kicad/eeschema/sim/sim_plot_tab.cpp

998 lines
27 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2016-2023 CERN
* Copyright (C) 2021-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* https://www.gnu.org/licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "sim_plot_colors.h"
#include "sim_plot_tab.h"
#include "simulator_frame.h"
#include "core/kicad_algo.h"
#include <algorithm>
#include <limits>
static wxString formatFloat( double x, int nDigits )
{
wxString rv, fmt;
if( nDigits )
fmt.Printf( "%%.0%df", nDigits );
else
fmt = wxT( "%.0f" );
rv.Printf( fmt, x );
return rv;
}
static void getSISuffix( double x, const wxString& unit, int& power, wxString& suffix )
{
const int n_powers = 11;
const struct
{
int exponent;
char suffix;
} powers[] =
{
{ -18, 'a' },
{ -15, 'f' },
{ -12, 'p' },
{ -9, 'n' },
{ -6, 'u' },
{ -3, 'm' },
{ 0, 0 },
{ 3, 'k' },
{ 6, 'M' },
{ 9, 'G' },
{ 12, 'T' },
{ 14, 'P' }
};
power = 0;
suffix = unit;
if( x == 0.0 )
return;
for( int i = 0; i < n_powers - 1; i++ )
{
double r_cur = pow( 10, powers[i].exponent );
if( fabs( x ) >= r_cur && fabs( x ) < r_cur * 1000.0 )
{
power = powers[i].exponent;
if( powers[i].suffix )
suffix = wxString( powers[i].suffix ) + unit;
else
suffix = unit;
return;
}
}
}
static int countDecimalDigits( double x, int maxDigits )
{
if( std::isnan( x ) )
return 0;
auto countSignificantDigits =
[&]( int64_t k )
{
while( k && ( k % 10LL ) == 0LL )
k /= 10LL;
int n = 0;
while( k != 0LL )
{
n++;
k /= 10LL;
}
return n;
};
int64_t k = (int)( ( x - floor( x ) ) * pow( 10.0, (double) maxDigits ) );
int n = countSignificantDigits( k );
// check for trailing 9's
n = std::min( n, countSignificantDigits( k + 1 ) );
return n;
}
template <typename T_PARENT>
class LIN_SCALE : public T_PARENT
{
public:
LIN_SCALE( const wxString& name, const wxString& unit, int flags ) :
T_PARENT( name, flags, false ),
m_unit( unit )
{};
wxString GetUnits() const { return m_unit; }
private:
void formatLabels() override
{
double maxVis = T_PARENT::AbsVisibleMaxValue();
wxString suffix;
int power = 0;
int digits = 0;
int constexpr MAX_DIGITS = 3;
int constexpr MAX_DISAMBIGUATION_DIGITS = 6;
bool duplicateLabels = false;
getSISuffix( maxVis, m_unit, power, suffix );
double sf = pow( 10.0, power );
for( mpScaleBase::TICK_LABEL& l : T_PARENT::m_tickLabels )
digits = std::max( digits, countDecimalDigits( l.pos / sf, MAX_DIGITS ) );
do
{
for( size_t ii = 0; ii < T_PARENT::m_tickLabels.size(); ++ii )
{
mpScaleBase::TICK_LABEL& l = T_PARENT::m_tickLabels[ii];
l.label = formatFloat( l.pos / sf, digits );
l.visible = true;
if( ii > 0 && l.label == T_PARENT::m_tickLabels[ii-1].label )
duplicateLabels = true;
}
}
while( duplicateLabels && ++digits <= MAX_DISAMBIGUATION_DIGITS );
if( m_base_axis_label.IsEmpty() )
m_base_axis_label = T_PARENT::GetName();
T_PARENT::SetName( wxString::Format( "%s (%s)", m_base_axis_label, suffix ) );
}
private:
const wxString m_unit;
wxString m_base_axis_label;
};
class TIME_SCALE : public LIN_SCALE<mpScaleX>
{
public:
TIME_SCALE( const wxString& name, const wxString& unit, int flags ) :
LIN_SCALE( name, unit, flags )
{};
void ExtendDataRange( double minV, double maxV ) override
{
if( !m_rangeSet )
{
m_minV = minV;
m_maxV = maxV;
m_rangeSet = true;
}
else
{
if( minV < m_minV )
m_minV -= abs( maxV - minV );
if( maxV > m_maxV )
m_maxV += abs( maxV - minV );
}
}
};
template <typename T_PARENT>
class LOG_SCALE : public T_PARENT
{
public:
