585 lines
14 KiB
C++
585 lines
14 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2015 CERN
|
|
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
|
|
#include <vector>
|
|
#include <cstdio>
|
|
#include <geometry/shape.h>
|
|
#include <geometry/shape_line_chain.h>
|
|
#include <set>
|
|
#include <list>
|
|
#include <algorithm>
|
|
|
|
#include <boost/foreach.hpp>
|
|
|
|
#include "geometry/shape_poly_set.h"
|
|
|
|
using namespace ClipperLib;
|
|
|
|
int SHAPE_POLY_SET::NewOutline ()
|
|
{
|
|
Path empty_path;
|
|
Paths poly;
|
|
poly.push_back(empty_path);
|
|
m_polys.push_back(poly);
|
|
return m_polys.size() - 1;
|
|
}
|
|
|
|
int SHAPE_POLY_SET::NewHole( int aOutline )
|
|
{
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
int SHAPE_POLY_SET::AppendVertex ( int x, int y, int aOutline, int aHole )
|
|
{
|
|
if(aOutline < 0)
|
|
aOutline += m_polys.size();
|
|
|
|
int idx;
|
|
|
|
if(aHole < 0)
|
|
idx = 0;
|
|
else
|
|
idx = aHole + 1;
|
|
|
|
assert ( aOutline < (int)m_polys.size() );
|
|
assert ( idx < (int)m_polys[aOutline].size() );
|
|
|
|
m_polys[aOutline][idx].push_back( IntPoint( x, y ) );
|
|
|
|
return m_polys[aOutline][idx].size();
|
|
}
|
|
|
|
int SHAPE_POLY_SET::VertexCount ( int aOutline , int aHole ) const
|
|
{
|
|
if(aOutline < 0)
|
|
aOutline += m_polys.size();
|
|
|
|
int idx;
|
|
|
|
if(aHole < 0)
|
|
idx = 0;
|
|
else
|
|
idx = aHole + 1;
|
|
|
|
assert ( aOutline < (int)m_polys.size() );
|
|
assert ( idx < (int)m_polys[aOutline].size() );
|
|
|
|
return m_polys[aOutline][idx].size();
|
|
}
|
|
|
|
const VECTOR2I SHAPE_POLY_SET::GetVertex ( int index, int aOutline , int aHole ) const
|
|
{
|
|
if(aOutline < 0)
|
|
aOutline += m_polys.size();
|
|
|
|
int idx;
|
|
|
|
if(aHole < 0)
|
|
idx = 0;
|
|
else
|
|
idx = aHole + 1;
|
|
|
|
assert ( aOutline < (int)m_polys.size() );
|
|
assert ( idx < (int)m_polys[aOutline].size() );
|
|
|
|
IntPoint p = m_polys[aOutline][idx][index];
|
|
return VECTOR2I (p.X, p.Y);
|
|
}
|
|
|
|
int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline )
|
|
{
|
|
assert ( aOutline.IsClosed() );
|
|
|
|
Path p = convert ( aOutline );
|
|
Paths poly;
|
|
|
|
if( !Orientation( p ) )
|
|
ReversePath(p); // outlines are always CW
|
|
|
|
poly.push_back( p );
|
|
|
|
m_polys.push_back( poly );
|
|
|
|
return m_polys.size() - 1;
|
|
}
|
|
|
|
int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline )
|
|
{
|
|
assert ( m_polys.size() );
|
|
if(aOutline < 0)
|
|
aOutline += m_polys.size();
|
|
|
|
Paths& poly = m_polys[ aOutline ];
|
|
|
|
assert ( poly.size() );
|
|
|
|
Path p = convert ( aHole );
|
|
if( Orientation( p ) )
|
|
ReversePath(p); // holes are always CCW
|
|
|
|
poly.push_back( p );
|
|
|
|
return poly.size() - 1;
|
|
}
|
|
|
|
const ClipperLib::Path SHAPE_POLY_SET::convert( const SHAPE_LINE_CHAIN& aPath )
|
|
{
|
|
Path c_path;
|
|
|
|
for(int i = 0; i < aPath.PointCount(); i++)
|
|
{
|
|
const VECTOR2I& vertex = aPath.CPoint(i);
|
|
c_path.push_back(ClipperLib::IntPoint ( vertex.x, vertex.y ) );
|
|
}
|
|
|
|
return c_path;
|
|
}
|
|
|
|
void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType type, const SHAPE_POLY_SET& b )
