aItem->Type() )
{
case SCH_JUNCTION_T:
case SCH_NO_CONNECT_T:
case SCH_LABEL_T:
case SCH_GLOBAL_LABEL_T:
case SCH_HIER_LABEL_T:
case SCH_BUS_WIRE_ENTRY_T:
case SCH_COMPONENT_T:
case SCH_SHEET_T:
case SCH_SHEET_PIN_T:
return true;
default:
break;
}
}
else if( m_Layer == LAYER_BUS )
{
switch( aItem->Type() )
{
case SCH_JUNCTION_T:
case SCH_LABEL_T:
case SCH_GLOBAL_LABEL_T:
case SCH_HIER_LABEL_T:
case SCH_BUS_WIRE_ENTRY_T:
case SCH_SHEET_T:
case SCH_SHEET_PIN_T:
return true;
default:
break;
}
}
return aItem->GetLayer() == m_Layer;
}
std::vector<wxPoint> SCH_LINE::GetConnectionPoints() const
{
return { m_start, m_end };
}
void SCH_LINE::GetSelectedPoints( std::vector< wxPoint >& aPoints ) const
{
if( m_Flags & STARTPOINT )
aPoints.push_back( m_start );
if( m_Flags & ENDPOINT )
aPoints.push_back( m_end );
}
wxString SCH_LINE::GetSelectMenuText( EDA_UNITS aUnits ) const
{
wxString txtfmt, orient;
if( m_start.x == m_end.x )
{
switch( m_Layer )
{
case LAYER_WIRE: txtfmt = _( "Vertical Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Vertical Bus, length %s" ); break;
default: txtfmt = _( "Vertical Graphic Line, length %s" ); break;
}
}
else if( m_start.y == m_end.y )
{
switch( m_Layer )
{
case LAYER_WIRE: txtfmt = _( "Horizontal Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Horizontal Bus, length %s" ); break;
default: txtfmt = _( "Horizontal Graphic Line, length %s" ); break;
}
}
else
{
switch( m_Layer )
{
case LAYER_WIRE: txtfmt = _( "Wire, length %s" ); break;
case LAYER_BUS: txtfmt = _( "Bus, length %s" ); break;
default: txtfmt = _( "Graphic Line, length %s" ); break;
}
}
return wxString::Format( txtfmt,
MessageTextFromValue( aUnits, EuclideanNorm( m_start - m_end ) ) );
}
BITMAP_DEF SCH_LINE::GetMenuImage() const
{
if( m_Layer == LAYER_NOTES )
return add_dashed_line_xpm;
else if( m_Layer == LAYER_WIRE )
return add_line_xpm;
return add_bus_xpm;
}
bool SCH_LINE::operator <( const SCH_ITEM& aItem ) const
{
if( Type() != aItem.Type() )
return Type() < aItem.Type();
auto line = static_cast<const SCH_LINE*>( &aItem );
if( GetLayer() != line->GetLayer() )
return GetLayer() < line->GetLayer();
if( GetStartPoint().x != line->GetStartPoint().x )
return GetStartPoint().x < line->GetStartPoint().x;
if( GetStartPoint().y != line->GetStartPoint().y )
return GetStartPoint().y < line->GetStartPoint().y;
if( GetEndPoint().x != line->GetEndPoint().x )
return GetEndPoint().x < line->GetEndPoint().x;
return GetEndPoint().y < line->GetEndPoint().y;
}
bool SCH_LINE::HitTest( const wxPoint& aPosition, int aAccuracy ) const
{
// Performance enhancement for connection-building
if( aPosition == m_start || aPosition == m_end )
return true;
// Insure minimum accuracy
if( aAccuracy == 0 )
aAccuracy = ( GetPenWidth() / 2 ) + 4;
return TestSegmentHit( aPosition, m_start, m_end, aAccuracy );
}
bool SCH_LINE::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
if( m_Flags & ( STRUCT_DELETED | SKIP_STRUCT ) )
return false;
EDA_RECT rect = aRect;
if ( aAccuracy )
rect.Inflate( aAccuracy );