LOG_SCALE( const wxString& name, const wxString& unit, int flags ) :
T_PARENT( name, flags, false ),
m_unit( unit )
{};
wxString GetUnits() const { return m_unit; }
private:
void formatLabels() override
{
wxString suffix;
int power;
int constexpr MAX_DIGITS = 3;
for( mpScaleBase::TICK_LABEL& l : T_PARENT::m_tickLabels )
{
getSISuffix( l.pos, m_unit, power, suffix );
double sf = pow( 10.0, power );
int k = countDecimalDigits( l.pos / sf, MAX_DIGITS );
l.label = formatFloat( l.pos / sf, k ) + suffix;
l.visible = true;
}
}
private:
const wxString m_unit;
};
void CURSOR::SetCoordX( double aValue )
{
wxRealPoint oldCoords = m_coords;
doSetCoordX( aValue );
m_updateRequired = false;
m_updateRef = true;
if( m_window )
{
wxRealPoint delta = m_coords - oldCoords;
mpInfoLayer::Move( wxPoint( m_window->x2p( m_trace->x2s( delta.x ) ),
m_window->y2p( m_trace->y2s( delta.y ) ) ) );
m_window->Refresh();
}
}
void CURSOR::doSetCoordX( double aValue )
{
m_coords.x = aValue;
const std::vector<double>& dataX = m_trace->GetDataX();
const std::vector<double>& dataY = m_trace->GetDataY();
if( dataX.size() <= 1 )
return;
// Find the closest point coordinates
auto maxXIt = std::upper_bound( dataX.begin(), dataX.end(), m_coords.x );
int maxIdx = maxXIt - dataX.begin();
int minIdx = maxIdx - 1;
// Out of bounds checks
if( minIdx < 0 )
{
minIdx = 0;
maxIdx = 1;
m_coords.x = dataX[0];
}
else if( maxIdx >= (int) dataX.size() )
{
maxIdx = dataX.size() - 1;
minIdx = maxIdx - 1;
m_coords.x = dataX[maxIdx];
}
const double leftX = dataX[minIdx];
const double rightX = dataX[maxIdx];
const double leftY = dataY[minIdx];
const double rightY = dataY[maxIdx];
// Linear interpolation
m_coords.y = leftY + ( rightY - leftY ) / ( rightX - leftX ) * ( m_coords.x - leftX );
}
wxString CURSOR::getID()
{
for( const auto& [ id, cursor ] : m_trace->GetCursors() )
{
if( cursor == this )
return wxString::Format( _( "%d" ), id );
}
return wxEmptyString;
}
void CURSOR::Plot( wxDC& aDC, mpWindow& aWindow )
{
if( !m_window )
m_window = &aWindow;
if( !m_visible || m_trace->GetDataX().size() <= 1 )
return;
if( m_updateRequired )
{
doSetCoordX( m_trace->s2x( aWindow.p2x( m_dim.x ) ) );
m_updateRequired = false;
// Notify the parent window about the changes
wxQueueEvent( aWindow.GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) );
}
else
{
m_updateRef = true;
}
if( m_updateRef )
{
UpdateReference();
m_updateRef = false;
}
// Line length in horizontal and vertical dimensions
const wxPoint cursorPos( aWindow.x2p( m_trace->x2s( m_coords.x ) ),
aWindow.y2p( m_trace->y2s( m_coords.y ) ) );
wxCoord leftPx = aWindow.GetMarginLeft();
wxCoord rightPx = aWindow.GetScrX() - aWindow.GetMarginRight();
wxCoord topPx = aWindow.GetMarginTop();
wxCoord bottomPx = aWindow.GetScrY() - aWindow.GetMarginBottom();
wxPen pen = GetPen();
wxColour fg = GetPen().GetColour();
pen.SetColour( COLOR4D( m_trace->GetTraceColour() ).Mix( fg, 0.6 ).ToColour() );
pen.SetStyle( m_continuous ? wxPENSTYLE_SOLID : wxPENSTYLE_LONG_DASH );
aDC.SetPen( pen );
if( topPx < cursorPos.y && cursorPos.y < bottomPx )
aDC.DrawLine( leftPx, cursorPos.y, rightPx, cursorPos.y );
if( leftPx < cursorPos.x && cursorPos.x < rightPx )
{
aDC.DrawLine( cursorPos.x, topPx, cursorPos.x, bottomPx );
wxString id = getID();
wxSize size = aDC.GetTextExtent( wxS( "M" ) );
wxRect textRect( wxPoint( cursorPos.x + 1 - size.x / 2, topPx - 4 - size.y ), size );
wxBrush brush;
wxPoint poly[3];
// Because a "1" looks off-center if it's actually centred.