|
|
{
|
|
Clipper c;
|
|
|
|
c.StrictlySimple( true );
|
|
|
|
BOOST_FOREACH ( Paths& subject, m_polys )
|
|
{
|
|
c.AddPaths(subject, ptSubject, true);
|
|
}
|
|
|
|
BOOST_FOREACH ( const Paths& clip, b.m_polys )
|
|
{
|
|
c.AddPaths(clip, ptClip, true);
|
|
}
|
|
|
|
PolyTree solution;
|
|
|
|
c.Execute(type, solution, pftNonZero, pftNonZero);
|
|
|
|
importTree(&solution);
|
|
}
|
|
|
|
void SHAPE_POLY_SET::Add( const SHAPE_POLY_SET& b )
|
|
{
|
|
booleanOp( ctUnion, b );
|
|
}
|
|
|
|
void SHAPE_POLY_SET::Subtract( const SHAPE_POLY_SET& b )
|
|
{
|
|
booleanOp( ctDifference, b );
|
|
}
|
|
|
|
|
|
void SHAPE_POLY_SET::Erode ( int aFactor )
|
|
{
|
|
ClipperOffset c;
|
|
|
|
BOOST_FOREACH( Paths& p, m_polys )
|
|
c.AddPaths(p, jtRound, etClosedPolygon );
|
|
|
|
PolyTree solution;
|
|
|
|
c.Execute ( solution, aFactor );
|
|
|
|
m_polys.clear();
|
|
|
|
for (PolyNode *n = solution.GetFirst(); n; n = n->GetNext() )
|
|
{
|
|
Paths ps;
|
|
ps.push_back(n->Contour);
|
|
m_polys.push_back(ps);
|
|
}
|
|
}
|
|
|
|
void SHAPE_POLY_SET::importTree ( ClipperLib::PolyTree* tree)
|
|
{
|
|
m_polys.clear();
|
|
|
|
for (PolyNode *n = tree->GetFirst(); n; n = n->GetNext() )
|
|
{
|
|
if( !n->IsHole() )
|
|
{
|
|
Paths paths;
|
|
paths.push_back(n->Contour);
|
|
|
|
for (unsigned i = 0; i < n->Childs.size(); i++)
|
|
paths.push_back(n->Childs[i]->Contour);
|
|
m_polys.push_back(paths);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Polygon fracturing code. Work in progress.
|
|
|
|
struct FractureEdge
|
|
{
|
|
FractureEdge(bool connected, Path* owner, int index) :
|
|
m_connected(connected),
|
|
m_owner(owner),
|
|
m_next(NULL)
|
|
{
|
|
m_p1 = (*owner)[index];
|
|
m_p2 = (*owner)[(index + 1) % owner->size()];
|
|
}
|
|
|
|
FractureEdge(int64_t y = 0) :
|
|
m_connected(false),
|
|
m_owner(NULL),
|
|
m_next(NULL)
|
|
{
|
|
m_p1.Y = m_p2.Y = y;
|
|
}
|
|
|
|
FractureEdge(bool connected, const IntPoint& p1, const IntPoint& p2) :
|
|
m_connected(connected),
|
|
m_owner(NULL),
|
|
m_p1(p1),
|
|
m_p2(p2),
|
|
m_next(NULL)
|
|
{
|
|
|
|
}
|
|
|
|
bool matches ( int y ) const
|
|
{
|
|
int y_min = std::min(m_p1.Y, m_p2.Y);
|
|
int y_max = std::max(m_p1.Y, m_p2.Y);
|
|
|
|
return (y >= y_min) && (y <= y_max);
|
|
}
|
|
|
|
bool m_connected;
|
|
Path* m_owner;
|
|
IntPoint m_p1, m_p2;
|
|
FractureEdge *m_next;
|
|
};
|
|
|
|
struct CompareEdges
|
|
{
|
|
bool operator()(const FractureEdge *a, const FractureEdge *b) const
|
|
{
|
|
if( std::min(a->m_p1.Y, a->m_p2.Y) < std::min(b->m_p1.Y, b->m_p2.Y) )
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
typedef std::vector<FractureEdge*> FractureEdgeSet;
|
|
|
|
static int processEdge ( FractureEdgeSet& edges, FractureEdge* edge )
|
|
{
|
|
int n = 0;
|
|
int64_t x = edge->m_p1.X;
|
|
int64_t y = edge->m_p1.Y;
|
|
|
|
|
|
int64_t min_dist_l = std::numeric_limits<int64_t>::max();
|
|
int64_t min_dist_r = std::numeric_limits<int64_t>::max();
|
|
int64_t x_nearest_l = 0, x_nearest_r = 0, x_nearest;
|
|
|
|
// fixme: search edges in sorted multiset
|
|
// FractureEdge comp_min( std::min(edge->m_p1.Y, edge->m_p2.Y) );
|
|
// FractureEdgeSet::iterator e_begin = edges.lower_bound ( &comp_min );
