kicad/3d-viewer/3d_rendering/raytracing/ray.cpp

361 lines
11 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2017 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 2015-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "ray.h"
#include "../../3d_fastmath.h"
#include <cstdio>
#include <wx/debug.h>
#include <wx/log.h>
#include <cmath>
//static unsigned int gs_next_rayID = 0;
void RAY::Init( const SFVEC3F& o, const SFVEC3F& d )
{
m_Origin = o;
m_Dir = d;
m_InvDir = 1.0f / d;
rayID = 0; // Not used, just set to 0
//rayID = gs_next_rayID;
//gs_next_rayID++;
// An Efficient and Robust RayBox Intersection Algorithm
// Amy Williams Steve Barrus R. Keith Morley Peter Shirley
// University of Utah
// http://people.csail.mit.edu/amy/papers/box-jgt.pdf
m_dirIsNeg[0] = m_Dir.x < 0.0f;
m_dirIsNeg[1] = m_Dir.y < 0.0f;
m_dirIsNeg[2] = m_Dir.z < 0.0f;
// ray slope
// "Fast Ray / Axis-Aligned Bounding Box Overlap Tests using Ray Slopes"
// by Martin Eisemann, Thorsten Grosch, Stefan Müller and Marcus Magnor
// Computer Graphics Lab, TU Braunschweig, Germany and
// University of Koblenz-Landau, Germany
// Licence: "This source code is public domain, but please mention us if you use it."
//
// https://github.com/rjw57/mcvoxel/tree/master/third-party/rayslope
// https://github.com/rjw57/mcvoxel/blob/master/third-party/rayslope/ray.cpp
ibyj = m_Dir.x * m_InvDir.y;
jbyi = m_Dir.y * m_InvDir.x;
jbyk = m_Dir.y * m_InvDir.z;
kbyj = m_Dir.z * m_InvDir.y;
ibyk = m_Dir.x * m_InvDir.z;
kbyi = m_Dir.z * m_InvDir.x;
c_xy = m_Origin.y - jbyi * m_Origin.x;
c_xz = m_Origin.z - kbyi * m_Origin.x;
c_yx = m_Origin.x - ibyj * m_Origin.y;
c_yz = m_Origin.z - kbyj * m_Origin.y;
c_zx = m_Origin.x - ibyk * m_Origin.z;
c_zy = m_Origin.y - jbyk * m_Origin.z;
// ray slope classification
if( m_Dir.x < 0 )
{
if( m_Dir.y < 0 )
{
if( m_Dir.z < 0 )
{
m_Classification = RAY_CLASSIFICATION::MMM;
}
else if( m_Dir.z > 0 )
{
m_Classification = RAY_CLASSIFICATION::MMP;
}
else
{
m_Classification = RAY_CLASSIFICATION::MMO;
}
}
else
{
if( m_Dir.z < 0 )
{
m_Classification = RAY_CLASSIFICATION::MPM;
if( m_Dir.y == 0 )
m_Classification = RAY_CLASSIFICATION::MOM;
}
else
{
if( ( m_Dir.y == 0 ) && ( m_Dir.z == 0 ) )
m_Classification = RAY_CLASSIFICATION::MOO;
else if( m_Dir.z == 0 )
m_Classification = RAY_CLASSIFICATION::MPO;
else if( m_Dir.y == 0 )
m_Classification = RAY_CLASSIFICATION::MOP;
else
m_Classification = RAY_CLASSIFICATION::MPP;
}
}
}
else
{
if( m_Dir.y < 0 )
{
if( m_Dir.z < 0 )
{
m_Classification = RAY_CLASSIFICATION::PMM;
if( m_Dir.x == 0 )
m_Classification = RAY_CLASSIFICATION::OMM;
}
else
{
if( ( m_Dir.x == 0 ) && ( m_Dir.z == 0 ) )
m_Classification = RAY_CLASSIFICATION::OMO;
else if( m_Dir.z == 0 )
m_Classification = RAY_CLASSIFICATION::PMO;
else if( m_Dir.x == 0 )
m_Classification = RAY_CLASSIFICATION::OMP;
else
m_Classification = RAY_CLASSIFICATION::PMP;
}
}
else
{
if( m_Dir.z < 0 )
{
if( ( m_Dir.x == 0 ) && ( m_Dir.y == 0 ) )
m_Classification = RAY_CLASSIFICATION::OOM;
else if( m_Dir.x == 0 )
m_Classification = RAY_CLASSIFICATION::OPM;
else if( m_Dir.y == 0 )
m_Classification = RAY_CLASSIFICATION::POM;
else
m_Classification = RAY_CLASSIFICATION::PPM;
}
else
{
if( m_Dir.x == 0 )
{
if( m_Dir.y == 0 )
m_Classification = RAY_CLASSIFICATION::OOP;
else if( m_Dir.z == 0 )
m_Classification = RAY_CLASSIFICATION::OPO;
else
m_Classification = RAY_CLASSIFICATION::OPP;
}
else
{
if( ( m_Dir.y == 0 ) && ( m_Dir.z == 0 ) )
m_Classification = RAY_CLASSIFICATION::POO;
else if( m_Dir.y == 0 )
m_Classification = RAY_CLASSIFICATION::POP;
else if( m_Dir.z == 0 )
m_Classification = RAY_CLASSIFICATION::PPO;
else
m_Classification = RAY_CLASSIFICATION::PPP;
}
}
}
}
}
bool IntersectSegment( const SFVEC2F &aStartA, const SFVEC2F &aEnd_minus_startA,
const SFVEC2F &aStartB, const SFVEC2F &aEnd_minus_startB )
{
float rxs = aEnd_minus_startA.x * aEnd_minus_startB.y - aEnd_minus_startA.y *
aEnd_minus_startB.x;
if( std::abs( rxs ) > glm::epsilon<float>() )
{