if( id == "1" )
textRect.x -= 1;
// We want an equalateral triangle, so use size.y for both axes.
size.y += 3;
// Make sure it's an even number so the slopes of the sides will be identical.
size.y = ( size.y / 2 ) * 2;
poly[0] = { cursorPos.x - 1 - size.y / 2, topPx - size.y };
poly[1] = { cursorPos.x + 1 + size.y / 2, topPx - size.y };
poly[2] = { cursorPos.x, topPx };
brush.SetStyle( wxBRUSHSTYLE_SOLID );
brush.SetColour( m_trace->GetTraceColour() );
aDC.SetBrush( brush );
aDC.DrawPolygon( 3, poly );
aDC.SetTextForeground( fg );
aDC.DrawLabel( id, textRect, wxALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL );
}
}
bool CURSOR::Inside( const wxPoint& aPoint ) const
{
if( !m_window || !m_trace )
return false;
return ( std::abs( (double) aPoint.x -
m_window->x2p( m_trace->x2s( m_coords.x ) ) ) <= DRAG_MARGIN )
|| ( std::abs( (double) aPoint.y -
m_window->y2p( m_trace->y2s( m_coords.y ) ) ) <= DRAG_MARGIN );
}
void CURSOR::UpdateReference()
{
if( !m_window )
return;
m_reference.x = m_window->x2p( m_trace->x2s( m_coords.x ) );
m_reference.y = m_window->y2p( m_trace->y2s( m_coords.y ) );
}
SIM_PLOT_TAB::SIM_PLOT_TAB( const wxString& aSimCommand, wxWindow* parent ) :
SIM_TAB( aSimCommand, parent ),
m_axis_x( nullptr ),
m_axis_y1( nullptr ),
m_axis_y2( nullptr ),
m_axis_y3( nullptr ),
m_dotted_cp( false )
{
m_sizer = new wxBoxSizer( wxVERTICAL );
m_plotWin = new mpWindow( this, wxID_ANY );
m_plotWin->LimitView( true );
m_plotWin->SetMargins( 35, 70, 35, 70 );
UpdatePlotColors();
updateAxes();
// a mpInfoLegend displays le name of traces on the left top panel corner:
m_legend = new mpInfoLegend( wxRect( 0, 0, 200, 40 ), wxTRANSPARENT_BRUSH );
m_legend->SetVisible( false );
m_plotWin->AddLayer( m_legend );
m_plotWin->EnableDoubleBuffer( true );
m_plotWin->UpdateAll();
m_sizer->Add( m_plotWin, 1, wxALL | wxEXPAND, 1 );
SetSizer( m_sizer );
}
SIM_PLOT_TAB::~SIM_PLOT_TAB()
{
// ~mpWindow destroys all the added layers, so there is no need to destroy m_traces contents
}
void SIM_PLOT_TAB::SetY1Scale( bool aLock, double aMin, double aMax )
{
m_axis_y1->SetAxisMinMax( aLock, aMin, aMax );
}
void SIM_PLOT_TAB::SetY2Scale( bool aLock, double aMin, double aMax )
{
m_axis_y2->SetAxisMinMax( aLock, aMin, aMax );
}
void SIM_PLOT_TAB::SetY3Scale( bool aLock, double aMin, double aMax )
{
m_axis_y3->SetAxisMinMax( aLock, aMin, aMax );
}
wxString SIM_PLOT_TAB::GetUnitsX() const
{
LOG_SCALE<mpScaleXLog>* logScale = dynamic_cast<LOG_SCALE<mpScaleXLog>*>( m_axis_x );
LIN_SCALE<mpScaleX>* linScale = dynamic_cast<LIN_SCALE<mpScaleX>*>( m_axis_x );
if( logScale )
return logScale->GetUnits();
else if( linScale )
return linScale->GetUnits();
else
return wxEmptyString;
}
wxString SIM_PLOT_TAB::GetUnitsY1() const