|
|
|
|
FractureEdgeSet::iterator e_nearest_l = edges.end(), e_nearest_r = edges.end(), e_nearest;
|
|
|
|
|
|
for(FractureEdgeSet::iterator i = edges.begin() ; i != edges.end(); ++i)
|
|
{
|
|
n++;
|
|
if( (*i)->matches(y) )
|
|
{
|
|
int64_t x_intersect;
|
|
if( (*i)->m_p1.Y == (*i)->m_p2.Y ) // horizontal edge
|
|
x_intersect = std::max ( (*i)->m_p1.X, (*i)->m_p2.X );
|
|
else
|
|
x_intersect = (*i)->m_p1.X + rescale((*i)->m_p2.X - (*i)->m_p1.X, y - (*i)->m_p1.Y, (*i)->m_p2.Y - (*i)->m_p1.Y );
|
|
|
|
int64_t dist = (x - x_intersect);
|
|
|
|
if(dist > 0 && dist < min_dist_l)
|
|
{
|
|
min_dist_l = dist;
|
|
x_nearest_l = x_intersect;
|
|
e_nearest_l = i;
|
|
}
|
|
|
|
if(dist <= 0 && (-dist) < min_dist_r)
|
|
{
|
|
min_dist_r = -dist;
|
|
x_nearest_r = x_intersect;
|
|
e_nearest_r = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(e_nearest_l != edges.end() || e_nearest_r != edges.end())
|
|
{
|
|
if( e_nearest_l !=edges.end() && ( (*e_nearest_l)->m_connected || ((*e_nearest_l) ->m_owner != edge->m_owner )))
|
|
{
|
|
e_nearest = e_nearest_l;
|
|
x_nearest = x_nearest_l;
|
|
}
|
|
else if( e_nearest_r !=edges.end() && ( (*e_nearest_r)->m_connected || ((*e_nearest_r) ->m_owner != edge->m_owner ) )) {
|
|
e_nearest = e_nearest_r;
|
|
x_nearest = x_nearest_r;
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
bool connFlag = (*e_nearest)->m_connected;
|
|
|
|
FractureEdge split_1 ( connFlag, (*e_nearest)->m_p1, IntPoint(x_nearest, y) );
|
|
FractureEdge *lead1 = new FractureEdge( connFlag, IntPoint(x_nearest, y), IntPoint(x, y) );
|
|
FractureEdge *lead2 = new FractureEdge( connFlag, IntPoint(x, y), IntPoint(x_nearest, y) );
|
|
FractureEdge *split_2 = new FractureEdge ( connFlag, IntPoint(x_nearest, y), (*e_nearest)->m_p2 );
|
|
|
|
edges.push_back(split_2);
|
|
edges.push_back(lead1);
|
|
edges.push_back(lead2);
|
|
|
|
FractureEdge* link = (*e_nearest)->m_next;
|
|
|
|
(*e_nearest)->m_p1 = split_1.m_p1;
|
|
(*e_nearest)->m_p2 = IntPoint(x_nearest, y);
|
|
(*e_nearest)->m_connected = connFlag;
|
|
(*e_nearest)->m_next = lead1;
|
|
lead1->m_next = edge;
|
|
|
|
FractureEdge *last;
|
|
for(last = edge; last->m_next != edge; last = last->m_next)
|
|
{
|
|
last->m_connected = connFlag;
|
|
last->m_owner = NULL;
|
|
}
|
|
|
|
last->m_owner = NULL;
|
|
last->m_connected = connFlag;
|
|
last->m_next = lead2;
|
|
lead2->m_next = split_2;
|
|
split_2->m_next = link;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void SHAPE_POLY_SET::fractureSingle( ClipperLib::Paths& paths )
|
|
{
|
|
FractureEdgeSet edges;
|
|
FractureEdge *root = NULL;
|
|
|
|
bool first = true;
|
|
|
|
if(paths.size() == 1)
|
|
return;
|
|
|
|
int num_unconnected = 0;
|
|
|
|
BOOST_FOREACH(Path& path, paths)
|
|
{
|
|
int index = 0;
|
|
|
|
FractureEdge *prev = NULL, *first_edge = NULL;
|
|
for(unsigned i = 0; i < path.size(); i++)
|
|
{
|
|
FractureEdge *fe = new FractureEdge ( first, &path, index++ );
|
|
|
|
if(!root)
|
|
root = fe;
|
|
|
|
if(!first_edge)
|
|
first_edge = fe;
|
|
if(prev)
|
|
prev->m_next = fe;
|
|
|
|
if(i == path.size() - 1)
|
|
fe->m_next = first_edge;
|
|
|
|
prev = fe;
|
|