float inv_rxs = 1.0f / rxs;
SFVEC2F pq = aStartB - aStartA;
float t = ( pq.x * aEnd_minus_startB.y - pq.y * aEnd_minus_startB.x ) * inv_rxs;
if( ( t < 0.0f ) || ( t > 1.0f ) )
return false;
float u = ( pq.x * aEnd_minus_startA.y - pq.y * aEnd_minus_startA.x ) * inv_rxs;
if( ( u < 0.0f ) || ( u > 1.0f ) )
return false;
return true;
}
return false;
}
/// @todo: not tested
bool RAY::IntersectSphere( const SFVEC3F &aCenter, float aRadius, float &aOutT0,
float &aOutT1 ) const
{
// Ray-sphere intersection: geometric
SFVEC3F OC = aCenter - m_Origin;
float p_dot_d = glm::dot( OC, m_Dir );
if( p_dot_d < 0.0f )
return 0.0f;
float p_dot_p = glm::dot( OC, OC );
float discriminant = p_dot_p - p_dot_d * p_dot_d;
if( discriminant > aRadius*aRadius )
return false;
discriminant = sqrtf( aRadius*aRadius - discriminant );
aOutT0 = p_dot_d - discriminant;
aOutT1 = p_dot_d + discriminant;
if( aOutT0 > aOutT1 )
{
float temp = aOutT0;
aOutT0 = aOutT1;
aOutT1 = temp;
}
return true;
}
RAYSEG2D::RAYSEG2D( const SFVEC2F& s, const SFVEC2F& e )
{
m_Start = s;
m_End = e;
m_End_minus_start = e - s;
m_Length = glm::length( m_End_minus_start );
m_Dir = glm::normalize( m_End_minus_start );
m_InvDir = ( 1.0f / m_Dir );
if( fabs( m_Dir.x ) < FLT_EPSILON )
m_InvDir.x = NextFloatDown( FLT_MAX );
if( fabs( m_Dir.y ) < FLT_EPSILON )
m_InvDir.y = NextFloatDown( FLT_MAX );
m_DOT_End_minus_start = glm::dot( m_End_minus_start, m_End_minus_start );
}
bool RAYSEG2D::IntersectSegment( const SFVEC2F &aStart, const SFVEC2F &aEnd_minus_start,
float *aOutT ) const
{
float rxs = m_End_minus_start.x * aEnd_minus_start.y - m_End_minus_start.y *
aEnd_minus_start.x;
if( std::abs( rxs ) > glm::epsilon<float>() )
{
const float inv_rxs = 1.0f / rxs;
const SFVEC2F pq = aStart - m_Start;
const float t = ( pq.x * aEnd_minus_start.y - pq.y * aEnd_minus_start.x ) * inv_rxs;
if( ( t < 0.0f ) || ( t > 1.0f ) )
return false;
float u = ( pq.x * m_End_minus_start.y - pq.y * m_End_minus_start.x ) * inv_rxs;
if( ( u < 0.0f ) || ( u > 1.0f ) )
return false;
*aOutT = t;
return true;
}
return false;
}
// http://geomalgorithms.com/a02-_lines.html
float RAYSEG2D::DistanceToPointSquared( const SFVEC2F &aPoint ) const
{
SFVEC2F p = aPoint - m_Start;
const float c1 = glm::dot( p, m_End_minus_start );
if( c1 < FLT_EPSILON )
return glm::dot( p, p );
if( m_DOT_End_minus_start <= c1 )
{
p = aPoint - m_End;
}
else
{
const float b = c1 / m_DOT_End_minus_start;
const SFVEC2F pb = m_Start + m_End_minus_start * b;
p = aPoint - pb;
}
return glm::dot( p, p );
}
bool RAYSEG2D::IntersectCircle( const SFVEC2F &aCenter, float aRadius, float *aOutT0,
float *aOutT1, SFVEC2F *aOutNormalT0, SFVEC2F *aOutNormalT1 ) const
{
// This code used directly from Steve Marschner's CS667 framework
// http://cs665pd.googlecode.com/svn/trunk/photon/sphere.cpp
// Compute some factors used in computation
const float qx = m_Start.x - aCenter.x;
const float qy = m_Start.y - aCenter.y;
const float qd = qx * m_Dir.x + qy * m_Dir.y;
const float qq = qx * qx + qy * qy;
// solving the quadratic equation for t at the pts of intersection
// dd*t^2 + (2*qd)*t + (qq-r^2) = 0
const float discriminantsqr = (qd * qd - (qq - aRadius * aRadius));
// If the discriminant is less than zero, there is no intersection
if( discriminantsqr < FLT_EPSILON )
return false;
// Otherwise check and make sure that the intersections occur on the ray (t
// > 0) and return the closer one
const float discriminant = std::sqrt( discriminantsqr );
const float t1 = ( -qd - discriminant );
const float t2 = ( -qd + discriminant );
if( ( ( t1 < 0.0f ) || ( t1 > m_Length ) ) && ( ( t2 < 0.0f ) || ( t2 > m_Length ) ) )
return false; // Neither intersection was in the ray's half line.
// Convert the intersection to a normalized
*aOutT0 = t1 / m_Length;
*aOutT1 = t2 / m_Length;
SFVEC2F hitPointT1 = at( t1 );
SFVEC2F hitPointT2 = at( t2 );
*aOutNormalT0 = ( hitPointT1 - aCenter ) / aRadius;
*aOutNormalT1 = ( hitPointT2 - aCenter ) / aRadius;
return true;
}