{
LIN_SCALE<mpScaleY>* linScale = dynamic_cast<LIN_SCALE<mpScaleY>*>( m_axis_y1 );
if( linScale )
return linScale->GetUnits();
else
return wxEmptyString;
}
wxString SIM_PLOT_TAB::GetUnitsY2() const
{
LIN_SCALE<mpScaleY>* linScale = dynamic_cast<LIN_SCALE<mpScaleY>*>( m_axis_y2 );
if( linScale )
return linScale->GetUnits();
else
return wxEmptyString;
}
wxString SIM_PLOT_TAB::GetUnitsY3() const
{
LIN_SCALE<mpScaleY>* linScale = dynamic_cast<LIN_SCALE<mpScaleY>*>( m_axis_y3 );
if( linScale )
return linScale->GetUnits();
else
return wxEmptyString;
}
void SIM_PLOT_TAB::updateAxes( int aNewTraceType )
{
switch( GetSimType() )
{
case ST_AC:
if( !m_axis_x )
{
m_axis_x = new LOG_SCALE<mpScaleXLog>( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
m_axis_y1 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "dBV" ), mpALIGN_LEFT );
m_axis_y1->SetNameAlign( mpALIGN_LEFT );
m_plotWin->AddLayer( m_axis_y1 );
m_axis_y2 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "°" ), mpALIGN_RIGHT );
m_axis_y2->SetNameAlign( mpALIGN_RIGHT );
m_axis_y2->SetMasterScale( m_axis_y1 );
m_plotWin->AddLayer( m_axis_y2 );
}
m_axis_x->SetName( _( "Frequency" ) );
m_axis_y1->SetName( _( "Gain" ) );
m_axis_y2->SetName( _( "Phase" ) );
break;
case ST_SP:
if( !m_axis_x )
{
m_axis_x = new LOG_SCALE<mpScaleXLog>( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
m_axis_y1 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "" ), mpALIGN_LEFT );
m_axis_y1->SetNameAlign( mpALIGN_LEFT );
m_plotWin->AddLayer( m_axis_y1 );
m_axis_y2 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "°" ), mpALIGN_RIGHT );
m_axis_y2->SetNameAlign( mpALIGN_RIGHT );
m_axis_y2->SetMasterScale( m_axis_y1 );
m_plotWin->AddLayer( m_axis_y2 );
}
m_axis_x->SetName( _( "Frequency" ) );
m_axis_y1->SetName( _( "Ampltiude" ) );
m_axis_y2->SetName( _( "Phase" ) );
break;
case ST_DC:
prepareDCAxes( aNewTraceType );
break;
case ST_NOISE:
if( !m_axis_x )
{
m_axis_x = new LOG_SCALE<mpScaleXLog>( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
if( ( aNewTraceType & SPT_CURRENT ) == 0 )
{
m_axis_y1 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "" ), mpALIGN_LEFT );
m_axis_y1->SetNameAlign( mpALIGN_LEFT );
m_plotWin->AddLayer( m_axis_y1 );
}
else
{
m_axis_y2 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "" ), mpALIGN_RIGHT );
m_axis_y2->SetNameAlign( mpALIGN_RIGHT );
m_plotWin->AddLayer( m_axis_y2 );
}
}
m_axis_x->SetName( _( "Frequency" ) );
if( m_axis_y1 )
m_axis_y1->SetName( _( "Noise (V/√Hz)" ) );
if( m_axis_y2 )
m_axis_y2->SetName( _( "Noise (A/√Hz)" ) );
break;
case ST_FFT:
if( !m_axis_x )
{
m_axis_x = new LOG_SCALE<mpScaleXLog>( wxEmptyString, wxT( "Hz" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