if( aContained )
return rect.Contains( m_start ) && rect.Contains( m_end );
return rect.Intersects( m_start, m_end );
}
void SCH_LINE::SwapData( SCH_ITEM* aItem )
{
SCH_LINE* item = (SCH_LINE*) aItem;
std::swap( m_Layer, item->m_Layer );
std::swap( m_start, item->m_start );
std::swap( m_end, item->m_end );
std::swap( m_startIsDangling, item->m_startIsDangling );
std::swap( m_endIsDangling, item->m_endIsDangling );
std::swap( m_stroke, item->m_stroke );
}
bool SCH_LINE::doIsConnected( const wxPoint& aPosition ) const
{
if( m_Layer != LAYER_WIRE && m_Layer != LAYER_BUS )
return false;
return IsEndPoint( aPosition );
}
void SCH_LINE::Plot( PLOTTER* aPlotter )
{
auto* settings = static_cast<KIGFX::SCH_RENDER_SETTINGS*>( aPlotter->RenderSettings() );
int penWidth;
COLOR4D color = GetLineColor();
if( color == COLOR4D::UNSPECIFIED )
color = settings->GetLayerColor( GetLayer() );
aPlotter->SetColor( color );
switch( m_Layer )
{
case LAYER_WIRE: penWidth = settings->m_DefaultWireThickness; break;
case LAYER_BUS: penWidth = settings->m_DefaultBusThickness; break;
default: penWidth = GetPenWidth(); break;
}
if( m_stroke.GetWidth() != 0 )
penWidth = m_stroke.GetWidth();
penWidth = std::max( penWidth, settings->GetMinPenWidth() );
aPlotter->SetCurrentLineWidth( penWidth );
aPlotter->SetDash( GetEffectiveLineStyle() );
aPlotter->MoveTo( m_start );
aPlotter->FinishTo( m_end );
aPlotter->SetDash( PLOT_DASH_TYPE::SOLID );
}
void SCH_LINE::SetPosition( const wxPoint& aPosition )
{
m_end = m_end - ( m_start - aPosition );
m_start = aPosition;
}
void SCH_LINE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, MSG_PANEL_ITEMS& aList )
{
wxString msg;
switch( GetLayer() )
{
case LAYER_WIRE: msg = _( "Wire" ); break;
case LAYER_BUS: msg = _( "Bus" ); break;
default: msg = _( "Graphical" ); break;
}
aList.push_back( MSG_PANEL_ITEM( _( "Line Type" ), msg, DARKCYAN ) );
if( GetLineStyle() != GetEffectiveLineStyle() )
msg = _( "from netclass" );
else
msg = GetLineStyleName( GetLineStyle() );
aList.push_back( MSG_PANEL_ITEM( _( "Line Style" ), msg, DARKCYAN ) );
SCH_EDIT_FRAME* frame = dynamic_cast<SCH_EDIT_FRAME*>( aFrame );
if( frame )
{
if( SCH_CONNECTION* conn = Connection() )
{
conn->AppendInfoToMsgPanel( aList );
NET_SETTINGS& netSettings = Schematic()->Prj().GetProjectFile().NetSettings();
wxString netname = conn->Name();
wxString netclassName = netSettings.m_NetClasses.GetDefaultPtr()->GetName();
if( netSettings.m_NetClassAssignments.count( netname ) )
netclassName = netSettings.m_NetClassAssignments[ netname ];
aList.push_back( MSG_PANEL_ITEM( _( "Assigned Netclass" ), netclassName, DARKRED ) );
}
}
}
bool SCH_LINE::IsGraphicLine() const
{
return ( GetLayer() == LAYER_NOTES );
}
bool SCH_LINE::IsWire() const
{
return ( GetLayer() == LAYER_WIRE );
}
bool SCH_LINE::UsesDefaultStroke() const
{
return m_stroke.GetWidth() == 0 && m_stroke.GetColor() == COLOR4D::UNSPECIFIED
&& ( m_stroke.GetPlotStyle() == GetDefaultStyle()
|| m_stroke.GetPlotStyle() == PLOT_DASH_TYPE::DEFAULT );
}