edges.push_back ( fe );
|
|
|
|
if(!fe->m_connected)
|
|
num_unconnected++;
|
|
}
|
|
|
|
first = false; // first path is always the outline
|
|
}
|
|
|
|
while(1)
|
|
{
|
|
int n_unconnected = 0;
|
|
|
|
for(FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
|
{
|
|
if(!(*i)->m_connected)
|
|
n_unconnected++;
|
|
}
|
|
|
|
if(!n_unconnected)
|
|
break;
|
|
|
|
for(FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
|
{
|
|
if(!(*i)->m_connected)
|
|
{
|
|
if (processEdge ( edges, *i ) )
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
paths.clear();
|
|
Path newPath;
|
|
FractureEdge *e;
|
|
|
|
for(e = root; e->m_next != root; e = e->m_next )
|
|
newPath.push_back(e->m_p1);
|
|
|
|
newPath.push_back(e->m_p1);
|
|
|
|
for(FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
|
|
delete *i;
|
|
|
|
paths.push_back(newPath);
|
|
}
|
|
|
|
void SHAPE_POLY_SET::Fracture ()
|
|
{
|
|
BOOST_FOREACH(Paths& paths, m_polys)
|
|
{
|
|
fractureSingle( paths );
|
|
}
|
|
}
|
|
|
|
void SHAPE_POLY_SET::Simplify()
|
|
{
|
|
for (unsigned i = 0; i < m_polys.size(); i++)
|
|
{
|
|
Paths out;
|
|
SimplifyPolygons(m_polys[i], out, pftNonZero);
|
|
m_polys[i] = out;
|
|
}
|
|
}
|
|
|
|
const std::string SHAPE_POLY_SET::Format() const
|
|
{
|
|
std::stringstream ss;
|
|
|
|
ss << "polyset " << m_polys.size() << "\n";
|
|
|
|
for( unsigned i = 0; i < m_polys.size(); i++ )
|
|
{
|
|
ss << "poly " << m_polys[i].size() << "\n";
|
|
for( unsigned j = 0; j < m_polys[i].size(); j++)
|
|
{
|
|
ss << m_polys[i][j].size() << "\n";
|
|
for( unsigned v = 0; v < m_polys[i][j].size(); v++)
|
|
ss << m_polys[i][j][v].X << " " << m_polys[i][j][v].Y << "\n";
|
|
}
|
|
ss << "\n";
|
|
}
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
|
|
{
|
|
std::string tmp;
|
|
|
|
aStream >> tmp;
|
|
|
|
if(tmp != "polyset")
|
|
return false;
|
|
|
|
aStream >> tmp;
|
|
|
|
int n_polys = atoi( tmp.c_str() );
|
|
|
|
if( n_polys < 0 )
|
|
return false;
|
|
|
|
for( int i = 0; i < n_polys; i++ )
|
|
{
|
|
ClipperLib::Paths paths;
|
|
|
|
aStream >> tmp;
|
|
if(tmp != "poly")
|
|
return false;
|
|
|
|
aStream >> tmp;
|
|
int n_outlines = atoi( tmp.c_str() );
|
|
|
|
if( n_outlines < 0 )
|
|
return false;
|
|
|
|
for( int j = 0; j < n_outlines; j++ )
|
|
{
|
|
ClipperLib::Path outline;
|
|
|
|
aStream >> tmp;
|
|
int n_vertices = atoi( tmp.c_str() );
|
|
for( int v = 0; v < n_vertices; v++ )
|
|
{
|
|
ClipperLib::IntPoint p;
|
|
|
|
aStream >> tmp; p.X = atoi ( tmp.c_str() );
|
|
aStream >> tmp; p.Y = atoi ( tmp.c_str() );
|
|
outline.push_back(p);
|
|
}
|
|
paths.push_back(outline);
|
|
}
|
|
m_polys.push_back(paths);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const
|
|
{
|
|
BOX2I bb;
|
|
bool first = true;
|
|
|
|
for( unsigned i = 0; i < m_polys.size(); i++ )
|
|
{
|
|
for( unsigned j = 0; j < m_polys[i].size(); j++)
|
|
{
|
|
for( unsigned v = 0; v < m_polys[i][j].size(); v++)
|
|
{
|
|
VECTOR2I p( m_polys[i][j][v].X, m_polys[i][j][v].Y );
|
|
if(first)
|
|
bb = BOX2I(p, VECTOR2I(0, 0));
|
|
else
|
|
bb.Merge (p);
|
|
|
|
first = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
bb.Inflate( aClearance );
|
|
return bb;
|
|
}
|