m_axis_y1 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "dB" ), mpALIGN_LEFT );
m_axis_y1->SetNameAlign( mpALIGN_LEFT );
m_plotWin->AddLayer( m_axis_y1 );
}
m_axis_x->SetName( _( "Frequency" ) );
m_axis_y1->SetName( _( "Intensity" ) );
break;
case ST_TRAN:
if( !m_axis_x )
{
m_axis_x = new TIME_SCALE( wxEmptyString, wxT( "s" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
m_axis_y1 = new LIN_SCALE<mpScaleY>(wxEmptyString, wxT( "V" ), mpALIGN_LEFT );
m_axis_y1->SetNameAlign( mpALIGN_LEFT );
m_plotWin->AddLayer( m_axis_y1 );
m_axis_y2 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "A" ), mpALIGN_RIGHT );
m_axis_y2->SetNameAlign( mpALIGN_RIGHT );
m_axis_y2->SetMasterScale( m_axis_y1 );
m_plotWin->AddLayer( m_axis_y2 );
}
m_axis_x->SetName( _( "Time" ) );
m_axis_y1->SetName( _( "Voltage" ) );
m_axis_y2->SetName( _( "Current" ) );
if( ( aNewTraceType & SPT_POWER ) && !m_axis_y3 )
{
m_plotWin->SetMargins( 35, 140, 35, 70 );
m_axis_y3 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "W" ), mpALIGN_FAR_RIGHT );
m_axis_y3->SetNameAlign( mpALIGN_FAR_RIGHT );
m_axis_y3->SetMasterScale( m_axis_y1 );
m_plotWin->AddLayer( m_axis_y3 );
}
if( m_axis_y3 )
m_axis_y3->SetName( _( "Power" ) );
break;
default:
// suppress warnings
break;
}
if( m_axis_x )
m_axis_x->SetFont( KIUI::GetStatusFont( m_plotWin ) );
if( m_axis_y1 )
m_axis_y1->SetFont( KIUI::GetStatusFont( m_plotWin ) );
if( m_axis_y2 )
m_axis_y2->SetFont( KIUI::GetStatusFont( m_plotWin ) );
if( m_axis_y3 )
m_axis_y3->SetFont( KIUI::GetStatusFont( m_plotWin ) );
}
void SIM_PLOT_TAB::prepareDCAxes( int aNewTraceType )
{
wxString sim_cmd = GetSimCommand().Lower();
wxString rem;
if( sim_cmd.StartsWith( ".dc", &rem ) )
{
wxChar ch = 0;
rem.Trim( false );
try
{
ch = rem.GetChar( 0 );
}
catch( ... )
{
// Best efforts
}
switch( ch )
{
// Make sure that we have a reliable default (even if incorrectly labeled)
default:
case 'v':
if( !m_axis_x )
{
m_axis_x = new LIN_SCALE<mpScaleX>( wxEmptyString, wxT( "V" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
}
m_axis_x->SetName( _( "Voltage (swept)" ) );
break;
case 'i':
if( !m_axis_x )
{
m_axis_x = new LIN_SCALE<mpScaleX>( wxEmptyString, wxT( "A" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
}
m_axis_x->SetName( _( "Current (swept)" ) );
break;
case 'r':
if( !m_axis_x )
{
m_axis_x = new LIN_SCALE<mpScaleX>( wxEmptyString, wxT( "" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
}
m_axis_x->SetName( _( "Resistance (swept)" ) );
break;
case 't':
if( !m_axis_x )
{
m_axis_x = new LIN_SCALE<mpScaleX>( wxEmptyString, wxT( "°C" ), mpALIGN_BOTTOM );
m_axis_x->SetNameAlign( mpALIGN_BOTTOM );
m_plotWin->AddLayer( m_axis_x );
}
m_axis_x->SetName( _( "Temperature (swept)" ) );
break;
}
if( !m_axis_y1 )
{
m_axis_y1 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "V" ), mpALIGN_LEFT );
m_axis_y1->SetNameAlign( mpALIGN_LEFT );
m_plotWin->AddLayer( m_axis_y1 );
}
if( !m_axis_y2 )
{
m_axis_y2 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "A" ), mpALIGN_RIGHT );
m_axis_y2->SetNameAlign( mpALIGN_RIGHT );
m_plotWin->AddLayer( m_axis_y2 );
}
m_axis_y1->SetName( _( "Voltage (measured)" ) );
m_axis_y2->SetName( _( "Current" ) );
if( ( aNewTraceType & SPT_POWER ) && !m_axis_y3 )
{
m_plotWin->SetMargins( 35, 140, 35, 70 );
m_axis_y3 = new LIN_SCALE<mpScaleY>( wxEmptyString, wxT( "W" ), mpALIGN_FAR_RIGHT );
m_axis_y3->SetNameAlign( mpALIGN_FAR_RIGHT );
m_axis_y3->SetMasterScale( m_axis_y1 );
m_plotWin->AddLayer( m_axis_y3 );
}
if( m_axis_y3 )
m_axis_y3->SetName( _( "Power" ) );
}
}
void SIM_PLOT_TAB::UpdatePlotColors()
{
// Update bg and fg colors:
m_plotWin->SetColourTheme( m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::BACKGROUND ),
m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::FOREGROUND ),
m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::AXIS ) );
// Update color of all traces
for( const auto& [ name, trace ] : m_traces )
{
for( const auto& [ id, cursor ] : trace->GetCursors() )
{
if( cursor )
cursor->SetPen( wxPen( m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::CURSOR ) ) );
}
}
m_plotWin->UpdateAll();
}
void SIM_PLOT_TAB::OnLanguageChanged()
{
updateAxes();
m_plotWin->UpdateAll();
}
void SIM_PLOT_TAB::UpdateTraceStyle( TRACE* trace )
{
int type = trace->GetType();
wxPenStyle penStyle = ( ( ( type & SPT_AC_PHASE ) || ( type & SPT_CURRENT ) ) && m_dotted_cp )
? wxPENSTYLE_DOT
: wxPENSTYLE_SOLID;
trace->SetPen( wxPen( trace->GetTraceColour(), 2, penStyle ) );
}
TRACE* SIM_PLOT_TAB::AddTrace( const wxString& aVectorName, int aType )
{
TRACE* trace = GetTrace( aVectorName, aType );
if( !trace )
{
updateAxes( aType );
if( GetSimType() == ST_TRAN || GetSimType() == ST_DC )
{
bool hasVoltageTraces = false;
for( const auto& [ id, candidate ] : m_traces )
{
if( candidate->GetType() & SPT_VOLTAGE )
{
hasVoltageTraces = true;
break;
}
}
if( !hasVoltageTraces )
{
if( m_axis_y2 )
m_axis_y2->SetMasterScale( nullptr );
if( m_axis_y3 )
m_axis_y3->SetMasterScale( nullptr );
}
}
trace = new TRACE( aVectorName, (SIM_TRACE_TYPE) aType );
trace->SetTraceColour( m_colors.GenerateColor( m_traces ) );
UpdateTraceStyle( trace );
m_traces[ getTraceId( aVectorName, aType ) ] = trace;
m_plotWin->AddLayer( (mpLayer*) trace );
}
return trace;
}
void SIM_PLOT_TAB::SetTraceData( TRACE* trace, std::vector<double>& aX, std::vector<double>& aY )
{
if( dynamic_cast<LOG_SCALE<mpScaleXLog>*>( m_axis_x ) )
{
// log( 0 ) is not valid.
if( aX.size() > 0 && aX[0] == 0 )
{
aX.erase( aX.begin() );
aY.erase( aY.begin() );
}
}
if( GetSimType() == ST_AC || GetSimType() == ST_FFT )
{
if( trace->GetType() & SPT_AC_PHASE )
{
for( double& pt : aY )
pt = pt * 180.0 / M_PI; // convert to degrees
}
else
{
for( double& pt : aY )
{
// log( 0 ) is not valid.
if( pt != 0 )
pt = 20 * log( pt ) / log( 10.0 ); // convert to dB
}
}
}
trace->SetData( aX, aY );
if( ( trace->GetType() & SPT_AC_PHASE ) || ( trace->GetType() & SPT_CURRENT ) )
trace->SetScale( m_axis_x, m_axis_y2 );
else if( trace->GetType() & SPT_POWER )
trace->SetScale( m_axis_x, m_axis_y3 );
else
trace->SetScale( m_axis_x, m_axis_y1 );
for( auto& [ cursorId, cursor ] : trace->GetCursors() )
{
if( cursor )
cursor->SetCoordX( cursor->GetCoords().x );
}
m_plotWin->UpdateAll();
}
void SIM_PLOT_TAB::DeleteTrace( TRACE* aTrace )
{
for( const auto& [ name, trace ] : m_traces )
{
if( trace == aTrace )
{
m_traces.erase( name );
break;
}
}
for( const auto& [ id, cursor ] : aTrace->GetCursors() )
{
if( cursor )
m_plotWin->DelLayer( cursor, true );
}
m_plotWin->DelLayer( aTrace, true, true );
ResetScales( false );
}
bool SIM_PLOT_TAB::DeleteTrace( const wxString& aVectorName, int aTraceType )
{
if( TRACE* trace = GetTrace( aVectorName, aTraceType ) )
{
DeleteTrace( trace );
return true;
}
return false;
}
void SIM_PLOT_TAB::EnableCursor( const wxString& aVectorName, int aType, int aCursorId,
bool aEnable, const wxString& aSignalName )
{
TRACE* t = GetTrace( aVectorName, aType );
if( t == nullptr || t->HasCursor( aCursorId ) == aEnable )
return;
if( aEnable )
{
CURSOR* cursor = new CURSOR( t, this );
mpWindow* win = GetPlotWin();
int width = win->GetXScreen() - win->GetMarginLeft() - win->GetMarginRight();
int center = win->GetMarginLeft() + KiROUND( width * ( aCursorId == 1 ? 0.4 : 0.6 ) );
cursor->SetName( aSignalName );
cursor->SetX( center );
cursor->SetPen( wxPen( m_colors.GetPlotColor( SIM_PLOT_COLORS::COLOR_SET::CURSOR ) ) );
t->SetCursor( aCursorId, cursor );
m_plotWin->AddLayer( cursor );
}
else
{
CURSOR* cursor = t->GetCursor( aCursorId );
t->SetCursor( aCursorId, nullptr );
m_plotWin->DelLayer( cursor, true );
}
// Notify the parent window about the changes
wxQueueEvent( GetParent(), new wxCommandEvent( EVT_SIM_CURSOR_UPDATE ) );
}
void SIM_PLOT_TAB::ResetScales( bool aIncludeX )
{
if( m_axis_x && aIncludeX )
m_axis_x->ResetDataRange();
if( m_axis_y1 )
m_axis_y1->ResetDataRange();
if( m_axis_y2 )
m_axis_y2->ResetDataRange();
if( m_axis_y3 )
m_axis_y3->ResetDataRange();
for( auto& [ name, trace ] : m_traces )
trace->UpdateScales();
}
wxDEFINE_EVENT( EVT_SIM_CURSOR_UPDATE, wxCommandEvent );